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Author’s Preface to Second Edition

Everything has been said before, but since nobody listens we have to keep
going back and beginning all over again.
Andre Gide

Good science writers will always jump at the chance to write a second edition of an earlier
work. No matter how hard they try, that first edition will contain inaccuracies and mislead-
ing remarks. Sentences that seemed brilliant when first conceived will, with the passage of
time, transform into examples of intellectual overreaching. Points too trivial to include in
the original manuscript may now seem like profundities that demand a full explanation.
A second edition provides rueful authors with an opportunity to correct the record.

When the first edition of Principles of Big Data was published in 2013 the field was very
young and there were few scientists who knew what to do with Big Data. The data that kept
pouring in was stored, like wheat in silos, throughout the planet. It was obvious to data
managers that none of that stored data would have any scientific value unless it was prop-
erly annotated with metadata, identifiers, timestamps, and a set of basic descriptors.
Under these conditions, the first edition of the Principles of Big Data stressed the proper
and necessary methods for collecting, annotating, organizing, and curating Big Data. The
process of preparing Big Data comes with its own unique set of challenges, and the First
Edition was peppered with warnings and exhortations intended to steer readers clear of
disaster.

It is now five years since the first edition was published and there have since been hun-
dreds of books written on the subject of Big Data. As a scientist, it is disappointing to me
that the bulk of Big Data, today, is focused on issues of marketing and predictive analytics
(e.g., “Who is likely to buy product x, given that they bought product y two weeks previ-
ously?”); and machine learning (e.g., driverless cars, computer vision, speech recognition).
Machine learning relies heavily on hyped up techniques such as neural networks and deep
learning; neither of which are leading to fundamental laws and principles that simplify
and broaden our understanding of the natural world and the physical universe. For the
most part, these techniques use data that is relatively new (i.e., freshly collected), poorly
annotated (i.e., provided with only the minimal information required for one particular
analytic process), and not deposited for public evaluation or for re-use. In short, Big Data
has followed the path of least resistance, avoiding most of the tough issues raised in the
first edition of this book; such as the importance of sharing data with the public, the value
of finding relationships (not similarities) among data objects, and the heavy, but inescap-
able, burden of creating robust, immortal, and well-annotated data.
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It was certainly my hope that the greatest advances from Big Data would come as
fundamental breakthroughs in the realms of medicine, biology, physics, engineering,
and chemistry. Why has the focus of Big Data shifted from basic science over to machine
learning? It may have something to do with the fact that no book, including the first edition
of this book, has provided readers with the methods required to put the principles of Big
Data into practice. In retrospect, it was not sufficient to describe a set of principles and
then expect readers to invent their own methodologies.

Consequently, in this second edition, the publisher has changed the title of the book
from “The Principles of Big Data,” to “The Principles AND PRACTICE of Big Data.” Hence-
forth and herein, recommendations are accompanied by the methods by which those
recommendations can beimplemented. The reader will find that all of the methods forimple-
menting Big Data preparation and analysis are really quite simple. For the most part, com-
puter methods require some basic familiarity with a programming language, and, despite
misgivings, Python was chosen as the language of choice. The advantages of Python are:

— Pythonisano-cost, opensource, high-level programminglanguage that is easy to acquire,
install, learn, and use, and is available for every popular computer operating system.

— Python is extremely popular, at the present time, and its popularity seems to be
increasing.

— Python distributions (such as Anaconda) come bundled with hundreds of highly useful
modules (such as numpy, matplot, and scipy).

— Python has a large and active user group that has provided an extraordinary amount of
documentation for Python methods and modules.

— Python supports some object-oriented techniques that will be discussed in this new
edition

As everything in life, Python has its drawbacks:

— The most current versions of Python are not backwardly compatible with earlier
versions. The scripts and code snippets included in this book should work for most
versions of Python 3.x, but may not work with Python versions 2.x and earlier, unless
the reader is prepared to devote some time to tweaking the code. Of course, these short
scripts and snippets are intended as simplified demonstrations of concepts, and must
not be construed as application-ready code.

— The built-in Python methods are sometimes maximized for speed by utilizing Random
Access Memory (RAM) to hold data structures, including data structures built through
iterative loops. Iterations through Big Data may exhaust available RAM, leading to the
failure of Python scripts that functioned well with small data sets.

— Python’s implementation of object orientation allows multiclass inheritance (i.e., a
class can be the subclass of more than one parent class). We will describe why this is
problematic, and the compensatory measures that we must take, whenever we use our
Python programming skills to understand large and complex sets of data objects.

The core of every algorithm described in the book can be implemented in a few lines of
code, using just about any popular programming language, under any operating system,
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on any modern computer. Numerous Python snippets are provided, along with descrip-
tions of free utilities that are widely available on every popular operating system. This
book stresses the point that most data analyses conducted on large, complex data sets
can be achieved with simple methods, bypassing specialized software systems (e.g., par-
allelization of computational processes) or hardware (e.g., supercomputers). Readers who
are completely unacquainted with Python may find that they can read and understand
Python code, if the snippets of code are brief, and accompanied by some explanation
in the text. In any case, readers who are primarily concerned with mastering the principles
of Big Data can skip the code snippets without losing the narrative thread of the book.
This second edition has been expanded to stress methodologies that have been over-
looked by the authors of other books in the field of Big Data analysis. These would include:

— Data preparation.

How to annotate data with metadata and how to create data objects composed of triples.
The concept of the triple, as the fundamental conveyor of meaning in the computational
sciences, is fully explained.

— Data structures of particular relevance to Big Data

Concepts such as triplestores, distributed ledgers, unique identifiers, timestamps, concor-
dances, indexes, dictionary objects, data persistence, and the roles of one-way hashes and
encryption protocols for data storage and distribution are covered.

— Classification of data objects

How to assign data objects to classes based on their shared relationships, and the com-
putational roles filled by classifications in the analysis of Big Data will be discussed at
length.

— Introspection

How to create data objects that are self-describing, permitting the data analyst to group
objects belonging to the same class and to apply methods to class objects that have been
inherited from their ancestral classes.

— Algorithms that have special utility in Big Data preparation and analysis

How to use one-way hashes, unique identifier generators, cryptographic techniques, tim-
ing methods, and time stamping protocols to create unique data objects that are immu-
table (never changing), immortal, and private; and to create data structures that facilitate a
host of useful functions that will be described (e.g., blockchains and distributed ledgers,
protocols for safely sharing confidential information, and methods for reconciling iden-
tifiers across data collections without violating privacy).

— Tips for Big Data analysis

How to overcome many of the analytic limitations imposed by scale and dimensionality,
using a range of simple techniques (e.g., approximations, so-called back-of-the-envelope



xxiv. AUTHOR'’S PREFACE TO SECOND EDITION

tricks, repeated sampling using a random number generator, Monte Carlo simulations,
and data reduction methods).

— Data reanalysis, data repurposing, and data sharing

Why the first analysis of Big Data is almost always incorrect, misleading, or woefully
incomplete, and why data reanalysis has become a crucial skill that every serious Big Data
analyst must acquire. The process of data reanalysis often inspires repurposing of Big Data
resources. Neither data reanalysis nor data repurposing can be achieved unless and until
the obstacles to data sharing are overcome. The topics of data reanalysis, data repurpos-
ing, and data sharing are explored at length.

Comprehensive texts, such as the second edition of the Principles and Practice of Big
Data, are never quite as comprehensive as they might strive to be; there simply is no way to
fully describe every concept and method that is relevant to a multi-disciplinary field, such
as Big Data. To compensate for such deficiencies, there is an extensive Glossary section for
every chapter, that defines the terms introduced in the text, providing some explanation of
the relevance of the terms for Big Data scientists. In addition, when techniques and
methods are discussed, a list of references that the reader may find useful, for further read-
ing on the subject, is provided. Altogether, the second edition contains about 600 citations
to outside references, most of which are available as free downloads. There are over 300
glossary items, many of which contain short Python snippets that readers may find useful.

As afinal note, this second edition uses case studies to show readers how the principles
of Big Data are put into practice. Although case studies are drawn from many fields of sci-
ence, including physics, economics, and astronomy, readers will notice an overabundance
of examples drawn from the biological sciences (particularly medicine and zoology). The
reason for this is that the taxonomy of all living terrestrial organisms is the oldest and best
Big Data classification in existence. All of the classic errors in data organization, and in
data analysis, have been committed in the field of biology. More importantly, these errors
have been documented in excruciating detail and most of the documented errors have
been corrected and published for public consumption. If you want to understand how
Big Data can be used as a tool for scientific advancement, then you must look at case
examples taken from the world of biology, a well-documented field where everything that
can happen has happened, is happening, and will happen. Every effort has been made to
limit Case Studies to the simplest examples of their type, and to provide as much back-
ground explanation as non-biologists may require.

Principles and Practice of Big Data, Second Edition, is devoted to the intellectual con-
viction that the primary purpose of Big Data analysis is to permit us to ask and answer a
wide range of questions that could not have been credibly approached with small sets of
data. There is every reason to hope that the readers of this book will soon achieve scientific
breakthroughs that were beyond the reach of prior generations of scientists. Good luck!
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We can’t solve problems by using the same kind of thinking we used when we
created them.
Albert Einstein

Data pours into millions of computers every moment of every day. It is estimated that the
total accumulated data stored on computers worldwide is about 300 exabytes (that’s 300
billion gigabytes). Data storage increases at about 28% per year. The data stored is peanuts
compared to data that is transmitted without storage. The annual transmission of data is
estimated at about 1.9 zettabytes or 1,900 billion gigabytes [1]. From this growing tangle of
digital information, the next generation of data resources will emerge.

As we broaden our data reach (i.e., the different kinds of data objects included in the
resource), and our data timeline (i.e., accruing data from the future and the deep past), we
need to find ways to fully describe each piece of data, so that we do not confuse one data
item with another, and so that we can search and retrieve data items when we need them.
Astute informaticians understand that if we fully describe everything in our universe, we
would need to have an ancillary universe to hold all the information, and the ancillary uni-
verse would need to be much larger than our physical universe.

In the rush to acquire and analyze data, it is easy to overlook the topic of data prepa-
ration. If the data in our Big Data resources are not well organized, comprehensive, and
fully described, then the resources will have no value. The primary purpose of this book is
to explain the principles upon which serious Big Data resources are built. All of the data
held in Big Data resources must have a form that supports search, retrieval, and analysis.
The analytic methods must be available for review, and the analytic results must be avail-
able for validation.

Perhaps the greatest potential benefit of Big Data is its ability to link seemingly dispa-
rate disciplines, to develop and test hypothesis that cannot be approached within a single
knowledge domain. Methods by which analysts can navigate through different Big Data
resources to create new, merged data sets, will be reviewed.

What exactly, is Big Data? Big Data is characterized by the three V’s: volume (large
amounts of data), variety (includes different types of data), and velocity (constantly accu-
mulating new data) [2]. Those of us who have worked on Big Data projects might suggest
throwing a few more v’s into the mix: vision (having a purpose and a plan), verification
(ensuring that the data conforms to a set of specifications), and validation (checking that
its purpose is fulfilled).
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Many of the fundamental principles of Big Data organization have been described in
the “metadata” literature. This literature deals with the formalisms of data description (i.e.,
how to describe data); the syntax of data description (e.g., markup languages such as
eXtensible Markup Language, XML); semantics (i.e., how to make computer-parsable
statements that convey meaning); the syntax of semantics (e.g., framework specifications
such as Resource Description Framework, RDE and Web Ontology Language, OWL); the
creation of data objects that hold data values and self-descriptive information; and the
deployment of ontologies, hierarchical class systems whose members are data objects.

The field of metadata may seem like a complete waste of time to professionals who
have succeeded very well, in data-intensive fields, without resorting to metadata formal-
isms. Many computer scientists, statisticians, database managers, and network specialists
have no trouble handling large amounts of data, and they may not see the need to create a
strange new data model for Big Data resources. They might feel that all they really need is
greater storage capacity, distributed over more powerful computers that work in parallel
with one another. With this kind of computational power, they can store, retrieve, and ana-
lyze larger and larger quantities of data. These fantasies only apply to systems that use
relatively simple data or data that can be represented in a uniform and standard format.
When data is highly complex and diverse, as found in Big Data resources, the importance
of metadata looms large. Metadata will be discussed, with a focus on those concepts that
must be incorporated into the organization of Big Data resources. The emphasis will be on
explaining the relevance and necessity of these concepts, without going into gritty details
that are well covered in the metadata literature.

When data originates from many different sources, arrives in many different forms,
grows in size, changes its values, and extends into the past and the future, the game shifts
from data computation to data management. I hope that this book will persuade readers
that faster, more powerful computers are nice to have, but these devices cannot compen-
sate for deficiencies in data preparation. For the foreseeable future, universities, federal
agencies, and corporations will pour money, time, and manpower into Big Data efforts.
If they ignore the fundamentals, their projects are likely to fail. On the other hand, if they
pay attention to Big Data fundamentals, they will discover that Big Data analyses can be
performed on standard computers. The simple lesson, that data trumps computation, will
be repeated throughout this book in examples drawn from well-documented events.

There are three crucial topics related to data preparation that are omitted from virtually
every other Big Data book: identifiers, immutability, and introspection.

Athoughtful identifier system ensures that all of the datarelated to a particular data object
will be attached to the correct object, through its identifier, and to no other object. It seems
simple, and it is, but many Big Data resources assign identifiers promiscuously, with the end
result that information related to a unique object is scattered throughout the resource,
attached to other objects, and cannot be sensibly retrieved when needed. The concept of
objectidentification is of such overriding importance that a Big Data resource can be usefully
envisioned as a collection of unique identifiers to which complex data is attached.
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Immutability is the principle that data collected in a Big Data resource is permanent,
and can never be modified. At first thought, it would seem that immutability is a ridiculous
and impossible constraint. In the real world, mistakes are made, information changes, and
the methods for describing information changes. This is all true, but the astute Big Data
manager knows how to accrue information into data objects without changing the pre-
existing data. Methods for achieving this seemingly impossible trick will be described
in detail.

Introspection is a term borrowed from object-oriented programming, not often found
in the Big Data literature. It refers to the ability of data objects to describe themselves when
interrogated. With introspection, users of a Big Data resource can quickly determine the
content of data objects and the hierarchical organization of data objects within the Big
Data resource. Introspection allows users to see the types of data relationships that can
be analyzed within the resource and clarifies how disparate resources can interact with
one another.

Another subject covered in this book, and often omitted from the literature on Big Data,
is data indexing. Though there are many books written on the art of the science of so-
called back-of-the-book indexes, scant attention has been paid to the process of preparing
indexes for large and complex data resources. Consequently, most Big Data resources have
nothing that could be called a serious index. They might have a Web page with a few links
to explanatory documents, or they might have a short and crude "help" index, but it would
be rare to find a Big Data resource with a comprehensive index containing a thoughtful
and updated list of terms and links. Without a proper index, most Big Data resources have
limited utility for any but a few cognoscenti. It seems odd to me that organizations willing
to spend hundreds of millions of dollars on a Big Data resource will balk at investing a few
thousand dollars more for a proper index.

Aside from these four topics, which readers would be hard-pressed to find in the exist-
ing Big Data literature, this book covers the usual topics relevant to Big Data design, con-
struction, operation, and analysis. Some of these topics include data quality, providing
structure to unstructured data, data deidentification, data standards and interoperability
issues, legacy data, data reduction and transformation, data analysis, and software issues.
For these topics, discussions focus on the underlying principles; programming code and
mathematical equations are conspicuously inconspicuous. An extensive Glossary covers
the technical or specialized terms and topics that appear throughout the text. As each
Glossary term is "optional” reading, I took the liberty of expanding on technical or math-
ematical concepts that appeared in abbreviated form in the main text. The Glossary pro-
vides an explanation of the practical relevance of each term to Big Data, and some readers
may enjoy browsing the Glossary as a stand-alone text.

The final four chapters are non-technical; all dealing in one way or another with the
consequences of our exploitation of Big Data resources. These chapters will cover legal,
social, and ethical issues. The book ends with my personal predictions for the future of
Big Data, and its impending impact on our futures. When preparing this book, I debated
whether these four chapters might best appear in the front of the book, to whet the reader’s
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appetite for the more technical chapters. I eventually decided that some readers would be
unfamiliar with some of the technical language and concepts included in the final
chapters, necessitating their placement near the end.

Readers may notice that many of the case examples described in this book come from
the field of medical informatics. The healthcare informatics field is particularly ripe for
discussion because every reader is affected, on economic and personal levels, by the
Big Data policies and actions emanating from the field of medicine. Aside from that, there
is arich literature on Big Data projects related to healthcare. As much of this literature is
controversial, I thought it important to select examples that I could document from
reliable sources. Consequently, the reference section is large, with over 200 articles from
journals, newspaper articles, and books. Most of these cited articles are available for free
Web download.

Who should read this book? This book is written for professionals who manage Big Data
resources and for students in the fields of computer science and informatics. Data
management professionals would include the leadership within corporations and funding
agencies who must commit resources to the project, the project directors who must deter-
mine a feasible set of goals and who must assemble a team of individuals who, in
aggregate, hold the requisite skills for the task: network managers, data domain special-
ists, metadata specialists, software programmers, standards experts, interoperability
experts, statisticians, data analysts, and representatives from the intended user commu-
nity. Students of informatics, the computer sciences, and statistics will discover that the
special challenges attached to Big Data, seldom discussed in university classes, are often
surprising; sometimes shocking.

By mastering the fundamentals of Big Data design, maintenance, growth, and valida-
tion, readers will learn how to simplify the endless tasks engendered by Big Data resources.
Adept analysts can find relationships among data objects held in disparate Big Data
resources if the data is prepared properly. Readers will discover how integrating Big Data
resources can deliver benefits far beyond anything attained from stand-alone databases.
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Section 1.1. Definition of Big Data

It’s the data, stupid.
Jim Gray

Back in the mid 1960s, my high school held pep rallies before big games. At one of these
rallies, the head coach of the football team walked to the center of the stage carrying a
large box of printed computer paper; each large sheet was folded flip-flop style against
the next sheet and they were all held together by perforations. The coach announced that
the athletic abilities of every member of our team had been entered into the school’s com-
puter (we were lucky enough to have our own IBM-360 mainframe). Likewise, data on our
rival team had also been entered. The computer was instructed to digest all of this infor-
mation and to produce the name of the team that would win the annual Thanksgiving Day
showdown. The computer spewed forth the aforementioned box of computer paper; the
very last output sheet revealed that we were the pre-ordained winners. The next day, we
sallied forth to yet another ignominious defeat at the hands of our long-time rivals.

Fast-forward about 50 years to a conference room at the National Institutes of Health
(NIH), in Bethesda, Maryland. A top-level science administrator is briefing me. She explains
that disease research has grown in scale over the past decade. The very best research initia-
tives are now multi-institutional and data-intensive. Funded investigators are using high-
throughput molecular methods that produce mountains of data for every tissue sample
in a matter of minutes. There is only one solution; we must acquire supercomputers and
a staff of talented programmers who can analyze all our data and tell us what it all means!

The NIH leadership believed, much as my high school coach believed, that if you have a
really big computer and you feed it a huge amount of information, then you can answer
almost any question.

Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00001-7 1
© 2018 Elsevier Inc. All rights reserved.
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2 PRINCIPLES AND PRACTICE OF BIG DATA

That day, in the conference room at the NIH, circa 2003, I voiced my concerns, indi-
cating that you cannot just throw data into a computer and expect answers to pop out.
I pointed out that, historically, science has been a reductive process, moving from com-
plex, descriptive data sets to simplified generalizations. The idea of developing an expen-
sive supercomputer facility to work with increasing quantities of biological data, at higher
and higher levels of complexity, seemed impractical and unnecessary. On that day, my
concerns were not well received. High performance supercomputing was a very popular
topic, and still is. [Glossary Science, Supercomputer]

Fifteen years have passed since the day that supercomputer-based cancer diagnosis
was envisioned. The diagnostic supercomputer facility was never built. The primary diag-
nostic tool used in hospital laboratories is still the microscope, a tool invented circa 1590.
Today, we augment microscopic findings with genetic tests for specific, key mutations; but
we do not try to understand all of the complexities of human genetic variations. We know
that it is hopeless to try. You can find a lot of computers in hospitals and medical offices,
but the computers do not calculate your diagnosis. Computers in the medical workplace
are relegated to the prosaic tasks of collecting, storing, retrieving, and delivering medical
records. When those tasks are finished, the computer sends you the bill for services
rendered.

Before we can take advantage of large and complex data sources, we need to think
deeply about the meaning and destiny of Big Data.

Big Data is defined by the three V’s:

1. Volume—Ilarge amounts of data;.

2. Variety—the data comes in different forms, including traditional databases,
images, documents, and complex records;.

3. Velocity—the content of the data is constantly changing through the

absorption of complementary data collections, the introduction of previously

archived data or legacy collections, and from streamed data arriving from

multiple sources.

It is important to distinguish Big Data from “lotsa data” or “massive data.” In a Big Data
Resource, all three V’s must apply. It is the size, complexity, and restlessness of Big Data
resources that account for the methods by which these resources are designed, operated,
and analyzed. [Glossary Big Data resource, Data resource]

The term “lotsa data” is often applied to enormous collections of simple-format
records. For example: every observed star, its magnitude and its location; the name and
cell phone number of every person living in the United States; and the contents of the
Web. These very large data sets are sometimes just glorified lists. Some “lotsa data” col-
lections are spreadsheets (2-dimensional tables of columns and rows), so large that we
may never see where they end.

Big Data resources are not equivalent to large spreadsheets, and a Big Data resource is
never analyzed in its totality. Big Data analysis is a multi-step process whereby data is
extracted, filtered, and transformed, with analysis often proceeding in a piecemeal, some-
times recursive, fashion. As you read this book, you will find that the gulf between “lotsa
data” and Big Data is profound; the two subjects can seldom be discussed productively
within the same venue.
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Section 1.2. Big Data Versus Small Data

Actually, the main function of Big Science is to generate massive amounts of reliable
and easily accessible data.... Insight, understanding, and scientific progress are gen-

erally achieved by ‘small science.’
Dan Graur, Yichen Zheng, Nicholas Price, Ricardo Azevedo, Rebecca Zufall, and Eran Elhaik [1].

Big Data is not small data that has become bloated to the point that it can no longer fiton a
spreadsheet, nor is it a database that happens to be very large. Nonetheless, some profes-
sionals who customarily work with relatively small data sets, harbor the false impression
that they can apply their spreadsheet and database know-how directly to Big Data
resources without attaining new skills or adjusting to new analytic paradigms. As they
see things, when the data gets bigger, only the computer must adjust (by getting faster,
acquiring more volatile memory, and increasing its storage capabilities); Big Data poses
no special problems that a supercomputer could not solve. [Glossary Database]

This attitude, which seems to be prevalent among database managers, programmers,
and statisticians, is highly counterproductive. It will lead to slow and ineffective software,
huge investment losses, bad analyses, and the production of useless and irreversibly
defective Big Data resources.

Let us look at a few of the general differences that can help distinguish Big Data and
small data.

— Goals

small data—Usually designed to answer a specific question or serve a particular goal.

Big Data—Usually designed with a goal in mind, but the goal is flexible and the ques-
tions posed are protean. Here is a short, imaginary funding announcement for Big Data
grants designed “to combine high quality data from fisheries, coast guard, commercial
shipping, and coastal management agencies for a growing data collection that can be used
to support a variety of governmental and commercial management studies in the Lower
Peninsula.” In this fictitious case, there is a vague goal, but it is obvious that there really is
no way to completely specify what the Big Data resource will contain, how the various
types of data held in the resource will be organized, connected to other data resources,
or usefully analyzed. Nobody can specify, with any degree of confidence, the ultimate
destiny of any Big Data project; it usually comes as a surprise.

— Location

small data—Typically, contained within one institution, often on one computer, some-
times in one file.

Big Data—Spread throughout electronic space and typically parceled onto multiple
Internet servers, located anywhere on earth.

— Data structure and content

small data—Ordinarily contains highly structured data. The data domain is restricted
to a single discipline or sub-discipline. The data often comes in the form of uniform
records in an ordered spreadsheet.
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Big Data—Must be capable of absorbing unstructured data (e.g., such as free-text doc-
uments, images, motion pictures, sound recordings, physical objects). The subject matter
of the resource may cross multiple disciplines, and the individual data objects in the
resource may link to data contained in other, seemingly unrelated, Big Data resources.
[Glossary Data object]

— Data preparation

small data—In many cases, the data user prepares her own data, for her own purposes.
Big Data—The data comes from many diverse sources, and it is prepared by many peo-
ple. The people who use the data are seldom the people who have prepared the data.

— Longevity

small data—When the data project ends, the data is kept for a limited time (seldom
longer than 7 years, the traditional academic life-span for research data); and then
discarded.

Big Data—Big Data projects typically contain data that must be stored in perpetuity.
Ideally, the data stored in a Big Data resource will be absorbed into other data resources.
Many Big Data projects extend into the future and the past (e.g., legacy data), accruing
data prospectively and retrospectively. [Glossary Legacy data]

— Measurements

small data—Typically, the data is measured using one experimental protocol, and the
data can be represented using one set of standard units. [Glossary Protocol]

Big Data—Many different types of data are delivered in many different electronic for-
mats. Measurements, when present, may be obtained by many different protocols. Veri-
fying the quality of Big Data is one of the most difficult tasks for data managers. [Glossary
Data Quality Act]

— Reproducibility

small data—Projects are typically reproducible. If there is some question about the
quality of the data, the reproducibility of the data, or the validity of the conclusions drawn
from the data, the entire project can be repeated, yielding a new data set. [Glossary
Conclusions]

Big Data—Replication of a Big Data project is seldom feasible. In general, the most that
anyone can hope for is that bad data in a Big Data resource will be found and flagged
as such.

— Stakes

small data—Project costs are limited. Laboratories and institutions can usually recover
from the occasional small data failure.

Big Data—Big Data projects can be obscenely expensive [2,3]. A failed Big Data effort
can lead to bankruptcy, institutional collapse, mass firings, and the sudden disintegration
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of all the data held in the resource. As an example, a United States National Institutes of
Health Big Data project known as the “NCI cancer biomedical informatics grid” cost at
least $350 million for fiscal years 2004-10. An ad hoc committee reviewing the resource
found that despite the intense efforts of hundreds of cancer researchers and information
specialists, it had accomplished so little and at so great an expense that a project mora-
torium was called [4]. Soon thereafter, the resource was terminated [5]. Though the costs
of failure can be high, in terms of money, time, and labor, Big Data failures may have some
redeeming value. Each failed effort lives on as intellectual remnants consumed by the next
Big Data effort. [Glossary Grid]

— Introspection

small data—Individual data points are identified by their row and column location
within a spreadsheet or database table. If you know the row and column headers, you
can find and specify all of the data points contained within. [Glossary Data point]

Big Data—Unless the Big Data resource is exceptionally well designed, the contents
and organization of the resource can be inscrutable, even to the data managers. Complete
access to data, information about the data values, and information about the organization
of the data is achieved through a technique herein referred to as introspection. Introspec-
tion will be discussed at length in Chapter 6. [Glossary Data manager, Introspection]

— Analysis

small data—In most instances, all of the data contained in the data project can be ana-
lyzed together, and all at once.

Big Data—With few exceptions, such as those conducted on supercomputers or in parallel
on multiple computers, Big Data is ordinarily analyzed in incremental steps. The data are ex-
tracted, reviewed, reduced, normalized, transformed, visualized, interpreted, and re-analyzed
using a collection of specialized methods. [Glossary Parallel computing, MapReduce]

Section 1.3. Whence Comest Big Data?

All I ever wanted to do was to paint sunlight on the side of a house.
Edward Hopper

Often, the impetus for Big Data is entirely ad hoc. Companies and agencies are forced to
store and retrieve huge amounts of collected data (whether they want to or not). Generally,
Big Data come into existence through any of several different mechanisms:

— An entity has collected a lot of data in the course of its normal activities and seeks to
organize the data so that materials can be retrieved, as needed.

The Big Data effort is intended to streamline the regular activities of the entity. In this case,
the data is just waiting to be used. The entity is not looking to discover anything or to do
anything new. It simply wants to use the data to accomplish what it has always been doing;
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only better. The typical medical center is a good example of an “accidental” Big Data
resource. The day-to-day activities of caring for patients and recording data into hospital
information systems results in terabytes of collected data, in forms such as laboratory
reports, pharmacy orders, clinical encounters, and billing data. Most of this information
is generated for a one-time specific use (e.g., supporting a clinical decision, collecting pay-
ment for a procedure). It occurs to the administrative staff that the collected data can be
used, in its totality, to achieve mandated goals: improving quality of service, increasing
staff efficiency, and reducing operational costs. [Glossary Binary units for Big Data, Binary
atom count of universe]

— An entity has collected a lot of data in the course of its normal activities and decides
that there are many new activities that could be supported by their data.

Consider modern corporations; these entities do not restrict themselves to one
manufacturing process or one target audience. They are constantly looking for new oppor-
tunities. Their collected data may enable them to develop new products based on the pref-
erences of theirloyal customers, to reach new markets, or to market and distribute items via
the Web. These entities will become hybrid Big Data/manufacturing enterprises.

— An entity plans a business model based on a Big Data resource.

Unlike the previous examples, this entity starts with Big Data and adds a physical compo-
nent secondarily. Amazon and FedEx may fall into this category, as they began with a plan
for providing a data-intense service (e.g., the Amazon Web catalog and the FedEx package
tracking system). The traditional tasks of warehousing, inventory, pick-up, and delivery,
had been available all along, but lacked the novelty and efficiency afforded by Big Data.

— An entity is part of a group of entities that have large data resources, all of whom
understand that it would be to their mutual advantage to federate their data
resources |[6].

An example of a federated Big Data resource would be hospital databases that share elec-
tronic medical health records [7].

— An entity with skills and vision develops a project wherein large amounts of data are
collected and organized, to the benefit of themselves and their user-clients.

An example would be a massive online library service, such as the U.S. National Library of
Medicine’s PubMed catalog, or the Google Books collection.

— Anentity has no data and has no particular expertise in Big Data technologies, but it
has money and vision.

The entity seeks to fund and coordinate a group of data creators and data holders, who will
build a Big Data resource that can be used by others. Government agencies have been the
major benefactors. These Big Data projects are justified if they lead to important discov-
eries that could not be attained at a lesser cost with smaller data resources.
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Section 1.4. The Most Common Purpose of Big Data Is to
Produce Small Data

IfI had known what it would be like to have it all, I might have been willing to settle

for less.
Lily Tomlin

Imagine using a restaurant locater on your smartphone. With a few taps, it lists the Italian
restaurants located within a 10-block radius of your current location. The database being
queried is big and complex (a map database, a collection of all the restaurants in the world,
their longitudes and latitudes, their street addresses, and a set of ratings provided by
patrons, updated continuously), but the data that it yields is small (e.g., five restaurants,
marked on a street map, with pop-ups indicating their exact address, telephone number,
and ratings). Your task comes down to selecting one restaurant from among the five, and
dining thereat.

In this example, your data selection was drawn from a large data set, but your ultimate
analysis was confined to a small data set (i.e., five restaurants meeting your search cri-
teria). The purpose of the Big Data resource was to proffer the small data set. No analytic
work was performed on the Big Data resource; just search and retrieval. The real labor of
the Big Data resource involved collecting and organizing complex data, so that the
resource would be ready for your query. Along the way, the data creators had many deci-
sions to make (e.g., Should bars be counted as restaurants? What about take-away only
shops? What data should be collected? How should missing data be handled? How will
data be kept current? [Glossary Query, Missing data]

Big Data is seldom, if ever, analyzed in fofo. There is almost always a drastic filtering
process that reduces Big Data into smaller data. This rule applies to scientific analyses.
The Australian Square Kilometre Array of radio telescopes [8], WorldWide Telescope,
CERN’s Large Hadron Collider and the Pan-STARRS (Panoramic Survey Telescope
and Rapid Response System) array of telescopes produce petabytes of data every
day. Researchers use these raw data sources to produce much smaller data sets for
analysis [9]. [Glossary Raw data, Square Kilometer Array, Large Hadron Collider, World-
Wide Telescope]

Here is an example showing how workable subsets of data are prepared from Big Data
resources. Blazars are rare super-massive black holes that release jets of energy that move
at near-light speeds. Cosmologists want to know as much as they can about these strange
objects. A first step to studying blazars is to locate as many of these objects as possible.
Afterwards, various measurements on all of the collected blazars can be compared, and
their general characteristics can be determined. Blazars seem to have a gamma ray signa-
ture that is not present in other celestial objects. The WISE survey collected infrared data
on the entire observable universe. Researchers extracted from the Wise data every celestial
body associated with an infrared signature in the gamma ray range that was suggestive of
blazars; about 300 objects. Further research on these 300 objects led the researchers to
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believe that about half were blazars [10]. This is how Big Data research often works; by
constructing small data sets that can be productively analyzed.

Because a common role of Big Data is to produce small data, a question that data man-
agers must ask themselves is: “Have I prepared my Big Data resource in a manner that
helps it become a useful source of small data?”

Section 1.5. Big Data Sits at the Center of the Research
Universe

Physics is the universe's operating system.
Steven R Garman

In the past, scientists followed a well-trodden path toward truth: hypothesis, then exper-
iment, then data, then analysis, then publication. The manner in which a scientist ana-
lyzed his or her data was crucial because other scientists would not have access to the
same data and could not re-analyze the data for themselves. Basically, the results and con-
clusions described in the manuscript was the scientific product. The primary data upon
which the results and conclusion were based (other than one or two summarizing tables)
were not made available for review. Scientific knowledge was built on trust. Customarily,
the data would be held for 7 years, and then discarded. [Glossary Results]

In the Big data paradigm the concept of a final manuscript has little meaning. Big Data
resources are permanent, and the data within the resource is immutable (See Chapter 6).
Any scientist’s analysis of the data does not need to be the final word; another scientist can
access and re-analyze the same data over and over again. Original conclusions can be val-
idated or discredited. New conclusions can be developed. The centerpiece of science has
moved from the manuscript, whose conclusions are tentative until validated, to the Big
Data resource, whose data will be tapped repeatedly to validate old manuscripts and
spawn new manuscripts. [Glossary Immutability, Mutability]

Today, hundreds or thousands of individuals might contribute to a Big Data resource.
The data in the resource might inspire dozens of major scientific projects, hundreds of
manuscripts, thousands of analytic efforts, and millions or billions of search and retrieval
operations. The Big Data resource has become the central, massive object around which
universities, research laboratories, corporations, and federal agencies orbit. These orbit-
ing objects draw information from the Big Data resource, and they use the information to
support analytic studies and to publish manuscripts. Because Big Data resources are per-
manent, any analysis can be critically examined using the same set of data, or re-analyzed
anytime in the future. Because Big Data resources are constantly growing forward in time
(i.e., accruing new information) and backward in time (i.e., absorbing legacy data sets), the
value of the data is constantly increasing.

Big Data resources are the stars of the modern information universe. All matter in the
physical universe comes from heavy elements created inside stars, from lighter elements.
All data in the informational universe is complex data built from simple data. Just as stars
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can exhaust themselves, explode, or even collapse under their own weight to become
black holes; Big Data resources can lose funding and die, release their contents and burst
into nothingness, or collapse under their own weight, sucking everything around them
into a dark void. It is an interesting metaphor. In the following chapters, we will see
how a Big Data resource can be designed and operated to ensure stability, utility, growth,
and permanence; features you might expect to find in a massive object located in the cen-
ter of the information universe.

Glossary

Big Data resource A Big Data collection that is accessible for analysis. Readers should understand that
there are collections of Big Data (i.e., data sources that are large, complex, and actively growing) that
are not designed to support analysis; hence, not Big Data resources. Such Big Data collections might
include some of the older hospital information systems, which were designed to deliver individual
patient records upon request; but could not support projects wherein all of the data contained in
all of the records were opened for selection and analysis. Aside from privacy and security issues, open-
ing a hospital information system to these kinds of analyses would place enormous computational
stress on the systems (i.e., produce system crashes). In the late 1990s and the early 2000s data ware-
housing was popular. Large organizations would collect all of the digital information created within
their institutions, and these data were stored as Big Data collections, called data warehouses. If an
authorized person within the institution needed some specific set of information (e.g., emails sent
or received in February, 2003; all of the bills paid in November, 1999), it could be found somewhere
within the warehouse. For the most part, these data warehouses were not true Big Data resources
because they were not organized to support a full analysis of all of the contained data. Another type
of Big Data collection that may or may not be considered a Big Data resource are compilations of sci-
entific data that are accessible for analysis by private concerns, but closed for analysis by the public. In
this case a scientist may make a discovery based on her analysis of a private Big Data collection, but the
research data is not open for critical review. In the opinion of some scientists, including myself, if the
results of a data analysis are not available for review, then the analysis is illegitimate. Of course, this
opinion is not universally shared, and Big Data professionals hold various definitions for a Big Data
resource.

Binary atom count of universe There are estimated to be about 10 80 atoms in the universe. Log2(10) is
3.32192809, so the number of atoms in the universe is 2 80*3.32192809 or 2 266 atoms.

Binary units for Big Data Binary sizes are named in 1000-fold intervals: 1 bit = binary digit (0 or 1);
1 byte = 8 bits (the number of bits required to express an ascii character); 1000 bytes = 1 kilobyte;
1000 kilobytes = 1 megabyte; 1000 megabytes = 1 gigabyte; 1000 gigabytes = 1 terabyte; 1000
terabytes = 1 petabyte; 1000 petabytes = 1 exabyte; 1000 exabytes = 1 zettabyte; 1000 zettabytes =
1 yottabyte.

Conclusions Conclusions are the interpretations made by studying the results of an experiment or a set of
observations. The term “results” should never be used interchangeably with the term “conclusions.”
Remember, results are verified. Conclusions are validated [11].

Data Quality Act In the United States the data upon which public policy is based must have quality and
must be available for review by the public. Simply put, public policy must be based on verifiable data.
The Data Quality Act of 2002 requires the Office of Management and Budget to develop government-
wide standards for data quality [12].

Data manager This book uses “data manager” as a catchall term, without attaching any specific
meaning to the name. Depending on the institutional and cultural milieu, synonyms and plesionyms
(i.e., near-synonyms) for data manager would include: technical lead, team liaison, data quality
manager, chief curator, chief of operations, project manager, group supervisor, and so on.
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Data object As used in this book, a data object consists of a unique object identifier along with all of the
data/metadata pairs that rightly belong to the object identifier, and that includes one data/metadata
pair that tells us the object’s class.

75898039563441
name G. Willikers
gender male
age 35

is_a class_member cowboy

In this example, the object identifier, 75898039563441, is followed by its data/metadata pairs, includ-
ing the one pair that tells us that the object (a 35-year-old man named G. Willikers) belongs to the class
of individuals known as “cowboy.”

The utility of data objects, in the field of Big Data, is discussed in Section 6.2.

Data point The singular form of data is datum. Strictly speaking, the term should be datum point or
datumpoint. Most information scientists, myself included, have abandoned consistent usage rules
for the word “data.” In this book, the term “data” always refers collectively to information, numeric
or textual, structured or unstructured, in any quantity.

Data resource A collection of data made available for data retrieval. The data can be distributed over
servers located anywhere on earth or in space. The resource can be static (i.e., having a fixed set of
data), or in flux. Plesionyms for data resource are: data warehouse, data repository, data archive,
and data store.

Database A software application designed specifically to create and retrieve large numbers of data
records (e.g., millions or billions). The data records of a database are persistent, meaning that the
application can be turned off, then on, and all the collected data will be available to the user.

Grid A collection of computers and computer resources (typically networked servers) that is coordinated
to provide a desired functionality. In the most advanced Grid computing architecture, requests can be
broken into computational tasks that are processed in parallel on multiple computers and transpar-
ently (from the client’s perspective) assembled and returned. The Grid is the intellectual predecessor of
Cloud computing. Cloud computing is less physically and administratively restricted than Grid
computing.

Immutability Immutability is the principle that data collected in a Big Data resource is permanent and
can never be modified. At first thought, it would seem that immutability is a ridiculous and impossible
constraint. In the real world, mistakes are made, information changes, and the methods for describing
information changes. This is all true, but the astute Big Data manager knows how to accrue informa-
tion into data objects without changing the pre-existing data. Methods for achieving this seemingly
impossible trick are described in Chapter 8.

Introspection Well-designed Big Data resources support introspection, a method whereby data objects
within the resource can be interrogated to yield their properties, values, and class membership.
Through introspection the relationships among the data objects in the Big Data resource can be exam-
ined and the structure of the resource can be determined. Introspection is the method by which a data
user can find everything there is to know about a Big Data resource without downloading the complete
resource.

Large Hadron Collider The Large Hadron Collider is the world’s largest and most powerful particle accel-
erator and is expected to produce about 15 petabytes (15 million gigabytes) of data annually [13].
Legacy data Data collected by an information system that has been replaced by a newer system, and
which cannot be immediately integrated into the newer system’s database. For example, hospitals reg-
ularly replace their hospital information systems with new systems that promise greater efficiencies,
expanded services, or improved interoperability with other information systems. In many cases, the
new system cannot readily integrate the data collected from the older system. The previously collected
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data becomes a legacy to the new system. In such cases, legacy data is simply “stored” for some arbi-
trary period of time in case someone actually needs to retrieve any of the legacy data. After a decade or
so the hospital may find itself without any staff members who are capable of locating the storage site of
the legacy data, or moving the data into a modern operating system, or interpreting the stored data, or
retrieving appropriate data records, or producing a usable query output.

MapReduce A method by which computationally intensive problems can be processed on multiple com-
puters, in parallel. The method can be divided into a mapping step and a reducing step. In the mapping
step a master computer divides a problem into smaller problems that are distributed to other com-
puters. In the reducing step the master computer collects the output from the other computers.
Although MapReduce is intended for Big Data resources, and can hold petabytes of data, most Big Data
problems do not require MapReduce.

Missing data Most complex data sets have missing data values. Somewhere along the line data elements
were not entered, records were lost, or some systemic error produced empty data fields. Big Data,
being large, complex, and composed of data objects collected from diverse sources, is almost certain
to have missing data. Various mathematical approaches to missing data have been developed; com-
monly involving assigning values on a statistical basis; so-called imputation methods. The underlying
assumption for such methods is that missing data arises at random. When missing data arises non-
randomly, there is no satisfactory statistical fix. The Big Data curator must track down the source
of the errors and somehow rectify the situation. In either case the issue of missing data introduces
a potential bias and it is crucial to fully document the method by which missing data is handled. In
the realm of clinical trials, only a minority of data analyses bothers to describe their chosen method
for handling missing data [14].

Mutability Mutability refers to the ability to alter the data held in a data object or to change the identity of
a data object. Serious Big Data is not mutable. Data can be added, but data cannot be erased or altered.
Big Data resources that are mutable cannot establish a sensible data identification system, and cannot
support verification and validation activities. The legitimate ways in which we can record the changes
that occur in unique data objects (e.g., humans) over time, without ever changing the key/value data
attached to the unique object, is discussed in Section 8.2.

For programmers, it is important to distinguish data mutability from object mutability, as it applies in
Python and other object-oriented programming languages. Python has two immutable objects: strings
and tuples. Intuitively, we would probably guess that the contents of a string object cannot be changed,
and the contents of a tuple object cannot be changed. This is not the case. Immutability, for program-
mers, means that there are no methods available to the object by which the contents of the object can
be altered. Specifically, a Python tuple object would have no methods it could call to change its own
contents. However, a tuple may contain a list, and lists are mutable. For example, a list may have an
append method that will add an item to the list object. You can change the contents of a list contained
in a tuple object without violating the tuple’s immutability.

Parallel computing Some computational tasks can be broken down and distributed to other computers,
to be calculated “in parallel.” The method of parallel programming allows a collection of desktop com-
puters to complete intensive calculations of the sort that would ordinarily require the aid of a super-
computer. Parallel programming has been studied as a practical way to deal with the higher
computational demands brought by Big Data. Although there are many important problems that
require parallel computing, the vast majority of Big Data analyses can be easily accomplished with
a single, off-the-shelf personal computer.

Protocol A set of instructions, policies, or fully described procedures for accomplishing a service, oper-
ation, or task. Protocols are fundamental to Big Data. Data is generated and collected according to pro-
tocols. There are protocols for conducting experiments, and there are protocols for measuring the
results. There are protocols for choosing the human subjects included in a clinical trial, and there
are protocols for interacting with the human subjects during the course of the trial. All network
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communications are conducted via protocols; the Internet operates under a protocol (TCP-IP, Trans-
mission Control Protocol-Internet Protocol).

Query The term “query” usually refers to a request, sent to a database, for information (e.g., Web pages,
documents, lines of text, images) that matches a provided word or phrase (i.e., the query term). More
generally a query is a parameter or set of parameters that are submitted as input to a computer pro-
gram that searches a data collection for items that match or bear some relationship to the query
parameters. In the context of Big Data the user may need to find classes of objects that have properties
relevant to a particular area of interest. In this case, the query is basically introspective, and the output
may yield metadata describing individual objects, classes of objects, or the relationships among
objects that share particular properties. For example, “weight” may be a property, and this property
may fall into the domain of several different classes of data objects. The user might want to know
the names of the classes of objects that have the “weight” property and the numbers of object instances
in each class. Eventually the user might want to select several of these classes (e.g., including dogs and
cats, but excluding microwave ovens) along with the data object instances whose weights fall within a
specified range (e.g., 20-30 pound). This approach to querying could work with any data set that has
been well specified with metadata, but it is particularly important when using Big Data resources.

Raw data Raw data is the unprocessed, original data measurement, coming straight from the instrument
to the database with no intervening interference or modification. In reality, scientists seldom, if ever,
work with raw data. When an instrument registers the amount of fluorescence emitted by a hybridi-
zation spot on a gene array, or the concentration of sodium in the blood, or virtually any of the mea-
surements that we receive as numeric quantities, the output is produced by an algorithm executed by
the measurement instrument. Pre-processing of data is commonplace in the universe of Big Data, and
data managers should not labor under the false impression that the data received is “raw,” simply
because the data has not been modified by the person who submits the data.

Results The term “results” is often confused with the term “conclusions.” Interchanging the two concepts
is a source of confusion among data scientists. In the strictest sense, “results” consist of the full set of
experimental data collected by measurements. In practice, “results” are provided as a small subset of
data distilled from the raw, original data. In a typical journal article, selected data subsets are packaged
as a chart or graph that emphasizes some point of interest. Hence, the term “results” may refer, erro-
neously, to subsets of the original data, or to visual graphics intended to summarize the original data.
Conclusions are the inferences drawn from the results. Results are verified; conclusions are validated.

Science Of course, there are many different definitions of science, and inquisitive students should be
encouraged to find a conceptualization of science that suits their own intellectual development.
For me, science is all about finding general relationships among objects. In the so-called physical sci-
ences the most important relationships are expressed as mathematical equations (e.g., the relationship
between force, mass and acceleration; the relationship between voltage, current and resistance). In the
so-called natural sciences, relationships are often expressed through classifications (e.g., the classifi-
cation of living organisms). Scientific advancement is the discovery of new relationships or the discov-
ery of a generalization that applies to objects hitherto confined within disparate scientific realms (e.g.,
evolutionary theory arising from observations of organisms and geologic strata). Engineering would be
the area of science wherein scientific relationships are exploited to build new technology.

Square Kilometer Array The Square Kilometer Array is designed to collect data from millions of con-
nected radio telescopes and is expected to produce more than one exabyte (1 billion gigabytes) every
day [8].

Supercomputer Computers that can perform many times faster than a desktop personal computer. In
2015 the top supercomputers operate at about 30 petaflops. A petaflop is 10 to the 15 power floating
point operations per second. By my calculations a 1 petaflop computer performs about 250,000 oper-
ations in the time required for my laptop to finish one operation.
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WorldWide Telescope A Big Data effort from the Microsoft Corporation bringing astronomical maps,

imagery, data, analytic methods, and visualization technology to standard Web browsers. More infor-
mation is available at: http://www.worldwidetelescope.org/Home.aspx
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Section 2.1. Nearly All Data Is Unstructured and Unusable
in Its Raw Form

I was working on the proof of one of my poems all the morning, and took out a

comma. In the afternoon I put it back again.
Oscar Wilde

In the early days of computing, data was always highly structured. All data was divided into
fields, the fields had a fixed length, and the data entered into each field was constrained to a
pre-determined set of allowed values. Data was entered into punch cards with pre-
configured rows and columns. Depending on the intended use of the cards, various entry
and read-out methods were chosen to express binary data, numeric data, fixed-size text, or
programming instructions. Key-punch operators produced mountains of punch cards. For
many analytic purposes, card-encoded data sets were analyzed without the assistance of a
computer; all that was needed was a punch card sorter. If you wanted the data card on all
males, over the age of 18, who had graduated high school, and had passed their physical
exam, then the sorter would need to make 4 passes. The sorter would pull every card listing
a male, then from the male cards it would pull all the cards of people over the age of 18, and
from this double-sorted sub-stack, it would pull cards that met the next criterion, and so on.
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As a high school student in the 1960s, I loved playing with the card sorters. Back then, all
data was structured data, and it seemed to me, at the time, that a punch-card sorter was
all that anyone would ever need to analyze large sets of data. [Glossary Binary data]

How wrong I was! Today, most data entered by humans is unstructured in the form of
free-text. The free-text comes in email messages, tweets, and documents. Structured data
has not disappeared, but it sits in the shadows cast by mountains of unstructured text.
Free-text may be more interesting to read than punch cards, but the venerable punch card,
in its heyday, was much easier to analyze than its free-text descendant. To get much infor-
mational value from free-text, it is necessary to impose some structure. This may involve
translating the text to a preferred language; parsing the text into sentences; extracting and
normalizing the conceptual terms contained in the sentences; mapping terms to a stan-
dard nomenclature; annotating the terms with codes from one or more standard nomen-
clatures; extracting and standardizing data values from the text; assigning data values to
specific classes of data belonging to a classification system; assigning the classified data to
a storage and retrieval system (e.g., a database); and indexing the data in the system. All of
these activities are difficult to do on a small scale and virtually impossible to do on a large
scale. Nonetheless, every Big Data project that uses unstructured data must deal with
these tasks to yield the best possible results with the resources available. [Glossary Parsing,
Nomenclature, Nomenclature mapping, Thesaurus, Indexes, Plain-text]

Section 2.2. Concordances

The limits of my language are the limits of my mind. All I know is what I have words

for. (Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.)
Ludwig Wittgenstein

A concordance is alist of all the different words contained in a text with the locations in the
text where each word appears. Concordances have been around for a very long time,
painstakingly constructed from holy scriptures thought to be of such immense value that
every word deserved special attention. Creating a concordance has always been a straight-
forward operation. You take the first word in the text and you note its location (i.e., word 1,
page 1); then onto the second word (word 2 page 1), and so on. When you come to a
word that has been included in the nascent concordance, you add its location to the exist-
ing entry for the word. Continuing thusly, for a few months or so, you end up with a con-
cordance that you can be proud of. Today a concordance for the Bible can be constructed
in a small fraction of a second. [Glossary Concordance]

Without the benefit of any special analyses, skimming through a book’s concordance
provides a fairly good idea of the following:

— The topic of the text based on the words appearing in the concordance. For example, a
concordance listing multiple locations for “begat” and “anointed” and “thy” is most
likely to be the Old Testament.
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— The complexity of the language. A complex or scholarly text will have a larger
vocabulary than a romance novel.

— Aprecise idea of the length of the text, achieved by adding all of the occurrences of each
of the words in the concordance. Knowing the number of items in the concordance,
multiplied by the average number of locations of concordance items, provides a rough
estimate of the total number of words in the text.

— The care with which the text was prepared, achieved by counting the misspelled words.

Here, in a short Python script, concord_gettysbu.py, that builds a concordance for the Get-
tysburg address, located in the external file “gettysbu.txt”: [Glossary Script]

import re, string
word list=[];word dict={};key list=[]
count=0; word=""
in text string =open('gettysbu.txt', "r").read() .lower()
word list = re.split(r'[a-zA-z\ \-1+',in text string)
for word in word list:
count = count + 1
if word in word dict:
word_dict [word] = word dict [word] + ', ' + str(count)
else:
word_dict [word] = str (count)
key list =1list (word dict)
key list.sort()
for key inkey list:
print (key + " " + word dict [key])

The first few lines of output are shown:

al4,36,59,70,76,104,243
above 131

add 136

advanced 185

ago 6

all 26

altogether 93

and 3,20,49,95,122,248
any 45

are 28,33,56

as 75

battlefield 61

be 168,192

before 200

birth 245
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brave 119

brought 9

but 102,151

by 254

can 52,153

cannot 108,111,114

The numbers that follow each item in the concordance correspond to the locations
(expressed as the nth words of the Gettysburg address) of each word in the text.

At this point, building a concordance may appear to an easy, but somewhat pointless

exercise. Does the concordance provide any functionality beyond that provided by the
ubiquitous “search” box. There are five very useful properties of concordances that you
might not have anticipated.

You can use a concordance to rapidly search and retrieve the locations where single-
word terms appear.

You can always reconstruct the original text from the concordance. Hence, after you've
built your concordance, you can discard the original text.

You can merge concordances without forfeiting your ability to reconstruct the
original texts, provided that you tag locations with some character sequence that
identifies the text of origin.

With a little effort a dictionary can be transformed into a universal concordance (i.e., a
merged dictionary/concordance of every book in existence) by attaching the book
identifier and its concordance entries to the corresponding dictionary terms.

You can easily find the co-locations among words (i.e., which words often precede or
follow one another).

You can use the concordance to retrieve the sentences and paragraphs in which a
search word or a search term appears, without having access to the original text. The
concordance alone can reconstruct and retrieve the appropriate segments of text,
on-the-fly, thus bypassing the need to search the original text.

A concordance provides a profile of the book and can be used to compute a similarity
score among different books.

There is insufficient room to explore all of the useful properties of concordances, but let us
examine a script, concord_reverse.py, that reconstructs the original text, in lowercase,
from the concordance. In this case, we have pasted the output from the concord_get-
tysbu.py script (vida supra) into the external file, “concordance.txt”.

import re, string

concordance hash = {} ; location array = []

in text = open('concordance.txt', "r")

for line in in text:
line = line.replace ("\n","")
location word, separator, location positions =1ine.partition("")
location array = location positions.split(",")
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location array = [int (x) for x in location arrayl
for location in location array:
concordance_hash[location] = location word
for n in range (300) :
if n in concordance hash:
print ( (concordance hash[n]), end="")

Here is the familiar output:

four score and seven years ago our fathers brought forth on this continent a new
nation conceived in liberty and dedicated to the proposition that all men are created
equal now we are engaged in a great civil war testing whether that nation or any
nation so conceived and so dedicated can long endure we are met on a great bat-
tlefield of that war we have come to dedicate a portion of that field as a final
resting-place for those who here gave their lives that that nation might live it is alto-
gether fitting and proper that we should do this but in a larger sense we cannot ded-
icate we cannot consecrate we cannot hallow this ground the brave men living and
dead who struggled here have consecrated it far above our poor power to add or
detract the world will little note nor long remember what we say here but it can
never forget what they did here it is for us the living rather to be dedicated here
to the unfinished work which they who fought here have thus far so nobly advanced
it is rather for us to be here dedicated to the great task remaining before us—that
from these honored dead we take increased devotion to that cause for which they
gave the last full measure of devotion—that we here highly resolve that these dead
shall not have died in vain that this nation under god shall have a new birth of
freedom and that government of the people by the people for the people shall not
perish from the earth

Had we wanted to write a script that produces a merged concordance, for multiple doc-
uments, we could have simply written a loop that repeated the concordance-building pro-
cess for each text. Within the loop, we would have tagged each word location with a short
notation indicating the particular source book. For example, locations from the Gettys-
burg address could have been prepended with “G:” and locations from the Bible might
have been prepended with a “B:”.

We have not finished with the topic of concordances. Later in this chapter (Section 2.8),
we will show how concordances can be transformed to speed-up search and retrieval
operations on large bodies of text.

Section 2.3. Term Extraction

There’s a big difference between knowing the name of something and knowing

something.
Richard Feynman
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One of my favorite movies is the parody version of “Hound of the Baskervilles,” starring
Peter Cooke as Sherlock Holmes and Dudley Moore as his faithful hagiographer, Dr. Wat-
son. Sherlock, preoccupied with his own ridiculous pursuits, dispatches Watson to the
Baskerville family manse, in Dartmoor, to undertake urgent sleuth-related activities.
The hapless Watson, standing in the great Baskerville Hall, has no idea how to proceed
with the investigation. After a moment of hesitation, he turns to the incurious maid
and commands, “Take me to the clues!”

Building an index is a lot like solving a fiendish crime; you need to know how to find the
clues. For informaticians, the terms in the text are the clues upon which the index is built.
Terms in a text file do not jump into your index file; you need to find them. There are sev-
eral available methods for finding and extracting index terms from a corpus of text [1], but
no method is as simple, fast, and scalable as the “stop word” method [2]. [Glossary Term
extraction algorithm, Scalable]

The “stop word” method presumes that text is composed of terms that are somehow
connected into sequences known as sentences. [Glossary Sentence]

Consider the following:

The diagnosis is chronic viral hepatitis.

This sentence contains two very specific medical concepts: “diagnosis” and “chronic viral
hepatitis.” These two concepts are connected to form a sentence, using grammatical bric-
a-brac such as “the” and “is”, and the sentence delimiter, “.”. These grammatical bric-a-
brac are found liberally sprinkled in every paragraph you are likely to read.

A term can be defined as a sequence of one or more uncommon words that are demar-
cated (i.e., bounded on one side or another) by the occurrence of one or more very com-

mon words (e.g., “and”, “the”, “a”, “of”) and phrase delimiters (e.g., “.”, “,”, and “;
Consider the following:

An epidural hemorrhage can occur after a lucid interval.

The medical concepts “epidural hemorrhage” and “lucid interval” are composed of
uncommon words. These uncommon word sequences are bounded by common words
(i.e., “the”, “an”, “can”, “a”) or a sentence delimiter (i.e., “.”).

If we had alist of all the words that were considered common, we could write a program
that extracts the all the concepts found in any text of any length. The concept terms would
consist of all sequences of uncommon words that are uninterrupted by common words.

Here is an algorithm for extracting terms from a sentence:

1. Read the first word of the sentence. If it is a common word, delete it. If it is an
uncommon word, save it.

2. Read the next word. If it is a common word, delete it, and place the saved word (from
the prior step, if the prior step saved a word) into our list of terms found in the text. If it
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is an uncommon word, concatenate it with the word we saved in step one, and save
the 2-word term. If it is a sentence delimiter, place any saved term into our list of
terms, and stop the program.

3. Repeat step two.

This simple algorithm, or something much like it, is a fast and efficient method to build a
collection of index terms. The following list of common words might be useful: “about,
again, all, almost, also, although, always, among, an, and, another, any, are, as, at, be,
because, been, before, being, between, both, but, by, can, could, did, do, does, done, due,
during, each, either, enough, especially, etc, for, found, from, further, had, has, have, having,
here, how, however, i, if, in, into, is, it, its, itself, just, kg, km, made, mainly, make, may, mg,
might, ml, mm, most, mostly, must, nearly, neither, no, nor, obtained, of, often, on, our,
overall, perhaps, pmid, quite, rather, really, regarding, seem, seen, several, should, show,
showed, shown, shows, significantly, since, so, some, such, than, that, the, their, theirs,
them, then, there, therefore, these, they, this, those, through, thus, to, upon, use, used, using,
various, very, was, we, were, what, when, which, while, with, within, without, would.”

Such lists of common words are sometimes referred to as “stop word” lists or “barrier
word” lists, as they demarcate the beginnings and endings of extraction terms. Let us look
at a short Python script (terms.py) that uses our list of stop words (contained in the file
stop.txt) and extracts the terms from the sentence: “Once you have a method for extracting
terms from sentences the task of creating an index associating a list of locations with each
term is child’s play for programmers”

import re, string
stopfile = open("stop.txt", 'r")
stop list = stopfile.readlines()
stopfile.close()
item list = []
line = "Once you have a method for extracting terms from \
sentences the task of creating an index associatinga list \
of locations with each term is child's play for programmers"
for stopword in stop list:

stopword = re.sub(r'\n', ", stopword)

line =re.sub(r' *\b' + stopword + r'\b *', '\n', line)
item list.extend(line.split("\n"))
item list = sorted(set (item list))
for itemin item list:

print (item)

Here is the output:

Once
child's play
creating
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extracting terms
index associating
list

locations

method
programmers
sentences

task

term

Extracting terms is the first step in building a very crude index. Indexes built directly from
term extraction algorithms always contain lots of unnecessary terms having little or no
informational value. For serious indexers, the collection of terms extracted from a corpus,
along with their locations in the text, is just the beginning of an intellectual process that
will eventually lead to a valuable index.

Section 2.4. Indexing

Knowledge can be public, yet undiscovered, if independently created fragments are

logically related but never retrieved, brought together, and interpreted.
Donald R. Swanson [3]

Individuals accustomed to electronic media tend to think of the Index as an inefficient
or obsolete method for finding and retrieving information. Most currently available
e-books have no index. It is far easier to pull up the “Find” dialog box and enter a word
or phrase. The e-reader can find all matches quickly, providing the total number of
matches, and bringing the reader to any or all of the pages containing the selection. As
more and more books are published electronically, the book Index, as we have come to
know it, may cease to be.

It would be a pity if indexes were to be abandoned by computer scientists. A well-
designed book index is a creative, literary work that captures the content and intent of
the book and transforms it into a listing wherein related concepts are collected under
common terms, and keyed to their locations. It saddens me that many people ignore
the book index until they want something from it. Open a favorite book and read the index,
from A to Z, as if you were reading the body of the text. You will find that the index refreshes
your understanding of the concepts discussed in the book. The range of page numbers
after each term indicates that a concept has extended its relevance across many different
chapters. When you browse the different entries related to a single term, you learn how the
concept represented by the term applies itself to many different topics. You begin to
understand, in ways that were not apparent when you read the book as a linear text,
the versatility of the ideas contained in the book. When you have finished reading the
index, you will notice that the indexer exercised great restraint when selecting terms.
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Most indexes are under 20 pages. The goal of the indexer is not to create a concordance
(i.e., a listing of every word in a book, with its locations), but to create a keyed encapsu-
lation of concepts, sub-concepts and term relationships.

The indexes we find in today’s books are generally alphabetized terms. In prior decades
and prior centuries, authors and editors put enormous effort into building indexes, some-
times producing multiple indexes for a single book. For example, a biography might con-
tain a traditional alphabetized term index, followed by an alphabetized index of the names
of the people included in the text. A zoology book might include an index specifically for
animal names, with animals categorized according to their taxonomic order. A geography
index might list the names of localities sub-indexed by country, with countries sub-
indexed by continent. A single book might have 5 or more indexes. In nineteenth century
books, it was not unusual to publish indexes as stand-alone volumes. [Glossary Taxonomy,
Systematics, Taxa, Taxon]

You may be thinking that all this fuss over indexes is quaint, but it cannot apply to Big
Data resources. Actually, Big Data resources that lack a proper index cannot be utilized to
their full potential. Without an index, you never know what your queries are missing.
Remember, in a Big Data resource, it is the relationship among data objects that are the keys
to knowledge. Data by itself, even in large quantities, tells only part of a story. The most
useful Big Data resources have electronic indexes that map concepts, classes, and terms
to specific locations in the resource where data items are stored. An index imposes order
and simplicity on the Big Data resource. Without an index, Big Data resources can easily
devolve into vast collections of disorganized information. [Glossary Class]

The best indexes comply with international standards (ISO 999) and require creativity
and professionalism [4]. Indexes should be accepted as another device for driving down
the complexity of Big Data resources. Here are a few of the specific strengths of an index
that cannot be duplicated by “find” operations on terms entered into a query box:

— Anindex can be read, like a book, to acquire a quick understanding of the contents and
general organization of the data resource.

— Index lookups (i.e., searches and retrievals) are virtually instantaneous, even for very
large indexes (see Section 2.6 of this chapter, for explanation).

— Indexes can be tied to a classification. This permits the analyst to know the
relationships among different topics within the index, and within the text. [Glossary
Classification]

— Many indexes are cross-indexed, providing relationships among index terms that
might be extremely helpful to the data analyst.

— Indexes from multiple Big Data resources can be merged. When the location entries for
index terms are annotated with the name of the resource, then merging indexes is
trivial, and index searches will yield unambiguously identified locators in any of the Big
Data resources included in the merge.

— Indexes can be created to satisfy a particular goal; and the process of creating a made-
to-order index can be repeated again and again. For example, if you have a Big Data
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resource devoted to ornithology, and you have an interest in the geographic location of
species, you might want to create an index specifically keyed to localities, or you might
want to add a locality sub-entry for every indexed bird name in your original index.
Such indexes can be constructed as add-ons, as needed. [Glossary Ngrams]

— Indexes can be updated. If terminology or classifications change, there is nothing
stopping you from re-building the index with an updated specification. In the specific
context of Big Data, you can update the index without modifying your data.
[Glossary Specification]

— Indexes are created after the database has been created. In some cases, the data
manager does not envision the full potential of the Big Data resource until after it is
created. The index can be designed to facilitate the use of the resource in line with the
observed practices of users.

— Indexes can serve as surrogates for the Big Data resource. In some cases, all the data
user really needs is the index. A telephone book is an example of an index that serves its
purpose without being attached to a related data source (e.g., caller logs, switching
diagrams).

Section 2.5. Autocoding

The beginning of wisdom is to call things by their right names.
Chinese proverb

Coding, as used in the context of unstructured textual data, is the process of tagging terms
with an identifier code that corresponds to a synonymous term listed in a standard
nomenclature. For example, a medical nomenclature might contain the term renal cell
carcinoma, a type of kidney cancer, attaching a unique identifier code for the term, such
as “C9385000.” There are about 50 recognized synonyms for “renal cell carcinoma.” A few
of these synonyms and near-synonyms are listed here to show that a single concept can be
expressed many different ways, including: adenocarcinoma arising from kidney, adeno-
carcinoma involving kidney, cancer arising from kidney, carcinoma of kidney, Grawitz
tumor, Grawitz tumour, hypernephroid tumor, hypernephroma, kidney adenocarcinoma,
renal adenocarcinoma, and renal cell carcinoma. All of these terms could be assigned the
same identifier code, “C9385000”. [Glossary Coding, Identifier]

The process of coding a text document involves finding all the terms that belong to a
specific nomenclature, and tagging each term with the corresponding identifier code.

A nomenclature is a specialized vocabulary, usually containing terms that comprehen-
sively cover a knowledge domain. For example, there may be a nomenclature of diseases,
of celestial bodies, or of makes and models of automobiles. Some nomenclatures are
ordered alphabetically. Others are ordered by synonymy, wherein all synonyms and ple-
sionyms (near-synonyms) are collected under a canonical (i.e., best or preferred) term.
Synonym indexes are always corrupted by the inclusion of polysemous terms (i.e., terms
with multiple meanings). In many nomenclatures, grouped synonyms are collected under
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a so-called code (i.e., a unique alphanumeric string) assigned to all of the terms in
the group.

Nomenclatures have many purposes: to enhance interoperability and integration, to
allow synonymous terms to be retrieved regardless of which specific synonym is entered
as a query, to support comprehensive analyses of textual data, to express detail, to tag
information in textual documents, and to drive down the complexity of documents by
uniting synonymous terms under a common code. Sets of documents held in more than
one Big Data resource can be harmonized under a nomenclature by substituting or
appending a nomenclature code to every nomenclature term that appears in any of the
documents. [Glossary Interoperability, Data integration, Plesionymy, Polysemy, Vocabu-
lary, Uniqueness, String]

In the case of “renal cell carcinoma,” if all of the 50+ synonymous terms, appearing
anywhere in a medical text, were tagged with the code “C938500,” then a search engine
could retrieve documents containing this code, regardless of which specific synonym
was queried (e.g., a query on Grawitz tumor would retrieve documents containing the
word “hypernephroid tumor”). To do so the search engine would simply translate the
query word, “Grawitz tumor” into its nomenclature code “C938500” and would pull every
record that had been tagged by the code.

Traditionally, nomenclature coding, much like language translation, has been consid-
ered a specialized and highly detailed task that is best accomplished by human beings. Just
as there are highly trained translators who will prepare foreign language versions of pop-
ular texts, there are highly trained coders, intimately familiar with specific nomenclatures,
who create tagged versions of documents. Tagging documents with nomenclature codes is
serious business. If the coding is flawed the consequences can be dire. In 2009 the Depart-
ment of Veterans Affairs sent out hundreds of letters to veterans with the devastating news
that they had contracted Amyotrophic Lateral Sclerosis, also known as Lou Gehrig’s dis-
ease, a fatal degenerative neurologic condition. About 600 of the recipients did not, in fact,
have the disease. The VA retracted these letters, attributing the confusion to a coding error
[5]. Coding text is difficult. Human coders are inconsistent, idiosyncratic, and prone to
error. Coding accuracy for humans seems to fall in the range of 85%-90% [6]. [Glossary
Accuracy versus precision]

When dealing with text in gigabyte and greater quantities, human coding is simply out
of the question. There is not enough time or money or talent to manually code the textual
data contained in Big Data resources. Computerized coding (i.e., autocoding) is the only
practical solution.

Autocoding is a specialized form of machine translation, the field of computer science
wherein meaning is drawn from narrative text. Not surprisingly, autocoding algorithms
have been adopted directly from the field of machine translation, particularly algorithms
for natural language processing. A popular approach to autocoding involves using the nat-
ural rules of language to find words or phrases found in text and matching them to nomen-
clature terms. Ideally the terms found in text are correctly matched to their equivalent
nomenclature terms, regardless of the way that the terms were expressed in the text.
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For instance, the term “adenocarcinoma of lung” has much in common with alternate
terms that have minor variations in word order, plurality, inclusion of articles, terms split
by a word inserted for informational enrichment, and so on. Alternate forms would be
“adenocarcinoma of the lung,” “adenocarcinoma of the lungs,” “lung adenocarcinoma,”
and “adenocarcinoma found in the lung.” A natural language algorithm takes into account
grammatical variants, allowable alternate term constructions, word roots (i.e., stemming),
and syntax variation. Clever improvements on natural language methods might include
string similarity scores, intended to find term equivalences in cases where grammatical
methods come up short. [Glossary Algorithm, Syntax, Machine translation, Natural
language processing]

A limitation of the natural language approach to autocoding is encountered when syn-
onymous terms lack etymologic commonality. Consider the term “renal cell carcinoma.”
Synonyms include terms that have no grammatical relationship with one another. For
example, hypernephroma, and Grawitz tumor are synonyms for renal cell carcinoma. It
is impossible to compute the equivalents among these terms through the implementation
of natural language rules or word similarity algorithms. The only way of obtaining ade-
quate synonymy is through the use of a comprehensive nomenclature that lists every syn-
onym for every canonical term in the knowledge domain.

Setting aside the inability to construct equivalents for synonymous terms that share no
grammatical roots, the best natural language autocoders are pitifully slow. The reason for
the slowness relates to their algorithm, which requires the following steps, at a minimum:
parsing text into sentences; parsing sentences into grammatical units; re-arranging the
units of the sentence into grammatically permissible combinations; expanding the com-
binations based on stem forms of words; allowing for singularities and pluralities of words,
and matching the allowable variations against the terms listed in the nomenclature.
A typical natural language autocoder parses text at about 1 kilobyte per second, which
is equivalent to a terabyte of text every 30 years. Big Data resources typically contain many
terabytes of data; thus, natural language autocoding software is unsuitable for translating
Big Data resources. This being the case, what good are they?

Natural language autocoders have value when they are employed at the time of data
entry. Humans type sentences at a rate far less than 1 kilobyte per second, and natural
language autocoders can keep up with typists, inserting codes for terms, as they are typed.
They can operate much the same way as auto-correct, auto-spelling, look-ahead, and
other commonly available crutches intended to improve or augment the output of plod-
ding human typists.

— Recoding and speed

It would seem that by applying the natural language parser at the moment when the
data is being prepared, all of the inherent limitations of the algorithm can be overcome.
This belief, popularized by developers of natural language software, and perpetuated
by a generation of satisfied customers, ignores two of the most important proper-
ties that must be preserved in Big Data resources: longevity, and curation. [Glossary
Curator]
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Nomenclatures change over time. Synonymous terms and the codes will vary from year
to year as new versions of old nomenclature are published and new nomenclatures are
developed. In some cases, the textual material within the Big Data resource will need
to be annotated using codes from nomenclatures that cover informational domains that
were not anticipated when the text was originally composed.

Most of the people who work within an information-intensive society are accustomed
to evanescent data; data that is forgotten when its original purpose is served. Do we really
want all of our old e-mails to be preserved forever? Do we not regret our earliest blog posts,
Facebook entries, and tweets? In the medical world, a code for a clinic visit or a biopsy
diagnosis, or a reportable transmissible disease will be used in a matter of minutes or
hours; maybe days or months. Few among us place much value on textual information
preserved for years and decades. Nonetheless, it is the job of the Big Data manager to pre-
serve resource data over years and decades. When we have data that extends back, over
decades, we can find and avoid errors that would otherwise reoccur in the present, and
we can analyze trends that lead us into the future.

To preserve its value, data must be constantly curated, adding codes that apply to cur-
rently available nomenclatures. There is no avoiding the chore; the entire corpus of textual
data held in the Big Data resource needs to be recoded again and again, using modified
versions of the original nomenclature, or using one or more new nomenclatures. This
time, an autocoding application will be required to code huge quantities of textual data
(possibly terabytes), quickly. Natural language algorithms, which depend heavily on regex
operations (i.e., finding word patterns in text) are too slow to do the job. [Glossary RegEx]

A faster alternative is so-called lexical parsing. This involves parsing text, word by word,
looking for exact matches between runs of words and entries in a nomenclature. When a
match occurs, the words in the text that matched the nomenclature term are assigned the
nomenclature code that corresponds to the matched term. Here is one possible algorith-
mic strategy for autocoding the sentence: “Margins positive malignant melanoma.” For
this example, you would be using a nomenclature that lists all of the tumors that occur
in humans. Let us assume that the terms “malignant melanoma,” and “melanoma” are
included in the nomenclature. They are both assigned the same code, for example
“Q5673013,” because the people who wrote the nomenclature considered both terms to
be biologically equivalent.

Let us autocode the diagnostic sentence, “Margins positive malignant melanoma”:

1. Begin parsing the sentence, one word at a time. The first word is “Margins.” You check
against the nomenclature, and find no match. Save the word “margins.” We will use it in
step 2.

2. You go to the second word, “positive” and find no matches in the nomenclature. You
retrieve the former word “margins” and check to see if there is a 2-word term, “margins
positive.” There is not. Save “margins” and “positive” and continue.

3. You go to the next word, “malignant.” There is no match in the nomenclature. You
check to determine whether the 2-word term “positive malignant” and the 3-word term
“margins positive malignant” are in the nomenclature. They are not.
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4. You go to the next word, “melanoma.” You check and find that melanoma is in the
nomenclature. You check against the two-word term “malignant melanoma,” the
three-word term “positive malignant melanoma,” and the four-word term “margins
positive malignant melanoma.” There is a match for “malignant melanoma” but it
yields the same code as the code for “melanoma.”

5. The autocoder appends the code, “Q5673013” to the sentence, and proceeds to the next
sentence, where it repeats the algorithm.

The algorithm seems like a lot of work, requiring many comparisons, but it is actually much
more efficient than natural language parsing. A complete nomenclature, with each
nomenclature term paired with its code, can be held in a single variable, in volatile
memory. Look-ups to determine whether a word or phrase is included in the nomenclature
are also fast. As it happens, there are methods that will speed things along. In Section 2.7, we
will see a 12-line autocoder algorithm that can parse through terabytes of text at a rate thatis
much faster than commercial-grade natural language autocoders [7]. [Glossary Variable]

Another approach to the problem of recoding large volumes of textual data involves
abandoning the attempt to autocode the entire corpus, in favor of on-the-fly autocoding,
when needed. On-the-fly autocoding involves parsing through a text of any size, and
searching for all the terms that match one particular concept (i.e., the search term).

Here is a general algorithm on-the-fly coding [8]. This algorithm starts with a query
term and seeks to find every synonym for the query term, in any collection of Big Data
resources, using any convenient nomenclature.

1. The analyst starts with a query term submitted by a data user. The analyst chooses a
nomenclature that contains his query term, as well as the list of synonyms for the term.
Any vocabulary is suitable, so long as the vocabulary consists of term/code pairs, where
a term and its’ synonyms are all paired with the same code.

2. All of the synonyms for the query term are collected together. For instance the
2004 version of a popular medical nomenclature, the Unified Medical
Language System, had 38 equivalent entries for the code C0206708, nine of
which are listed here:

C0206708|Cervical Intraepithelial Neoplasms
C0206708|Cervical Intraepithelial Neoplasm
C0206708|Intraepithelial Neoplasm, Cervical
C0206708|Intraepithelial Neoplasms, Cervical
C0206708|Neoplasm, Cervical Intraepithelial
C0206708|Neoplasms, Cervical Intraepithelial
C0206708|Intraepithelial Neoplasia, Cervical
C0206708|Neoplasia, Cervical Intraepithelial
C0206708|Cervical Intraepithelial Neoplasia

If the analyst had chosen to search on “Cervial Intraepithelial Neoplasia,” his
term will be attached to the 38 synonyms included in the nomenclature.
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3. One-by-one, the equivalent terms are matched against every record in every Big Data
resource available to the analyst.

4. Records are pulled that contain terms matching any of the synonyms for the term
selected by the analyst.

In the case of the example, this would mean that all 38 synonymous terms for “Cervical
Intraepithelial Neoplasms” would be matched against the entire set of data records. The
benefit of this kind of search is that data records that contain any search term, or its nomen-
clature equivalent, can be extracted from multiple data sets in multiple Big Data resources,
as they are needed, in response to any query. There is no pre-coding, and there is no need to
match against nomenclature terms that have no interest to the analyst. The drawback of
this method is that it multiplies the computational task by the number of synonymous
terms being searched, 38-fold in this example. Luckily, there are published methods for
conducting simple and fast synonym searches, using precompiled concordances [8].

Section 2.6. Case Study: Instantly Finding the Precise Location
of Any Atom in the Universe (Some Assembly Required)

There’s as many atoms in a single molecule of your DNA as there are stars in the

typical galaxy. We are, each of us, a little universe.
Neil deGrasse Tyson, Cosmos

If you have sat through an introductory course in Computer Science, you are no doubt
familiar with three or four sorting algorithms. Indeed, most computer science books
devote a substantial portion of their texts to describing sorting algorithms. The reason
for this infatuation with sorting is that all sorted lists can be searched nearly instantly,
regardless of the size of the list. The so-called binary algorithm for searching a sorted list
is incredibly simple. For the sake of discussion, let us consider an alphabetically sorted list
of 1024 words. I want to determine if the word “kangaroo” is in the list; and, if so, its exact
location in the list. Here is how a binary search would be conducted.

1. Go to the middle entry of the list.

2. Compare the middle entry to the word “kangaroo.” If the middle entry comes earlier in
the alphabet than “kangaroo,” then repeat step 1, this time ignoring the first half of the
list and using only the second half of the list (i.e., going to the middle entry of the
second half of the file). Otherwise, go to step 1, this time ignoring the second half of the
list and using only the first half.

These steps are repeated until you come to the location where kangaroo resides, or until
you have exhausted the list without finding your kangaroo.

Each cycle of searching cuts the size of the list in half. Hence, a search through a sorted
list of 1024 items would involve, at most, 10 cycles through the two-step algorithm
(because 1024 = 2°10).
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Every computer science student is expected to write her own binary search script. Here
is a simple script, binary.py, that does five look-ups through a sorted numeric list, report-
ing on which items are found, and which items are not.

def Search(search list, search item):
first item=0
last _item = len(search list)-1
found = False
while (first item <= last item) and not found:
middle = (first item + last item)//2
if search list[middle] == search item:
found = True
else:
if search item < search list[middle]:
last_item =middle -1
else:
first item=middle + 1
return found
sorted list = [4, 5, 8, 15, 28, 29, 30, 45, 67, 82, 99, 101, 1002]
for itemin [3, 7, 28, 31, 45, 1002] :
print (Search(sorted list, item))

output:
False
False
True
False
True
True

Let us say, just for fun, we wanted to search through a sorted list of every atom in the uni-
verse. First we would take each atom in the universe and assign it a location. Then we
would sort the locations based on their distances from the center of the center of the uni-
verse, which is apparently located at the tip of my dog’s left ear. We could then substitute
the sorted atom list for the sorted_list in the binary.py script, shown above.

How long would it take to search all the atoms of the universe, using the binary.py
script. As it happens, we could find the list location for any atom in the universe, almost
instantly. The reason is that there are only about 2 260 atoms in the known universe. This
means that the algorithm would required, at the very most, 260 2-step cycles. Each cycle is
very fast, requiring only that we compare the search atom’s distance from my dog’s ear,
against the middle atom of the list.

Of course, composing the list of atom locations may pose serious difficulties, and we
might need another universe, much larger than our own, to hold the sorted list that we
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create. Nonetheless, a valid point emerges; that binary searches are fast, and the time to
completion of a binary search is not significantly lengthened by any increase in the num-
ber of items in the list. Had we chosen, we could have annotated the items of sorted_list
with any manner of information (e.g., locations in a file, nomenclature code, links to web
addresses, definitions of the items, metadata), so that our binary searches would yield
something more useful than the location of the item in the list.

Section 2.7. Case Study (Advanced): A Complete Autocoder
(in 12 Lines of Python Code)

Software is a gas; it expands to fill its container.
Nathan Myhrvold

This script requires two external files:

1. The nomenclature file that will be converted into a Python dictionary, wherein each
term is a dictionary key, and each nomenclature code is a value assigned to a term.
[Glossary Dictionary]

Here are a few sample lines from the nomenclature file (nomenclature_dict.txt, in
this case):

oropharyngeal adenoid cystic adenocarcinoma , C6241000
peritoneal mesothelioma , C7633000

benign tumour arising from the exocrine pancreas , C4613000
basaloid penile squamous cell cancer , C6980000

cns malignant soft tissue tumor , C6758000

digestive stromal tumour of stomach , C5806000

bone with malignancy , C4016000

benign mixed tumor arising from skin , C4474000

2. The file containing a corpus of sentences that will be autocoded by the script.
Here are a few sample lines from the corpus file (tumorabs.txt, in this case):

local versus diffuse recurrences of meningiomas factors correlated
to the extent of the recurrence

the effect of an unplanned excision of a soft tissue sarcoma on
prognosis
obstructive jaundice associated burkitt lymphoma mimicking

pancreatic carcinoma

efficacy of zoledronate in treating persisting isolated tumor
cells in bone marrow in patients with breast cancer a phase ii pilot
study
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metastatic lymph node number in epithelial ovarian carcinoma does it
have any clinical significance

extended three dimensional impedance map methods for identifying
ultrasonic scattering sites

aberrant expressionof connexin 26 isassociatedwith lungmetastasis
of colorectal cancer

The 19-line python script, autocode.txt, produces a sentence-by-sentence list of extracted
autocoded terms:

outfile = open("autocoded.txt", "w")
literalhash = {}
with open("nomenclature dict.txt") as f:
for line in f:
(key, val) = line.split (", ")
literalhash[key] =val
corpus_file = open("tumorabs.txt", "r")
for line in corpus_file:
sentence = line.rstrip()

outfile.write("\n" + sentence[0] .upper () + sentence[1:] +"." +
"\l’l")
sentence array = sentence.split (" ")

length = len(sentence array)
for i in range (length) :
for place length in range(len(sentence_array)) :
last element = place length +1
phrase = ' '.join(sentence array[0:last element])
if phrase in literalhash:
outfile.write (phrase + " " + literalhash[phrase])
sentence_array.pop (0)

The first seven lines of code are housekeeping chores, in which the external nomenclature
is loaded into a Python dictionary (literalhash, in this case), and an external file composed
of lines, with one sentence on each line, is opened and prepared for reading, and which
another external file, autocoded.txt, is created to accept the script’s output. We will not
count these first seven lines as belonging to our autocoder because, in all fairness, they
are not doing any of the work of autocoding. The meat of the script is the next twelve lines,
beginning with “for line in corpus_file.”
Here is a sample of the output:

Obstructive jaundice associated burkitt lymphoma mimicking pancreatic
carcinoma.
burkitt lymphoma C7188000
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lymphoma C7065000
pancreatic carcinoma C3850000
carcinoma C2000000

Littoral cell angioma of the spleen.
littoral cell angioma C8541100
littoral cell angioma of the spleen C8541100
angioma C3085000
angioma of the spleen C8541000

Isolated b cell lymphoproliferative disorder at the dura mater withb
cell chronic lymphocytic leukemia immunophenotype.
lymphoproliferative disorder C4727100
b cell chronic lymphocytic leukemia C3163000
chronic lymphocytic leukemia C3163000
lymphocytic leukemia C7539000
leukemia C3161000

By observing a few samples of autocoded lines of text, we can see that the autocoder
extracts all cancer terms, and supplies its nomenclature code, regardless of whether a term
is contained within a longer term.

For example, the autocoder managed to find four terms within the sentence “Littoral
cell angioma of the spleen,” these being: littoral cell angioma, littoral cell angioma of the
spleen, angioma, and angioma of the spleen. The ability to extract every valid term, even
when they are subsumed by larger terms, guarantees that a query term and all its syno-
nyms will always be retrieved, if the query term happens to be a valid nomenclature term.

This short autocoding script comes with a few advantages that are of particular interest
to Big Data professionals:

— Scalable to any size

All nomenclatures are small. Most of us have a working vocabulary of a few thousand
words. Most dictionaries are smaller, containing maybe 60,000 words. The most extreme
case of verbiage about verbiage is The 20-volume Oxford English Dictionary, which con-
tains about 170,000 entries. Even in this case, slurping the entire list of Oxford English dic-
tionary items would be a simple matter for any modern computer.

Most importantly, the autocoding algorithm imposes no limits on the size of the Big
Data corpus. The software proceeds line-by-line until the task is complete. Memory
requirements and other issues of scalability are not a problem.

— Fast

On my modest desktop computer, the 12-line autocoding algorithm processes text at the
rate of 1 megabyte every two seconds. A fast and powerful computer, using the same algo-
rithm, would be expected to parse at rates of 1 gigabytes of text per second, or greater.
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— Repeatable

Code a gigabyte of data in the morning. Do it all over again in the afternoon. Use another
version of the nomenclature, or use a different nomenclature, entirely. Recoding is not a
problem.

— Simple and adaptable, with easily maintained code

The larger the program, the more difficult it is to find bugs, or to recover from errors pro-
duced when the code is modified. It is nearly impossible to inflict irreversible damage
upon a simple, 12-line script. As a general rule, tiny scripts are seldom a problem if
you maintain records of where the scripts are located, how the scripts are used, and
how the scripts are modified over time.

— Reveals the dirty little secret that every programmer knows, but few are willing
to admit.

Virtually all useful algorithms can be implemented in a few lines of code; autocoders
are no exception. The thousands, or millions, of lines of code in just about any
commercial software application are devoted, in one way or another, to the graphic user
interface.

Section 2.8. Case Study: Concordances as Transformations
of Text

Interviewer: Is there anything from home that you brought over with you to set up for
yourself? Creature comforts?

Hawkeye: I brought a book over.

Interviewer: What book?

Hawkeye: The dictionary. 1 figure it’s got all the other books in it.
Interview with the character Hawkeye, played by Alan Alda, from television show M*A*S*H

A transform is a mathematical operation that takes a function, a signal, or a set of data and
changes it into something else, that is easier to work with than the original data. The con-
cept of the transform is a simple but important idea that has revolutionized many scien-
tific fields including electrical engineering, digital signal processing, and data analysis. In
the field of digital signal processing, data in the time domain (i.e., wherein the amplitude
of a measurement varies over time, as in a signal), is commonly transformed into the fre-
quency domain (i.e., wherein the original data can be assigned to amplitude values for a
range of frequencies). There are dozens, possibly hundreds, of mathematical transforms
that enable data analysts to move signal data between forward transforms (e.g., time
domain to frequency domain), and their inverse counterparts (e.g., frequency domain
to time domain). [Glossary Transform, Signal, Digital signal, Digital Signal Processing,
DSP, Fourier transform, Burrows-Wheeler transform]
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A concordance is transform, for text. A concordance takes a linear text and transforms it
a word-frequency distribution list; which can reversed as needed. Like any good trans-
form, we can expect to find circumstances when it is easier to perform certain types of
operations on the transformed data than on the original data. [Glossary Concordance]

Here is an example, from the Python script proximate_words.py, where we use a con-
cordance to list the words in close proximity to the concordance entries (i.e., the words
contained in the text). In this script, we use the previously constructed (vida supra) con-
cordance of the Gettysburg address.

import string
infile = open ("concordance.txt", "r")
places = []
word_array = []
concordance hash = {}
words_hash = {}
for line in infile:
line = line.rstrip()
line array =1line.split(" ")
word = line array [0]
places = line_array[1]
places_array = places.split (", ")
words hash [word] = places_array
for word position in places_array:
concordance hash [word position] = word
for k, vin words hash.items() :

print (k, end=" - \n")
for items in v:
n=0

whilen<5:
nextone = str(int (items) + n)
if nextone in concordance hash:
print (concordance hash[nextone] , end=" ")
n=n+1
print ()
print ()

The script produces a list of the words from the Gettysburg address, along with short

sequences of the text that follow each occurrence of the word in the text, as shown in this
sampling from the output file:

to -
to the proposition that all
to dedicate a portion of
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to add or detract. The

to be dedicated here to

to the unfinished work which
to be here dedicated to

to the great task remaining
to that cause for which

dedicated -

dedicated to the proposition that
dedicated can long endure. We
dedicated here to the unfinished
dedicated to the great task

Inspecting some of the output, we see that the word “to” appears 8 times in the Gettysburg
address. We used the concordance to reconstruct four words that follow the word “to”
wherever it occurs in the text. Likewise we see that the word “dedicated” occurs 4 times
in the text, and the concordance tells us the four words that follow at each of the locations
where “dedicated” appears. We can construct these proximity phrases very quickly,
because the concordance tells us the exact location of the words in the text. If we were
working from the original text, instead of its transform (i.e., the concordance), then our
algorithm would run much more slowly, because each word would need to be individually
found and retrieved, by parsing every word in the text, sequentially.

Section 2.9. Case Study (Advanced): Burrows Wheeler
Transform (BWT)

All parts should go together without forcing. You must remember
that the parts you are reassembling were disassembled by you. Therefore,
if you can’t get them together again, there must be a reason. By all

means, do not use a hammer.
IBM Manual, 1925

One of the most ingenious transforms in the field of data science is the Burrows Wheeler
transform. Imagine an algorithm that takes a corpus of text and creates an output string con-
sisting of a transformed text combined with its own word index, in a format that can be com-
pressed to a smaller size than the compressed original file. The Burrows Wheeler Transform
does all this, and more [9,10]. A clever informatician may find many ways to use the BWT
transform in search and retrieval algorithms and in data merging projects [11]. Using the
BWT file, you can re-compose the original file, or you can find any portion of a file preceding
or following any word from the file [12]. [Glossary Data merging, Data fusion]

Excellent discussions of the algorithm are available, along with implementations in
several languages [9,10,13]. The Python script, bwt.py, shown here, is a modification of
a script available on Wikipedia [13]. The script executes the BWT algorithm in just three
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lines of code. In this example, the input string is a excerpt from Lincoln’s Gettysburg
address [12].

input = "four score and seven years ago our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"
input = input + "\0"

table = sorted (input [1:] + input[:1] for i in range (len (input)))

last column = [row[-1:] for row in table]

print ("".join(last column))

Here is the transformed output:

dtsyesnsrtdnwaordnhn efni n snenryvcvnhbsn uatttgl tthe oioe caai
eogipccc
fr fuuuobaeoerri nhra naro ooieet

Admittedly, the output does not look like much. Let us juxtapose our input string and our
BWT'’s transform string:

four score and seven years ago our fathers brought forth upon this
continent a new nation conceived in liberty and
dtsyesnsrtdnwaordnhn efni n snenryvcvnhbsn uatttgl tthe oioe caai
eogipcccfr fuuuobaeocerri nhra naro ooieet

We see that the input string and the transformed output string both have the same length,
so there doesn’t seem to be any obvious advantage to the transform. If we look a bit closer,
though, we see that the output string consists largely of runs of repeated individual char-
acters, repeated substrings, and repeated spaces (e.g., “ttt” “auu”). These frequent repeats
in the transform facilitate compression algorithms that hunt for repeat patterns. BWT’s
facility for creating runs of repeated characters accounts for its popularity in compression
software (e.g., the Bunzip compression utility).

The Python script, bwt_inverse.py, computes the inverse BWT to re-construct the orig-
inal input string. Notice that the inverse algorithm is implemented in just the last four
lines of the python code (the first five lines re-created the forward BWT transform) [12]

input = "four score and seven years ago our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"
input = input + "\0"

table = sorted(input [i:] + input [:1] for i in range (len (input)))

last column = [row[-1:] for row in table]

#The first lines re-created the bwt transform

#The next four lines compute the inverse transform
table = [""] * len(last_column)
for i in range (len(last_column)) :
table =sorted(last column[i] + table[i] for i inrange(len(input)))
print ([row for row in table if row.endswith ("\0")] [0])
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As we would expect, the output of the bwt_inverse.py script, is our original input
string:

four score and seven years ago our fathers brought forth upon this
continent a new nation conceived in liberty and

The charm of the BWT transform is demonstrated when we create an implementation that
parses the input string word-by-word; not character-by-character.

Here is the Python script, bwt_trans_inv.py, that transforms an input string, word-by-
word, producing its transform; then reverses the process to yield the original string, as an
array of words. As an extra feature, the script produces the first column, as an array, of the
transform table [12]. [Glossary Numpy]

import numpy as np
input = "\ 0 four score and seven years ago our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"
word_ list = input.rsplit ()
table = sorted(word list[i:] + word list[:i] for i in range(len
(word_list)))
last_column = [row[-1:] for row in table]
first column = [row[:1] for row in table]
print ("First column of the transform table:\n" + str(first column) +
"\n")
table = [""] * len(last_column)
for i in range (len(last column)) :

table = sorted(str(last _column[i]) + " " + str(table[i]) for i in
range (len(word list)))
original = [row for row in table] [0]
print ("Inverse transform, as a word array:\n" + str (original))

Here is the output of the bwt_trans_inv.py script. Notice once more that the word-by-word
transform was implemented in 3 lines of code, and the inverse transform was implemen-
ted in four lines of code.

First column of the transform table:

[['\x00'], ['a']l, ['ago']l, ['and'], ['and']l, ['brought'],
['conceived'], ['continent'], ['fathers'], ['forth'], ['four'],
['in'], ['liberty'], ['nation']l, ['new'], ['our'], ['score'l,
['seven'], ['this'], ['upon'], ['years']]

Inverse transform, as a word array:

['\x00'] ['four'] ['score'] ['and'] ['seven'] ['years'] ['ago']
['our'] ['fathers'] ['brought'] ['forth'] ['upon'] ['this']
['continent'] ['a'] ['new'] ['nation'] ['conceived'] ['in']
['liberty'] ['and']
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The first column of the transform, created in the forward BWT, is a list of the words in the
input string, in alphabetic order. Notice that words that occurred more than one time in
the input text were repeated in the first column of the transform table (i.e., [and], [and] in
the example sentence). Hence, the transform yields all the words from the original input,
along with their frequency of occurrence in the text. As expected, the inverse of the trans-
form yields our original input string.

Glossary

Accuracy versus precision Accuracy measures how close your data comes to being correct. Precision pro-
vides a measurement of reproducibility (i.e., whether repeated measurements of the same quantity
produce the same result). Data can be accurate but imprecise. If you have a 10 pound object, and
you report its weight as 7.2376 pounds, on every occasion when the object is weighed, then your pre-
cision is remarkable, but your accuracy is dismal.

Algorithm An algorithm is a logical sequence of steps that lead to a desired computational result. Algo-
rithms serve the same function in the computer world as production processes serve in the
manufacturing world and as pathways serve in the world of biology. Fundamental algorithms can
be linked to one another, to create new algorithms (just as biological pathways can be linked). Algo-
rithms are the most important intellectual capital in computer science. In the past half century, many
brilliant algorithms have been developed for the kinds of computation-intensive work required for Big
Data analysis [14,15].

Binary data Computer scientists say that there are 10 types of people. Those who think in terms of binary
numbers, and those who do not. Pause for laughter and continue. All digital information is coded as
binary data. Strings of 0s and 1s are the fundamental units of electronic information. Nonetheless,
some data is more binary than other data. In text files, 8-bite sequences are converted into decimals
in the range of 0-256, and these decimal numbers are converted into characters, as determined by the
ASCII standard. In several raster image formats (i.e., formats consisting of rows and columns of pixel
data), 24-bit pixel values are chopped into red, green and blue values of 8-bits each. Files containing
various types of data (e.g., sound, movies, telemetry, formatted text documents), all have some kind of
low-level software that takes strings of 0s and 1s and converts them into data that has some particular
meaning for a particular use. So-called plain-text files, including HTML files and XML files are distin-
guished from binary data files and referred to as plain-text or ASCII files. Most computer languages
have an option wherein files can be opened as “binary,” meaning that the 0s and 1s are available to
the programmer, without the intervening translation into characters or stylized data.

Burrows-Wheeler transform Abbreviated as BWT, the Burrows-Wheeler transform produces a com-
pressed version of an original file, along with a concordance to the contents of the file. Using a reverse
BWT, you can reconstruct the original file, or you can find any portion of a file preceding or succeeding
any location in the file. The BWT transformation is an amazing example of simplification, applied to
informatics. A detailed discussion of the BWT is found in Section 2.9, “Case Study (Advanced): Burrows
Wheeler Transform.”

Class A class is a group of objects that share a set of properties that define the class and that distinguish
the members of the class from members of other classes. The word “class,” lowercase, is used as a gen-
eral term. The word “Class,” uppercase, followed by an uppercase noun (e.g., Class Animalia), repre-
sents a specific class within a formal classification.

Classification A system in which every object in a knowledge domain is assigned to a class within a hier-
archy of classes. The properties of superclasses are inherited by the subclasses. Every class has one
immediate superclass (i.e., parent class), although a parent class may have more than one immediate
subclass (i.e., child class). Objects do not change their class assignment in a classification, unless there
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was a mistake in the assignment. For example, a rabbit is always a rabbit, and does not change into a
tiger. Classifications can be thought of as the simplest and most restrictive type of ontology, and serve
to reduce the complexity of a knowledge domain [16].

Classifications can be easily modeled in an object-oriented programming language and are non-chaotic
(i.e., calculations performed on the members and classes of a classification should yield the same out-
put, each time the calculation is performed). A classification should be distinguished from an ontology.
In an ontology a class may have more than one parent class and an object may be a member of more
than one class. A classification can be considered a special type of ontology wherein each class is lim-
ited to a single parent class and each object has membership in one and only one class.

Coding The term “coding” has three very different meanings depending on which branch of science influ-
ences your thinking. For programmers, coding means writing the code that constitutes a computer
programmer. For cryptographers, coding is synonymous with encrypting (i.e., using a cipher to encode
amessage). For medics, coding is calling an emergency team to handle a patient in extremis. For infor-
maticians and library scientists, coding involves assigning a alphanumeric identifier, representing a
concept listed in a nomenclature, to a term. For example, a surgical pathology report may includes
the diagnosis, “Adenocarcinoma of prostate.” A nomenclature may assign a code C4863000 that
uniquely identifies the concept “Adenocarcinoma.” Coding the report may involve annotating every
occurrence of the work “Adenocarcinoma” with the “C4863000” identifier. For a detailed explanation
of coding, and its importance for searching and retrieving data, see the full discussion in Section 3.4,
“Autoencoding and Indexing with Nomenclatures.”

Concordance A concordance is an index consisting of every word in the text, along with every location
wherein each word can be found. It is computationally trivial to reconstruct the original text from
the concordance. Before the advent of computers, concordances fell into the provenance of religious
scholars, who painstakingly recorded the locations of the all words appearing in the Bible, ancient
scrolls, and any texts whose words were considered to be divinely inspired. Today, a concordance
for a Bible-length book can be constructed in about a second. Furthermore, the original text can be
reconstructed from the concordance, in about the same time.

Curator The word “curator” derives from the latin, “curatus,” the same root for “curative,” indicating that
curators “take care of” things. A data curator collects, annotates, indexes, updates, archives, searches,
retrieves, and distributes data. Curator is another of those somewhat arcane terms (e.g., indexer, data
archivist, lexicographer) that are being rejuvenated in the new millennium. It seems that if we want to
enjoy the benefits of a data-centric world, we will need the assistance of curators, trained in data
organization.

DSP Abbreviation for Digital Signal Processing.

Data fusion Data fusion is very closely related to data integration. The subtle difference between the two
concepts lies in the end result. Data fusion creates a new and accurate set of data representing the
combined data sources. Data integration is an on-the-fly usage of data pulled from different domains
and, as such, does not yield a residual fused set of data.

Data integration The process of drawing data from different sources and knowledge domains in a man-
ner that uses and preserves the identities of data objects and the relationships among the different data
objects. The term “integration” should not be confused with a closely related term, “interoperability.”
An easy way to remember the difference is to note that integration applies to data; interoperability
applies to software.

Data merging A nonspecific term that includes data fusion, data integration, and any methods that facil-
itate the accrual of data derived from multiple sources.

Dictionary In general usage a dictionary is a word list accompanied by a definition for each item. In
Python a dictionary is a data structure that holds an unordered list of key/value pairs. A dictionary,
as used in Python, is equivalent to an associative array, as used in Perl.

Digital Signal Processing Digital Signal Processing (DSP) is the field that deals with creating, transform-
ing, sending, receiving, and analyzing digital signals. Digital signal processing began as a specialized
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subdiscipline of signal processing, another specialized subdiscipline. For most of the twentieth cen-
tury, many technologic advances came from converting non-electrical signals (temperature, pressure,
sound, and other physical signals) into electric signals that could be carried via electromagnetic waves,
and later transformed back into physical actions. Because electromagnetic waves sit at the center of so
many transform process, even in instances when the input and outputs are non-electrical in nature,
the field of electrical engineering and signal processing have paramount importance in every field of
engineering. In the past several decades the intermediate signals have been moved from the analog
domain (i.e., waves) into the digital realm (i.e., digital signals expressed as streams of 0s and 1s). Over
the years, as techniques have developed by which any kind of signal can be transformed into a digital
signal, the subdiscipline of digital signal processing has subsumed virtually all of the algorithms once
consigned to its parent discipline. In fact, as more and more processes have been digitized (e.g., telem-
etry, images, audio, sensor data, communications theory), the field of digital signal processing has
come to play a central role in data science.

Digital signal A signal is a description of how one parameter varies with some other parameter. The most
familiar signals involve some parameter varying over time (e.g., sound is air pressure varying over
time). When the amplitude of a parameter is sampled at intervals, producing successive pairs of values,
the signal is said to be digitized.

Fourier transform A transform is a mathematical operation that takes a function or a time series (e.g.,
values obtained at intervals of time) and transforms it into something else. An inverse transform takes
the transform function and produces the original function (Fig. 2.1). Transforms are useful when there
are operations that can be more easily performed on the transformed function than on the original
function. Possibly the most useful transform is the Fourier transform, which can be computed with
great speed on modern computers, using a modified form known as the fast Fourier Transform. Peri-
odic functions and waveforms (periodic time series) can be transformed using this method. Opera-
tions on the transformed function can sometimes eliminate repeating artifacts or frequencies that
occur below a selected threshold (e.g., noise). The transform can be used to find similarities between
two signals. When the operations on the transform function are complete, the inverse of the transform
can be calculated and substituted for the original set of data (Fig. 2.2).

Identifier A string that is associated with a particular thing (e.g., person, document, transaction, data
object), and not associated with any other thing [17]. In the context of Big Data, identification usually
involves permanently assigning a seemingly random sequence of numeric digits (0-9) and alphabet
characters (a-z and A-Z) to a data object. The data object can be a class of objects.

Indexes Every writer must search deeply into his or her soul to find the correct plural form of “index”. Is it
“indexes” or is it “indices”? Latinists insist that “indices” is the proper and exclusive plural form. Gram-
marians agree, reserving “indexes” for the third person singular verb form; “The student indexes his
thesis.” Nonetheless, popular usage of the plural of “index,” referring to the section at the end of a
book, is almost always “indexes,” the form used herein.
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FIG. 2.1 The Fourier transform and its inverse. In this representation of the transform, x represents time in seconds and
the transform variable zeta represents frequency in hertz.
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FIG. 2.2 Asquare wave is approximated by a single sine wave, the sum of two sine waves, three sine waves, and so on.
As more components are added, the representation of the original signal or periodic set of data, is more closely
approximated. From Wikimedia Commons.

Interoperability It is desirable and often necessary to create software that operates with other software,
regardless of differences in hardware, operating systems and programming language. Interoperability,
though vital to Big Data science, remains an elusive goal.

Machine translation Ultimately, the job of machine translation is to translate text from one language into
another language. The process of machine translation begins with extracting sentences from text,
parsing the words of the sentence into grammatical parts, and arranging the grammatical parts into
an order that imposes logical sense on the sentence. Once this is done, each of the parts can be trans-
lated by a dictionary that finds equivalent terms in a foreign language, then re-assembled as a foreign
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language sentence by applying grammatical positioning rules appropriate for the target language.
Because these steps apply the natural rules for sentence constructions in a foreign language, the pro-
cess is often referred to as natural language machine translation. It is important to note that nowhere
in the process of machine translation is it necessary to find meaning in the source text, or to produce
meaning in the output. Good machine translation algorithms preserve ambiguities, without attempt-
ing to impose a meaningful result.

Natural language processing A field broadly concerned with how computers interpret human language
(i.e., machine translation). At its simplest level this may involve parsing through text and organizing
the grammatical units of individual sentences (i.e., tokenization). For example, we might assign the fol-
lowing tokens to the grammatical parts of a sentence: A = adjective, D = determiner, N = noun, P = prep-
osition, V = main verb. A determiner is a word such as “a” or “the”, which specifies the noun [18].
Consider the sentence, “The quick brown fox jumped over lazy dogs.” This sentence can be grammat-
ically tokenized as:

the::D
quick::A
brown::A
fox::N
jumped::V
over::P
the:D
lazy::A
dog:N

We can express the sentence as the sequence of its tokens listed in the order of occurrence in the sentence:
DAANVPDAN. This does not seem like much of a breakthrough, but imagine having a large collection
of such token sequences representing every sentence from a large text corpus. With such a data set, we
could begin to understand the rules of sentence structure. Commonly recurring sequences, like
DAANVPDAN, might be assumed to be proper sentences. Sequences that occur uniquely in a large
text corpus are probably poorly constructed sentences. Before long, we might find ourselves construct-
ing logic rules for reducing the complexity of sentences by dropping subsequences which, when
removed, yield a sequence that occurs more commonly than the original sequence. For example,
our table of sequences might indicate that we can convert DAANVPDAN into NVPAN (i.e., “Fox jumped
over lazy dog”), without sacrificing too much of the meaning from the original sentence and preserving
a grammatical sequence that occurs commonly in the text corpus.

This short example serves as an overly simplistic introduction to natural language processing. We can
begin to imagine that the grammatical rules of a language can be represented by sequences of tokens
that can be translated into words or phrases from a second language, and re-ordered according to
grammatical rules appropriate to the target language. Many natural language processing projects
involve transforming text into a new form, with desirable properties (e.g., other languages, an index,
a collection of names, a new text with words and phrases replaced with canonical forms extracted from
anomenclature) [18]. When we use natural language rules to autocode text, the grammatical units are
trimmed, reorganized, and matched against concept equivalents in a nomenclature.

Ngrams Ngrams are subsequences of text, of length n words. A complete collection of ngrams consists of
all of the possible ordered subsequences of words in a text. Because sentences are the basic units of
statements and ideas, when we speak of ngrams, we are confining ourselves to ngrams of sentences.
Let us examine all the ngrams for the sentence, “Ngrams are ordered word sequences.”

Ngrams (l-gram)
are (l-gram)
ordered (l-gram)
word (l-gram)
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sequences (l-gram)

Ngrams are (2-gram)

are ordered (2-gram)

ordered word (2-gram)

word sequences (2-gram)

Ngrams are ordered (3-gram)

are ordered word (3-gram)

ordered word sequences (3-gram)
Ngrams are ordered word (4-gram)
are ordered word sequences (4-gram)
Ngrams are ordered word sequences (5-gram)

Here is a short Python script, ngram.py, that will take a sentence and produce a list of all the contained
ngrams.

import string

text = "ngrams are ordered word sequences"

partslist = []

ngramlist = {}

text list = text.split(" ")

while (len(text list) >0):
partslist.append(" ".join(text list))
del text_list[0]

for part in partslist:

previous = ""
wordlist = part.split (" ")
while (len(wordlist) > 0):
ngramlist[(" ".join(wordlist))] =""
firstword = wordlist [0]
del wordlist [0]
ngramlist [firstword] =""
previous = previous + " " + firstword
previous = previous.strip()
ngramlist [previous] =""
for key in sorted (ngramlist) :
print (key)
exit

output:

are

are ordered

are ordered word

are ordered word sequences
ngrams

ngrams are

ngrams are ordered

ngrams are ordered word
ngrams are ordered word sequences
ordered

ordered word
ordered word sequences
sequences
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word
word sequences

The ngram.py script can be easily modified to parse through all the sentences of any text, regardless of
length, building the list of ngrams as it proceeds.

Google has collected ngrams from scanned literature dating back to 1500. The public can enter their own
ngrams into Google’s ngram viewer, and receive a graph of the published occurrences of the phrase,
through time [18]. We can use the Ngram viewer to find trends (e.g., peaks, valleys and periodicities) in
data. Consider the Google Ngram Viewer results for the two-word ngram, “yellow fever” (Fig. 2.3).

We see that the term “yellow fever” (a mosquito-transmitted hepatitis) appeared in the literature begin-
ning about 1800, with several subsequent peaks. The dates of the peaks correspond roughly to out-
breaks of yellow fever in Philadelphia (epidemic of 1793), New Orleans (epidemic of 1853), with
United States construction efforts in the Panama Canal (1904-14), and with well-documented WWII
Pacific outbreaks (about 1942). Following the 1942 epidemic an effective vaccine was available, and the
incidence of yellow fever, as well as the literature occurrences of the “yellow fever” n-gram, dropped
precipitously. In this case, a simple review of n-gram frequencies provides an accurate chart of historic
yellow fever outbreaks [19,18].

Nomenclature A nomenclatures is a listing of terms that cover all of the concepts in a knowledge domain.
A nomenclature is different from a dictionary for three reasons: 1) the nomenclature terms are not anno-
tated with definitions, 2) nomenclature terms may be multi-word, and 3) the terms in the nomenclature
are limited to the scope of the selected knowledge domain. In addition, most nomenclatures group syn-
onyms under a group code. For example, a food nomenclature might collect submarine sandwich,
hoagie, po’ boy, grinder, hero, and torpedo under an alphanumeric code such as “F63958.” Nomencla-
tures simplify textual documents by uniting synonymous terms under a common code. Documents that
have been coded with the same nomenclature can be integrated with other documents that have been
similarly coded, and queries conducted over such documents will yield the same results, regardless of
which term is entered (i.e., a search for either hoagie, or po’ boy will retrieve the same information, if both
terms have been annotated with the synonym code, “F63948”). Optimally, the canonical concepts listed
in the nomenclature are organized into a hierarchical classification [20,21,12].

Nomenclature mapping Specialized nomenclatures employ specific names for concepts that are
included in other nomenclatures, under other names. For example, medical specialists often preserve
their favored names for concepts that cross into different fields of medicine. The term that pathologists
use for a certain benign fibrous tumor of the skin is “fibrous histiocytoma,” a term spurned by

| Yellow fever
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FIG. 2.3 Google Ngram for the phrase “yellow fever,” counting occurrences of the term in a large corpus, from
the years 1700-2000. Peaks roughly correspond to yellow fever epidemics. Source: Google Ngram viewer, with
permission from Google.
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dermatologists, who prefer to use “dermatofibroma” to describe the same tumor. As another horrifying
example, the names for the physiologic responses caused by a reversible cerebral vasoconstricitve
event include: thunderclap headache, Call-Fleming syndrome, benign angiopathy of the central ner-
vous system, postpartum angiopathy, migrainous vasospasm, and migraine angiitis. The choice of
term will vary depending on the medical specialty of the physician (e.g., neurologist, rheumatologist,
obstetrician). To mitigate the discord among specialty nomenclatures, lexicographers may undertake a
harmonization project, in which nomenclatures with overlapping concepts are mapped to one
another.

Numpy Numpy (Numerical Python) is an open source extension to Python that supports matrix opera-
tions, as well as a rich assortment of mathematical functions. Numpy can be easily downloaded from
sourceforge.net: http://sourceforge.net/projects/numpy/. Here is a short Python script, numpy_dot.
py, that creates a 3x3 matrix, inverts the matrix, and calculates the dot produce of the matrix and its
inverted counterpart.

import numpy

from numpy.linalg import inv

a =numpy.array([[1,4,6], [9,15,55], [62,-5, 4]11])
print (a)

print (inv(a))

¢ = numpy.dot (a, inv(a))

print (numpy.round (c))

The numpy_dot.py script employs numpy, numpy’s linear algebra module, and numpy’s matrix inversion
method, and the numpy dot product method. Here is the output of the script, displaying the original
matrix, its inversion, and the dot product, which happens to be the unity matrix:

c:\ftp\py>numpy dot.py
[[14 6]
[ 91555]
[62 -5 4]]
[[ 4.19746899e-02 -5.76368876e-03 1.62886856e-02]
[ 4.22754041e-01 -4.61095101e-02 -1.25297582e-04]
[ -1.22165142e-01 3.17002882e-02 -2.63124922e-03]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.1]

Parsing Much of computer programming involves parsing; moving sequentially through a file or some
sort of data structure and performing operations on every contained item, one item at a time. For files,
this might mean going through a text file line by line, or sentence by sentence. For a data file, this might
mean performing an operation on each record in the file. For in-memory data structures, this may
mean performing an operation on each item in a list or a tuple or a dictionary.

The parse_directory.py script prints all the file names and subdirectory names in a directory tree.

import os
for root, dirs, files inos.walk(".", topdown=False) :
for filename in files:
print (os.path.join(root, filename))
for dirname in dirs:
print (os.path.join(root, dirname))

Plain-text Plain-text refers to character strings or files that are composed of the characters accessible
to a typewriter keyboard. These files typically have a “.txt” suffix to their names. Plain-text files
are sometimes referred to as 7-bit ascii files because all of the familiar keyboard characters have
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ASCII vales under 128 (i.e., can be designated in binary with, just seven 0s and 1s. In practice,
plain-text files exclude 7-bit ascii symbols that do not code for familiar keyboard characters. To
further confuse the issue, plain-text files may contain ascii characters above 7 bits (i.e., characters
from 128 to 255) that represent characters that are printable on computer monitors, such as accented
letters.

Plesionymy Nearly synonymous words, or pairs of words that are sometimes synonymous; other times
not. For example, the noun forms of “smell” and “odor” are synonymous. As verb forms, “smell”
applies, but odor does not. You can small a fish, but you cannot odor a fish. Smell and odor are ple-
sionyms. Plesionymy is another challenge for machine translators.

Polysemy Occurs when a word has more than one distinct meaning. The intended meaning of a word can
sometimes be determined by the context in which the word is used. For example, “She rose to the
occasion,” and “Her favorite flower is the rose.” Sometimes polysemy cannot be resolved. For example,
“Eats shoots and leaves.”

RegEx Short for Regular Expressions, RegEx is a syntax for describing patterns in text. For example, if
I wanted to pull all lines from a text file that began with an uppercase “B” and contained at least
one integer, and ended with the a lowercase x, then I might use the regular expression: “ B.*[0-9].
*x$”. This syntax for expressing patterns of strings that can be matched by pre-built methods available
to a programming language is somewhat standardized. This means that a RegEx expression in Perl will
match the same pattern in Python, or Ruby, or any language that employs RegEx. The relevance of
RegEx to Big Data is several-fold. RegEx can be used to build or transform data from one format to
another; hence creating or merging data records. It can be used to convert sets of data to a desired
format; hence transforming data sets. It can be used to extract records that meet a set of characteristics
specified by a user; thus filtering subsets of data or executing data queries over text-based files or text-
based indexes. The big drawback to using RegEx is speed: operations that call for many RegEx oper-
ations, particularly when those operations are repeated for each parsed line or record, will reduce soft-
ware performance. RegEx-heavy programs that operate just fine on megabyte files may take hours,
days or months to parse through terabytes of data.

A 12-line python script, file_search.py, prompts the user for the name of a text file to be searched, and then
prompts the user to supply a RegEx pattern. The script will parse the text file, line by line, displaying
those lines that contain a match to the RegEx pattern.

import sys, string, re
print ("What is file would you like to search?")
filename = sys.stdin.readline ()
filename = filename.rstrip ()
print ("Enter a word, phrase or regular expression to search.")
word_to_search = (sys.stdin.readline()) .rstrip()
infile = open (filename, "r")
regex object = re.compile (word to search, re.I)
for line in infile:

m= regex object.search(line)

if m:

print (line)

Scalable Software is scalable if it operates smoothly, whether the data is small or large. Software programs
that operate by slurping all data into a RAM variable (i.e., a data holder in RAM memory) are not scal-
able, because such programs will eventually encounter a quantity of data that is too large to store in
RAM. As arule of thumb, programs that process text at speeds less than a megabyte per second are not
scalable, as they cannot cope, in a reasonable time frame, with quantities of data in the gigabyte and
higher range.

Script A script is a program that is written in plain-text, in a syntax appropriate for a particular program-
ming language, that needs to be parsed through that language’s interpreter before it can be compiled
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and executed. Scripts tend to run a bit slower than executable files, but they have the advantage that
they can be understood by anyone who is familiar with the script’s programming language.

Sentence Computers parse files line by line, not sentence by sentence. If you want a computer to perform
operations on a sequence of sentences found in a corpus of text, then you need to include a subroutine
in your scripts that list the sequential sentences. One of the simplest ways to find the boundaries of
sentences is to look for a period followed by one or more spaces, followed by an uppercase letter. Here’s
asimple Python demonstration of a sentence extractor, using a few famous lines from the Lewis Carroll
poem, Jabberwocky.

import re

all text =\

"And, has thou slain the Jabberwock? Come \

tomy arms, my beamish boy! O frabjous \

day! Callooh! Callay! He chortled in his \

joy. Lewis Carroll, excerpted from \

Jabberwocky";

sentence list =re.split(r'[\.\!\?] +(?=[A-Z])', all text)
print ("\n".join(sentence list))

Here is the output:

And, has thou slain the Jabberwock

Come to my arms, my beamish boy

O frabjous day

Callooh

Callay

He chortled in his joy

Lewis Carroll, excerpted from Jabberwocky

The meat of the script is the following line of code, which splits lines of text at the boundaries of sentences:
sentence list =re.split(r'[\.\!\?] +(?=[A-Z])',in text string)

This algorithm is hardly foolproof, as periods are used for many purposes other than as sentence termi-
nators. But it may suffice for most purposes.

Signal Inaveryloose sense a signal is a way of gauging how measured quantities (e.g., force, voltage, or pres-
sure) change in response to, or along with, other measured quantities (e.g., time). A sound signal is caused
by the changes in pressure, exerted on our eardrums, over time. A visual signal is the change in the pho-
tons impinging on our retinas, over time. An image is the change in pixel values over a two-dimensional
grid. Because much of the data stored in computers consists of discrete quantities of describable
objects, and because these discrete quantities change their values, with respect to one another, we
can appreciate that a great deal of modern data analysis is reducible to digital signal processing.

Specification A specification is a method for describing objects (physical objects such as nuts and bolts or
symbolic objects such as numbers). Specifications do not require specific types of information, and do
not impose any order of appearance of the data contained in the document. Specifications do not gen-
erally require certification by a standards organization. They are generally produced by special interest
organizations, and their legitimacy depends on their popularity. Examples of specifications are RDF
(Resource Description Framework) produced by the W3C (WorldWide Web Consortium), and TCP/
IP (Transfer Control Protocol/Internet Protocol), maintained by the Internet Engineering Task Force.

String A string is a sequence of characters. Words, phrases, numbers, and alphanumeric sequences (e.g.,
identifiers, one-way hash values, passwords) are strings. A book is a long string. The complete
sequence of the human genome (3 billion characters, with each character an A,T,G, or C) is a very long
string. Every subsequence of a string is another string.
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Syntax Syntax is the standard form or structure of a statement. What we know as English grammar is
equivalent to the syntax for the English language. If I write, “Jules hates pizza,” the statement would
be syntactically valid, but factually incorrect. If I write, “Jules drives to work in his pizza,” the statement
would be syntactically valid but nonsensical. For programming languages, syntax refers to the
enforced structure of command lines. In the context of triplestores, syntax refers to the arrangement
and notation requirements for the three elements of a statement (e.g., RDF format or N3 format).
Charles Mead distinctly summarized the difference between syntax and semantics: “Syntax is struc-
ture; semantics is meaning” [22].

Systematics The term “systematics” is, by tradition, reserved for the field of biology that deals with tax-
onomy (i.e., the listing of the distinct types of organisms) and with classification (i.e., the classes of
organisms and their relationships to one another). There is no reason why biologists should lay exclu-
sive claim to the field of systematics. As used herein, systematics equals taxonomics plus classification,
and this term applies just as strongly to stamp collecting, marketing, operations research, and object-
oriented programming as it does to the field of biology.

Taxa Plural of taxon.

Taxon A taxon isa class. The common usage of “taxon” is somewhat inconsistent, as it sometimes refers to
the class name, and at other times refers to the instances (i.e., members) of the class. In this book, the
term “taxon” is abandoned in favor of “class,” the plesionym used by computer scientists. Hence, the
term “class” is used herein in the same manner that it is used in modern object oriented programming
languages.

Taxonomy When we write of “taxonomy” as an area of study, we refer to the methods and concepts
related to the science of classification, derived from the ancient Greek taxis, “arrangement,” and
nomia, “method.” When we write of “a taxonomy,” as a construction within a classification, we are
referring to the collection of named instances (class members) in the classification. To appreciate
the difference between a taxonomy and a classification, it helps to think of taxonomy as the scientific
field that determines how different members of a classification are named. Classification is the scien-
tific field that determines how related members are assigned to classes, and how the different classes
are related to one another. A taxonomy is similar to a nomenclature; the difference is that in a taxon-
omy, every named instance must have an assigned class.

Term extraction algorithm Terms are phrases, most often noun phrases, and sometimes individual
words, that have a precise meaning within a knowledge domain. For example, “software
validation,” “RDF triple,” and “WorldWide Telescope” are examples of terms that might appear in
the index or the glossary of this book. The most useful terms might appear up to a dozen times in
the text, but when they occur on every page, their value as a searchable item is diminished; there
are just too many instances of the term to be of practical value. Hence, terms are sometimes described
as noun phrases that have low-frequency and high information content. Various algorithms are avail-
able to extract candidate terms from textual documents. The candidate terms can be examined by a
curator who determines whether they should be included in the index created for the document from
which they were extracted. The curator may also compare the extracted candidate terms against a
standard nomenclature, to determine whether the candidate terms should be added to the nomencla-
ture. For additional discussion, see Section 2.3, “Term Extraction.”

Thesaurus Avocabulary that groups together synonymous terms. A thesaurus is very similar to a nomen-
clature. There are two minor differences. Nomenclatures do not always group terms by synonymy; and
nomenclatures are often restricted to a well-defined topic or knowledge domain (e.g., names of stars,
infectious diseases, etc.).

Transform (noun form) There are three truly great conceptual breakthroughs that have brought with
them great advances to science and to civilization. The first two to be mentioned are well known to
everyone: equations and algorithms. Equations permit us to relate variable quantities in a highly spe-
cific and repeatable way. Algorithms permit us to follow a series of steps that always produce the same
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results. The third conceptual breakthrough, less celebrated but just as important, is the transforma-
tion; a way of changing things to yield a something new, with properties that provide an advantage
over the original item. In the case of reversible transformation, we can return the transformed item
to its original form, and often in improved condition, when we have completed our task.

It should be noted that this definition applies only to the noun form of “transform.” The meaning of the
verb form of transform is to change or modify, and a transformation is the closest noun form equiv-
alent of the verb form, “to transform.”

Uniqueness Uniqueness is the quality of being separable from every other thing in the universe. For data
scientists, uniqueness is achieved when data is bound to a unique identifier (i.e., a randomly chosen
string of alphanumeric characters) that has not, and will never be, assigned to any data. The binding of
data to a permanent and inseparable identifier constitutes the minimal set of ingredients for a data
object. Uniqueness can apply to two or more indistinguishable objects, if they are assigned unique
identifiers (e.g., unique product numbers stamped into identical auto parts).

Variable In algebra, a variable is a quantity, in an equation, that can change; as opposed to a constant
quantity, that cannot change. In computer science, a variable can be perceived as a container that
can be assigned a value. If you assign the integer 7 to a container named “x,” then “x” equals 7, until
you re-assign some other value to the container (i.e., variables are mutable). In most computer lan-
guages, when you issue a command assigning a value to a new (undeclared) variable, the variable auto-
matically comes into existence to accept the assignment. The process whereby an object comes into
existence, because its existence was implied by an action (such as value assignment), is called
reification.

Vocabulary A comprehensive collection of the words used in a general area of knowledge. The term
“vocabulary” and the term “nomenclature” are nearly synonymous. In common usage, a vocabulary
is a list of words and typically includes a wide range of terms and classes of terms. Nomenclatures typ-
ically focus on a class of terms within a vocabulary. For example, a physics vocabulary might contain
the terms “quark, black hole, Geiger counter, and Albert Einstein”; a nomenclature might be devoted to
the names of celestial bodies.
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Section 3.1. What Are Identifiers?
Where is the ‘any’ key?

Homer Simpson, in response to his computer’s instruction to “Press any key”

Let us begin this chapter with a riddle. “Is the number 5 a data object?” If you are like most
people, you will answer “yes” because “5” is an integer and therefore it is represents
numeric data, and “5” is an object because it exists and is different from all the other
numbers. Therefore “5” is a data object. This line of reasoning happens to be completely
erroneous. Five is not a data object. As a pure abstraction with nothing binding it to a
physical object (e.g., 5 pairs of shoes, 5 umbrellas), it barely qualifies as data.

When we speak of a data object, in computer science, we refer to something that is
identified and described. Consider the following statements:

<f183136d-3051-4c95-9e32-66844971afc5 ><name ><Baltimore >
<f183136d-3051-4c95-9e32-66844971afc5><class><city>
<f183136d-3051-4c95-9e32-66844971afc5><population><620,961>

Without knowing much about data objects (which we will be discussing in detail in
Section 6.2), we can start to see that these three statements are providing information
about Baltimore. They tell us that Baltimore is a city of population 620,961, and that
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Baltimore has been assigned an alphanumeric sequence, “f183136d-3051-4c95-9e32-
66844971afch,” to which all our available information about Baltimore has been attached.
Peeking ahead into Chapter 6, we can now surmise that a data object consists of a unique
alphanumeric sequence (the object identifier) plus the descriptive information associated
with the identifier (e.g., name, population number, class). We will see that there are
compelling reasons for storing all information contained in Big Data resources within
uniquely identified data objects. Consequently, one of the most important tasks for data
managers is the creation of a dependable identifier system [1]. In this chapter, we will
be focusing our attention on the unique identifier and how it is created and utilized in
the realm of Big Data.

Identification issues are often ignored by data managers who are accustomed to
working on small data projects. It is worthwhile to list, up front, the most important ideas
described in this chapter, many of which are counterintuitive and strange to those whose
careers are spent outside the confusing realm of Big Data.

— All Big Data resources can be imagined as identifier systems to which we attach
our data.

— Without an adequate identification system, a Big Data resource has no value. In this
case, the data within the resource cannot be sensibly analyzed.

— Data deidentification is a process whereby links to the public name of the subject of the
record are removed.

— Deidentification should not be confused with the act of stripping a record of an
identifier. A deidentified record, like any valid data object, must always have an
associated identifier.

— Deidentification should not be confused with data scrubbing. Data scrubbers remove
unwanted information from a data record, including information of a personal nature,
and any information that is not directly related to the purpose of the data record.
[Glossary Data cleaning, Data scrubbing]

— Reidentification is a concept that specifically involves personal and private data
records. It involves ascertaining the name of the individual who is associated with a
deidentified record. Reidentification is sometimes necessary to verify the contents
of arecord, or to provide information that is necessary for the well-being of the subject
of a deidentified data record. Ethical reidentification always requires approval and
oversight.

— Where there is no identification, there can be no deidentification and no
reidentification.

— When a deidentified data set contains no unique records (i.e., every record has one
or more additional records from which it cannot be distinguished, aside from its
assigned identifier sequence), then it becomes impossible to maliciously uncover a
deidentified record’s public name.
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Section 3.2. Difference Between an Identifier and an Identifier
System

Many errors, of a truth, consist merely in the application the wrong names of things.
Baruch Spinoza

Data identification is among the most underappreciated and least understood Big Data
issue. Measurements, annotations, properties, and classes of information have no infor-
mational meaning unless they are attached to an identifier that distinguishes one data
object from all other data objects, and that links together all of the information that
has been or will be associated with the identified data object. The method of identification
and the selection of objects and classes to be identified relates fundamentally to the orga-
nizational model of the Big Data resource. If data identification is ignored or implemented
improperly, the Big Data resource cannot succeed. [Glossary Annotation]

This chapter will describe, in some detail, the available methods for data identification,
and the minimal properties of identified information (including uniqueness, exclusivity,
completeness, authenticity, and harmonization). The dire consequences of inadequate iden-
tification will be discussed, along with real-world examples. Once data objects have been
properly identified, they can be deidentified and, under some circumstances, reidentified.
The ability to deidentify data objects confers enormous advantages when issues of confi-
dentiality, privacy, and intellectual property emerge. The ability to reidentify deidentified
data objects is required for error detection, error correction, and data validation. [Glossary
Deidentification, Re-identification, Privacy versus confidentiality, Intellectual property]

Returning to the title of this section, let us ask ourselves, “What is the difference between
an identifier and an identifier system?” To answer, by analogy, it is like the difference
between having a $100 dollar bill in your pocket and having a savings account with $100
credited to the account. In the case of the $100 bill, anyone in possession of the bill can
use it to purchase items. In the case of the $100 credit, there is a system in place for uniquely
assigning the $100 to one individual, until such time as that individual conducts an account
transaction that increases or decreases the account value. Likewise, an identifier system
creates a permanent environment in which the identifiers are safely stored and used.

Every good information system is, at its heart, an identification system: a way of nam-
ing data objects so that they can be retrieved by their name, and a way of distinguishing
each object from every other object in the system. If data managers properly identified
their data, and did absolutely nothing else, they would be producing a collection of data
objects with more informational value than many existing Big Data resources.

The properties of a good identifier system are the following:

— Completeness

Every unique object in the big data resource must be assigned an identifier.



56 PRINCIPLES AND PRACTICE OF BIG DATA

— Uniqueness

Each identifier is a unique sequence.

—  Exclusivity

Each identifier is assigned to a unique object, and to no other object.
— Authenticity

The objects that receive identification must be verified as the objects that they are
intended to be. For example, if a young man walks into a bank and claims to be Richie
Rich, then the bank must ensure that he is, in fact, who he says he is.

— Aggregation

The Big Data resource must have a mechanism to aggregate all of the data that is properly
associated with the identifier (i.e., to bundle all of the data that belongs to the uniquely
identified objected). In the case of a bank, this might mean collecting all of the transac-
tions associated with an account holder. In a hospital, this might mean collecting all of the
data associated with a patient’s identifier: clinic visit reports, medication transactions,
surgical procedures, and laboratory results. If the identifier system performs properly,
aggregation methods will always collect all of the data associated with an object and will
never collect any data that is associated with a different object.

—  Permanence

The identifiers and the associated data must be permanent. In the case of a hospital sys-
tem, when the patient returns to the hospital after 30 years of absence, the record system
must be able to access his identifier and aggregate his data. When a patient dies, the
patient’s identifier must not perish.

— Reconciliation

There should be a mechanism whereby the data associated with a unique, identified
object in one Big Data resource can be merged with the data held in another resource,
for the same unique object. This process, which requires comparison, authentication,
and merging is known as reconciliation. An example of reconciliation is found in health
record portability. When a patient visits a hospital, it may be necessary to transfer her elec-
tronic medical record from another hospital. Both hospitals need a way of confirming the
identity of the patient and combining the records. [Glossary Electronic medical record]

— Immutability

In addition to being permanent (i.e., never destroyed or lost), the identifier must never
change (see Chapter 6) [2]. In the event that two Big Data resources are merged, or that
legacy data is merged into a Big Data resource, or that individual data objects from two
different Big Data resources are merged, a single data object will be assigned two
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identifiers; one from each of the merging systems. In this case, the identifiers must be pre-
served as they are, without modification. The merged data object must be provided with
annotative information specifying the origin of each identifier (i.e., clarifying which iden-
tifier came from which Big Data resource).

— Security

The identifier system is vulnerable to malicious attack. A Big Data resource with an
identifier system can be irreversibly corrupted if the identifiers are modified. In the case
of human-based identifier systems, stolen identifiers can be used for a variety of
malicious activities directed against the individuals whose records are included in the
resource.

— Documentation and Quality Assurance

A system should be in place to find and correct errors in the identifier system. Protocols
must be written for establishing the identifier system, for assigning identifiers, for protect-
ing the system, and for monitoring the system. Every problem and every corrective action
taken must be documented and reviewed. Review procedures should determine whether
the errors were corrected effectively; and measures should be taken to continually
improve the identifier system. All procedures, all actions taken, and all modifications of
the system should be thoroughly documented. This is a big job.

— Centrality

Whether the information system belongs to a savings bank, an airline, a prison system, or a
hospital, identifiers play a central role. You can think of information systems as a scaffold
of identifiers to which data is attached. For example, in the case of a hospital information
system, the patient identifier is the central key to which every transaction for the patient is
attached.

— Autonomy

An identifier system has a life of its own, independent of the data contained in the Big Data
resource. The identifier system can persist, documenting and organizing existing and
future data objects even if all of the data in the Big Data resource were to suddenly vanish
(i.e., when all of the data contained in all of the data objects are deleted).

In theory, identifier systems are incredibly easy to implement. Here is exactly how it is
done:

1. Generate a unique character sequence, such as UUID, or a long random number.
[Glossary UUID, Randomness]

2. Assign the unique character sequence (i.e., identifier) to each new object, at the
moment that the object is created. In the case of a hospital a patient chart is created at
the moment he or she is registered into the hospital information system. In the case of a
bank a customer record is created at the moment that he or she is provided with an
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account number. In the case of an object-oriented programming language, such as
Ruby, this would be the moment when the “new” method is sent to a class object,
instructing the class object to create a class instance. [Glossary Object-oriented
programming, Instance]

3. Preserve the identifier number and bind it to the object. In practical terms, this means
that whenever the data object accrues new data, the new data is assigned to the
identifier number. In the case of a hospital system, this would mean that all of the lab
tests, billable clinical transactions, pharmacy orders, and so on, are linked to the
patient’s unique identifier number, as a service provided by the hospital information
system. In the case of a banking system, this would mean that all of the customer’s
deposits and withdrawals and balances are attached to the customer’s unique
account number.

Section 3.3. Generating Unique Identifiers

A UUID is 128 bits long, and can guarantee uniqueness across space and time.
P Leach, M. Mealling and R. Salz [3]

Uniqueness is one of those concepts that everyone intuitively understands; explanations
would seem unnecessary. Actually, uniqueness in the computational sciences is a some-
what different concept than uniqueness in the natural world. In computational sciences,
uniqueness is achieved when a data object is associated with an unique identifier (i.e., a
character string that has not been assigned to any other data object). Most of us, when
we think of a data object, are probably thinking of a data record, which may consist of
the name of a person followed by a list of feature values (height, weight, and age), or a
sample of blood followed by laboratory values (e.g., white blood cell count, red cell
count, and hematocrit). For computer scientists a data object is a holder for data values
(the so-called encapsulated data), descriptors of the data, and properties of the holder
(i.e., the class of objects to which the instance belongs). Uniqueness is achieved when
the data object is permanently bound to its own identifier sequence. [Glossary
Encapsulation]
Unique objects have three properties:

— A unique object can be distinguished from all other unique objects.

— A unique object cannot be distinguished from itself.

— Uniqueness may apply to collections of objects (i.e., a class of instances can be
unique).

UUID (Universally Unique IDentifier) is an example of one type of algorithm that creates
unique identifiers, on command, at the moment when new objects are created (i.e., during
the run-time of a software application). A UUID is 128 bits long and reserves 60 bits for a
string computed directly from a computer time stamp, and is usually represented by a
sequence of alphanumeric ASCII characters [3]. UUIDs were originally used in the Apollo
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Network Computing System and were later adopted in the Open Software Foundation’s
Distributed Computing Environment [4]. [Glossary Time stamp, ASCII]

Linux systems have a built-in UUID utility, “uuidgen.exe,” that can be called from the
system prompt.

Here are a few examples of output values generated by the “uuidgen.exe” utility: [Glos-
sary Command line utility, Utility]

$ uuidgen.exe
312e60c9-3d00-4e3f-a013-0d6cblc9adfe
$ uuidgen.exe
822df73c-8e54-45b5-9632-e2676d178664
$ uuidgen.exe
8f8633e1-8161-4364-9e98-fdf37205df2f
$ uuidgen.exe
83951b71-1e5e-4c56-bd28-c0c45f52cb8a
$ uuidgen -t
e6325fb6-5c65-11e5-b0el-0ceee6e0b993
$ uuidgen -r
5d74e36a-4ccb-42f7-9223-84eed03291f9

Notice that each of the final two examples has a parameter added to the “uuidgen” command
(i.e., “-t” and “-r”). There are several versions of the UUID algorithm that are available. The
“-t” parameter instructs the utility to produce a UUID based on the time (measured in sec-
onds elapsed since the first second of October 15, 1582, the start of the Gregorian calendar).
The “-r” parameter instructs the utility to produce a UUID based on the generation of a pseu-
dorandom number. In any circumstance, the UUID utility instantly produces a fixed length
character string suitable as an object identifier. The UUID utility is trusted and widely used by
computer scientists. Independent-minded readers can easily design their own unique object
identifiers, using pseudorandom number generators, or with one-way hash generators.
[Glossary One-way hash, Pseudorandom number generator]

Python has its own UUID generator. The uuid module is included in the standard
python distribution and can be called directly from the script.

import uuid
print (uuid.uuid4 ())

When discussing UUIDs the question of duplicates (so-called collisions, in the computer
science literature) always arises. How can we be certain thata UUID is unique? Isn't it possible
that the algorithm that we use to create a UUID may, at some point, produce the same
sequence on more than one occasion? Yes, but the odds are small. It has been estimated that
duplicate UUIDs are produced, on average, once every 2.71 quintillion (i.e., 2.71 * 10A18)
executions [5]. It seems that reports of UUID collisions, when investigated, have been
attributed to defects in the implementation of the UUID algorithms. The general consensus
seems to be that UUID collisions are not worth worrying about, even in the realm of Big Data.
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Section 3.4. Really Bad Identifier Methods

I always wanted to be somebody, but now I realize I should have been more specific.
Lily Tomlin

Names are poor identifiers. First off, we can never assume that any name is unique. Sur-
names such as Smith, Zhang, Garcia, Lo, and given names such as John and Susan are very
common. In Korea, five last names account for nearly 50% of the population [6]. Moreover,
if we happened to find an individual with a truly unique name (e.g., Mr. Mxyzptlk), there
would be no guarantee that some other unique individual might one day have the same
name. Compounding the non-uniqueness of names, there is the problem of the many var-
iant forms of a single name. The sources for these variations are many. Here is a partial
listing:

1. Modifiers to the surname (du Bois, DuBois, Du Bois, Dubois, Laplace, La Place, van de
Wilde, Van DeWilde, etc.).

2. Accents that may or may not be transcribed onto records (e.g., acute accent, cedilla,

diacritical comma, palatalized mark, hyphen, diphthong, umlaut, circumflex, and a

host of obscure markings).

Special typographic characters (the combined “ae”).

4. Multiple “middle names” for an individual, that may not be transcribed onto records.
Individuals who replace their first name with their middle name for common usage,
while retaining the first name for legal documents.

5. Latinized and other versions of a single name (Carl Linnaeus, Carl von Linne, Carolus
Linnaeus, Carolus a Linne).

6. Hyphenated names that are confused with first and middle names (e.g., Jean-Jacques
Rousseau, or Jean Jacques Rousseau; Louis-Victor-Pierre-Raymond, 7th duc de
Broglie, or Louis Victor Pierre Raymond Seventh duc deBroglie).

7. Cultural variations in name order that are mistakenly rearranged when transcribed
onto records. Many cultures do not adhere to the Western European name order (e.g.,
given name, middle name, surname).

8. Name changes; through marriage or other legal actions, aliasing, pseudonymous
posing, or insouciant whim.

w

Aside from the obvious consequences of using names as record identifiers (e.g., corrupt
database records, forced merges between incompatible data resources, impossibility of
reconciling legacy record), there are non-obvious consequences that are worth consider-
ing. Take, for example, accented characters in names. These word decorations wreak
havoc on orthography and on alphabetization. Where do you put a name that contains
an umlauted character? Do you pretend the umlaut is not there, and alphabetize it accord-
ing to its plain characters? Do you order based on the ASCII-numeric assignment for the
character, in which the umlauted letter may appear nowhere near the plain-lettered words
in an alphabetized list. The same problem applies to every special character. [Glossary
American Standard Code for Information Interchange, ASCII]
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A similar problem exists for surnames with modifiers. Do you alphabetize de Broglie
under “D” or under “d” or under “B”? If you choose B, then what do you do with the
concatenated form of the name, “deBroglie”? When it comes down to it, it is impossible
to satisfactorily alphabetize a list of names. This means that searches based on proximity
in the alphabet will always be prone to errors.

I have had numerous conversations with intelligent professionals who are tasked with
the responsibility of assigning identifiers to individuals. At some point in every conversa-
tion, they will find it necessary to explain that although an individual’s name cannot serve as
an identifier, the combination of name plus date of birth provides accurate identification in
almost every instance. They sometimes get carried away, insisting that the combination of
name plus date of birth plus social security number provides perfect identification, as no
two people will share all three identifiers: same name, same date of birth, same social secu-
rity number. This argument rises to the height of folly and completely misses the point of
identification. As we will see, it is relatively easy to assign unique identifiers to individuals
and to any data object, for that matter. For managers of Big Data resources, the larger prob-
lem is ensuring that each unique individual has only one identifier (i.e., denying one object
multiple identifiers). [Glossary Social Security Number]

Let us see what happens when we create identifiers from the name plus the birthdate.
We will examine name + birthdate + social security number later in this section.

Consider this example. Mary Jessica Meagher, born June 7, 1912 decided to open a sep-
arate bank account in each of 10 different banks. Some of the banks had application forms,
which she filled out accurately. Other banks registered her account through a teller, who
asked her a series of questions and immediately transcribed her answers directly into a
computer terminal. Ms. Meagher could not see the computer screen and could not review
the entries for accuracy.

Here are the entries for her name plus date of birth:

Marie Jessica Meagher, June 7, 1912 (the teller mistook Marie for Mary).

Mary J. Meagher, June 7, 1912 (the form requested a middle initial, not name).

Mary Jessica Magher, June 7, 1912 (the teller misspelled the surname).

Mary Jessica Meagher, Jan 7, 1912 (the birth month was constrained, on the form, to

three letters; Jun, entered on the form, was transcribed as Jan).

5. Mary Jessica Meagher, 6/7/12 (the form provided spaces for the final two digits of the
birth year. Through a miracle of modern banking, Mary, born in 1912, was re-born a
century later).

6. Mary Jessica Meagher, 7/6/2012 (the form asked for day, month, year, in that order, as
is common in Europe).

7. Mary Jessica Meagher, June 1, 1912 (on the form, a 7 was mistaken for a 1).

8. Mary Jessie Meagher, June 7, 1912 (Marie, as a child, was called by the informal form
of her middle name, which she provided to the teller).

9. Mary Jesse Meagher, June 7, 1912 (Marie, as a child, was called by the informal form of

her middle name, which she provided to the teller, and which the teller entered as the

male variant of the name).

PWN=
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10. Marie Jesse Mahrer, 1/1/12 (an underzealous clerk combined all of the mistakes on
the form and the computer transcript, and added a new orthographic variant of the
surname).

For each of these ten examples, a unique individual (Mary Jessica Meagher) would be
assigned a different identifier at each of 10 banks. Had Mary re-registered at one bank,
ten times, the outcome may have been the same.

If you toss the social security number into the mix (name + birth date + social security
number) the problem is compounded. The social security number for an individual is any-
thing but unique. Few of us carry our original social security cards. Our number changes
due to false memory (“You mean I've been wrong all these years?”), data entry errors
(“Character transpositoins, I mean transpositions, are very common”), intention to
deceive (“I don't want to give those people my real number”), or desperation (“I don’t have
anumber, so I'll invent one”), or impersonation (“I don’t have health insurance, so I'll use
my friend’s social security number”). Efforts to reduce errors by requiring patients to pro-
duce their social security cards have not been entirely beneficial.

Beginning in the late 1930s, the E. H. Ferree Company, a manufacturer of wallets, pro-
moted their product’s card pocket by including a sample social security card with each
wallet sold. The display card had the social security number of one of their employees.
Many people found it convenient to use the card as their own social security number. Over
time, the wallet display number was claimed by over 40,000 people. Today, few institutions
require individuals to prove their identity by showing their original social security card.
Doing so puts an unreasonable burden on the honest patient (who does not happen to
carry his/her card) and provides an advantage to criminals (who can easily forge a card).

Entities that compel individuals to provide a social security number have dubious legal
standing. The social security number was originally intended as a device for validating a
person’s standing in the social security system. More recently, the purpose of the social
security number has been expanded to track taxable transactions (i.e., bank accounts, sal-
aries). Other uses of the social security number are not protected by law. The Social Secu-
rity Act (Section 208 of Title 42 U.S. Code 408) prohibits most entities from compelling
anyone to divulge his/her social security number.

Considering the unreliability of social security numbers in most transactional settings,
and considering the tenuous legitimacy of requiring individuals to divulge their social
security numbers, a prudently designed medical identifier system will limit its reliance
on these numbers. The thought of combining the social security number with name
and date of birth will virtually guarantee that the identifier system will violate the strict
one-to-a-customer rule.

Most identifiers are not purely random numbers; they usually contain some embedded
information that can be interpreted by anyone familiar with the identification system. For
example, they may embed the first three letters of the individual’s family name in the iden-
tifier. Likewise, the last two digits of the birth year are commonly embedded in many types
of identifiers. Such information is usually included as a crude “honesty” check by people
“in the know.” For instance, the nine digits of a social security number are divided into an
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area code (first three digits), a group number (the next two digits), followed by a serial
number (last four digits). People with expertise in the social security numbering system
can pry considerable information from a social security number, and can determine
whether certain numbers are bogus, based on the presence of excluded sub-sequences.
Seemingly inconsequential information included in an identifier can sometimes be
used to discover confidential information about individuals. Here is an example. Suppose
every client transaction in a retail store is accessioned under a unique number, consisting
of the year of the accession, followed by the consecutive count of accessions, beginning
with the first accession of the new year. For example, accession 2010-3518582 might rep-
resent the 3,518,582nd purchase transaction in the year 2010. Because each number is
unique, and because the number itself says nothing about the purchase, it may be assumed
that inspection of the accession number would reveal nothing about the transaction.
Actually, the accession number tells you quite a lot. The prefix (2010) tells you the year
of the purchase. If the accession number had been 2010-0000001, then you could safely
say that accession represented the first item sold on the first day of business in the year
2010. For any subsequent accession number in 2010, simply divide the suffix number (in
this case 3,518,582) by the last accession number of the year, and multiply by 365 (the
number of days in a non-leap year), and you have the approximate day of the year that
the transaction occurred. This day can easily be converted to a calendar date.
Unimpressed? Consider this scenario. You know that a prominent member of the Pres-
ident’s staff had visited a Washington, D.C. Hospital on February 15, 2005, for the purpose of
having a liver biopsy. You would like to know the results of that biopsy. You go to a Web site
that lists the deidentified pathology records for the hospital, for the years 2000-2010.
Though no personal identifiers are included in these public records, the individual records
are sorted by accession numbers. Using the aforementioned strategy, you collect all of the
surgical biopsies performed on or about February 15, 2010. Of these biopsies, only three are
liver biopsies. Of these three biopsies, only one was performed on a person whose gender
and age matched the President’s staff member. The report provides the diagnosis. You man-
aged to discover some very private information without access to any personal identifiers.
The alphanumeric character string composing the identifier should not expose the
patient’s identity. For example, a character string consisting of a concatenation of the
patient’s name, birth date, and social security number might serve to uniquely identify
an individual, but it could also be used to steal an individual’s identity. The safest identi-
fiers are random character strings containing no information whatsoever.

Section 3.5. Registering Unique Object Identifiers

It isn't that they can'’t see the solution. It’s that they can'’t see the problem.
G. K. Chesterton

Registries are trusted services that provide unique identifiers to objects. The idea is that
everyone using the object will use the identifier provided by the central registry. Unique
object registries serve a very important purpose, particularly when the object identifiers
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are persistent. It makes sense to have a central authority for Web addresses, library acqui-
sitions, and journal abstracts. Such registries include:

— DOI, Digital object identifier

—  PMID, PubMed identification number

— LSID (Life Science Identifier)

— HL7 OID (Health Level 7 Object Identifier)

— DICOM (Digital Imaging and Communications in Medicine) identifiers
— ISSN (International Standard Serial Numbers)

— Social Security Numbers (for United States population)

— NPI, National Provider Identifier, for physicians

— Clinical Trials Protocol Registration System

— Office of Human Research Protections FederalWide Assurance number
— Data Universal Numbering System (DUNS) number

— International Geo Sample Number

— DNS, Domain Name Service

— URL, Unique Resource Locator [Glossary URL]

— URN, Unique Resource Name [Glossary URN]

In some cases the registry does not provide the full identifier for data objects. The registry
may provide a general identifier sequence that will apply to every data object in the
resource. Individual objects within the resource are provided with a non-unique registry
number. A unique suffix sequence is appended locally (i.e., not by a central registrar). Life
Science Identifiers (LSIDs) serve as a typical example of a registered identifier. Every LSIDs
is composed of the following 5 parts: Network Identifier, root DNS name of the issuing
authority, name chosen by the issuing authority, a unique object identifier assigned
locally, and an optional revision identifier for versioning information.

In the issued LSID identifier, the parts are separated by a colon, as shown:
urn:lsid:pdb.org:1AFT:1

This identifies the first version of the 1AFT protein in the Protein Data Bank. Here are a
few LSIDs:

urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434

This identifies a PubMed citation
urn:lsid:ncbi.nlm.nig.gov:GenBank:T48601:2

This refers to the second version of an entry in GenBank

An OID, short for Object Identifier, is a hierarchy of identifier prefixes. Successive num-
bers in the prefix identify the descending order of the hierarchy. Here is an example of an
OID from HL7, an organization that deals with health data interchanges:

1.3.6.1.4.1.250
Each node is separated from the successor by a dot, Successively finer registration

detail leads to the institutional code (the final node). In this case the institution identified
by the HL7 OID happens to be the University of Michigan.
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The final step in creating an OID for a data object involves placing a unique identifier
number at the end of the registered prefix. OID organizations leave the final step to the
institutional data managers.

The problem with this approach is that the final within-institution data object
identifier is sometimes prepared thoughtlessly, corrupting the OID system [7]. Here is
an example. Hospitals use an OID system for identifying images, part of the DICOM
(Digital Imaging and Communications in Medicine) image standard. There is a prefix
consisting of a permanent, registered code for the institution and the department, and
a suffix consisting of a number generated for an image as it is created.

A hospital may assign consecutive numbers to its images, appending these numbers to
an OID that is unique for the institution and the department within the institution. For
example, the first image created with a CT-scanner might be assigned an identifier
consisting of the OID (the assigned code for institution and department) followed by a
separator such as a hyphen, followed by “1.”

In a worst-case scenario, different instruments may assign consecutive numbers to
images, independently of one another. This means that the CT-scanner in room A may
be creating the same identifier (OID + image number) as the CT-scanner in Room B;
for images on different patients. This problem could be remedied by constraining each
CT-scanner to avoid using numbers assigned by any other CT-scanner. This remedy
can be defeated if there is a glitch anywhere in the system that accounts for image
assignments (e.g., if the counters are re-set, broken, replaced or simply ignored).

When image counting is done properly, and the scanners are constrained to assign unique
numbers (not previously assigned by other scanners in the same institution), eachimage may
indeed have a unique identifier (OID prefix + image number suffix). Nonetheless, the use of
consecutive numbers for images will create havoc over time. Problems arise when the image
service is assigned to another department in the institution, or when departments or insti-
tutions merge. Each of these shifts produces a change in the OID (the institutional and
departmental prefix) assigned to the identifier. If a consecutive numbering system is used,
then you can expect to create duplicate identifiers if institutional prefixes are replaced after
the merge. The old records in both of the merging institutions will be assigned the same prefix
and will contain replicate (consecutively numbered) suffixes (e.g., image 1, image 2, etc.).

Yet another problem may occur if one unique object is provided with multiple different
unique identifiers. A software application may be designed to ignore any previously
assigned unique identifier and to generate its own identifier, using its own assignment
method. Doing so provides software vendors with a strategy that insulates the vendors
from bad identifiers created by their competitor’s software, and locks the customer to a
vendor’s software, and identifiers, forever.

In the end the OID systems provide a good set of identifiers for the institution, but the
data objects created within the institution need to have their own identifier systems. Here
is the HL7 statement on replicate OIDs:

Though HL7 shall exercise diligence before assigning an OID in the HL7 branch to third
parties, given the lack of a global OID registry mechanism, one cannot make absolutely
certain that there is no preexisting OID assignment for such third-party entity [8].
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It remains to be seen whether any of the registration identifier systems will be used and
supported with any serious level of permanence (e.g., over decades and centuries).

Section 3.6. Deidentification and Reidentification

Never answer an anonymous letter.
Yogi Berra

For scientists, deidentification serves two purposes:

— To protect the confidentiality and the privacy of the individual (when the data
concerns a particular human subject), and

— To remove information that might bias the experiment (e.g., to blind the
experimentalist to patient identities).

Deidentification involves stripping information from a data record that might link the
record to the public name of the record’s subject. In the case of a patient record, this would
involve stripping any information from the record that would enable someone to connect
the record to the name of the patient. The most obvious item to be removed in the dei-
dentification process is the patient’s name. Other information that should be removed
would be the patient’s address (which could be linked to the name), the patient’s date
of birth (which narrows down the set of individuals to whom the data record might per-
tain), and the patient’s social security number. In the United States, patient privacy reg-
ulations include a detailed discussion of record deidentification and this discussion
recommends 18 patient record items for exclusion from deidentified records [9].

Before going any further, it is important to clarify that deidentification is not achieved
by removing an identifier from a data object. In point of fact, nothing good is ever achieved
by simply removing an identifier from a data object; doing so simply invalidates the data
object (i.e., every data object, identified or deidentified, must have an identifier). Deiden-
tification involves removing information contained in the data object that reveals some-
thing about the publicly known name of the data object. This kind of information is often
referred to as identifying information, but it would be much less confusing if we used
another term for such data, such as “name-linking information.” The point here is that
we do not want to confuse the identifier of a data object with information contained in
a data object that can link the object to its public name.

It may seem counterintuitive, but there is very little difference between an identifier
and a deidentifier; under certain conditions the two concepts are equivalent. Here is
how a dual identification/deidentification system might work:

1. Collect data on unique object. “Joe Ferguson’s bank account contains $100.”

2. Assign a unique identifier. “Joe Ferguson’s bank account is 7540038947134.”

3. Substitute name of object with its assigned unique identifier: “754003894713 contains
$100.”.
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4. Consistently use the identifier with data.
5. Do not let anyone know that Joe Ferguson owns account “754003894713.”

The dual use of an identifier/deidentifier is a tried and true technique. Swiss bank
accounts are essentially unique numbers (identifiers) assigned to a person. You access
the bank account by producing the identifier number. The identifier number does not pro-
vide information about the identity of the bank account holder (i.e., it is a deidentifier and
an identifier).

The purpose of an identifier is to tell you that whenever the identifier is encountered, it
refers to the same unique object, and whenever two different identifiers are encountered,
they refer to different objects. The identifier, by itself, should contain no information that
links the data object to its public name.

It is important to understand that the process of deidentification can succeed only
when each record is properly identified (i.e., there can be no deidentification without
identification). Attempts to deidentify a poorly identified data set of clinical information
will result in replicative records (multiple records for one patient), mixed-in records (sin-
gle records composed of information on multiple patients), and missing records (uniden-
tified records lost in the deidentification process).

The process of deidentification is best understood as an algorithm performed on-the-fly,
in response to a query from a data analyst. Here is how such an algorithm might proceed.

1. The data analyst submits a query requesting a record from a Big Data resource. The
resource contains confidential records that must not be shared, unless the records are
deidentified.

2. The Big Data resource receives the query and retrieves the record.

3. A copy of the record is parsed and any of the information within the data record that
might link the record to the public name of the subject of the record (usually the name
of an individual) is deleted from the copy. This might include the aforementioned
name, address, date of birth, and social security number.

4. A pseudo-identifier sequence is prepared for the deidentified record. The pseudo-
identifier sequence might be generated by a random number generator, by encrypting
the original identifier, through a one-way hash algorithm, or by other methods chosen
by the Big Data manager. [Glossary Encryption]

5. A transaction record is attached to the original record that includes the pseudo-
identifier, the deidentified record, the time of the transaction, and any information
pertaining to the requesting entity (e.g., the data analyst who sent the query) that is
deemed fit and necessary by the Big Data resource data manager.

6. A record is sent to the data analyst that consists of the deidentified record (i.e., the
record stripped of its true identifier and containing no data that links the record to a
named person) and the unique pseudo-identifier created for the record.

Because the deidentified record, and its unique pseudo-identifier are stored with the orig-
inal record, subsequent requests for the pseudo-identified record can be retrieved and
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provided, at the discretion of the Big Data manager. This general approach to data deiden-
tification will apply to requests for a single record or to millions of records.

At this point, you might be asking yourself the following question, “What gives the data
manager the right to distribute parts of a confidential record, even if it happens to be
deidentified?” You might think that if you tell someone a secret, under the strictest con-
fidence, then you would not want any part of that secret to be shared with anyone else. The
whole notion of sharing confidential information that has been deidentified may seem
outrageous and unacceptable.

We will discuss the legal and ethical issues of Big Data in Chapters 18 and 19. For now,
readers should know that there are several simple and elegant principles that justify shar-
ing deidentified data.

Consider the statement “Jules Berman has a blood glucose level of 85.” This would be
considered a confidential statement because it tells people something about my medical
condition.

Consider the phrase, “Blood glucose 85.”

When the name “Jules Berman” is removed, we are left with a disembodied piece of
data. “Blood glucose 85” is no different from “Temperature 98.6” or “Apples 2” or
“Terminator 3.” They are simply raw data belonging to nobody in particular. The act of
removing information linking data to a person renders the data harmless. Because the
use of properly deidentified data poses no harm to human subjects, United States Regu-
lations allow the unrestricted use of such data for research purposes [9,10]. Other coun-
tries have similar provisions.

— Reidentification

Because confidentiality and privacy concerns always apply to human subject data, it
would seem imperative that deidentification should be an irreversible process (i.e., the
names of the subjects and samples should be held a secret, forever).

Scientific integrity does not always accommodate irreversible deidentification. On
occasion, experimental samples are mixed-up; samples thought to come from a certain
individual, tissue, record, or account, may in fact come from another source. Sometimes
major findings in science need to be retracted when a sample mix-up has been shown to
occur [11,12,13,14,15]. When samples are submitted, without mix-up, the data is some-
times collected improperly. For example, reversing electrodes on an electrocardiogram
may vyield spurious and misleading results. Sometimes data is purposefully fabricated
and otherwise corrupted, to suit the personal agendas of dishonest scientists. When data
errors occur, regardless of reason, it is important to retract the publications [16,17]. To pre-
serve scientific integrity, it is sometimes necessary to discover the identity of deidentified
records.

In some cases, deidentification stops the data analyst from helping individuals whose
confidentiality is being protected. Imagine you are conducting an analysis on a collection
of deidentified data, and you find patients with a genetic marker for a disease that is cur-
able, if treated at an early stage; or you find a new biomarker that determines which
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patients would benefit from surgery and which patients would not. You would be com-
pelled to contact the subjects in the database to give them information that could poten-
tially save their lives. Having an irreversibly deidentified data sets precludes any
intervention with subjects; nobody knows their identities.

Deidentified records can, under strictly controlled circumstances, be reidentified. Rei-
dentification is typically achieved by entrusting a third party with a confidential list that
maps individuals to their deidentified records. Obviously, reidentification can only occur if
the Big Data resource keeps a link connecting the identifiers of their data records to the
identifiers of the corresponding deidentified record (what we've been calling pseudo-
identifiers). The act of assigning a public name to the deidentified record must always
involve strict oversight. The data manager must have in place a protocol that describes
the process whereby approval for reidentification is obtained. Reidentification provides
an opportunity whereby confidentiality can be breached and human subjects can be
harmed. Consequently, stewarding the reidentification process is one of the most serious
responsibilities of Big Data managers [18].

Section 3.7. Case Study: Data Scrubbing

It is a sin to believe evil of others but it is seldom a mistake.
Garrison Keillor

The term “data scrubbing” is sometimes used, mistakenly, as a synonym for deidentifica-
tion. It is best to think of data scrubbing as a process that begins where deidentification
ends. A data scrubber will remove unwanted information from a data record, including
information of a personal nature and any information that is not directly related to the
purpose of the data record. For example, in the case of a hospital record a data scrubber
might remove the names of physicians who treated the patient; the names of hospitals or
medical insurance agencies; addresses; dates; and any textual comments that are inappro-
priate, incriminating, irrelevant, or potentially damaging. [Glossary Data munging, Data
scraping, Data wrangling]

In medical data records, there is a concept known as “minimal necessary” that applies
to shared confidential data [9]. It holds that when records are shared, only the minimum
necessary information should be released. Any information not directly relevant to the
intended purposes of the data analyst should be withheld. The process of data scrubbing
gives data managers the opportunity to render a data record that is free of information that
would link the record to its subject and free of extraneous information that the data ana-
lyst does not actually require. [Glossary Minimal necessary]

There are many methods for data scrubbing. Most of these methods require that data
managers develop an exception list of items that should not be included in shared records
(e.g., cities, states, zip codes, and names of people). The scrubbing application moves
through the records, extracting unnecessary information along the way. The end product
is cleaned, but not sterilized. Though many undesired items can be successfully removed,
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this approach never produces a perfectly scrubbed set of data. In a Big Data resource, it is
simply impossible for the data manager to anticipate every objectionable item and to
include it in an exception list. Nobody is that smart.

There is, however, a method whereby data records can be cleaned, without error. This
method involves creating a list of data (often in the form of words and phrases) that is
acceptable for inclusion in a scrubbed and deidentified data set. Any data that is not in
the list of acceptable information is automatically deleted. Whatever is left is the scrubbed
data. This method can be described as a reverse scrubbing method. Everything is in the
data set is automatically deleted, unless it is an approved “exception.”

This method of scrubbing is very fast and can produce an error-free deidentified and
scrubbed output [4,19,20]. An example of the kind of output produced by such a scrubber
is shown:

Since the time when * * * * * * ¥ * hisc own * and the * * * *, the anomalous * * have
been * and persistent * * *; and especially * true of the construction and functions of
the human *, indeed, it was the anomalous that was * * * in the * the attention, * *
that were * to develop into the body * * which we now * *. As by the aid * * * * * * * * *
our vision into the * * * has emerged *, we find * * and even evidence of *. To the high-
esttype of * * it is the * the ordinary * * * * *, * to such, no less than to the most *, * * * is
of absorbing interest, and it is often * * that the * * the most * into the heart of the
mystery of the ordinary. * * been said, * * * * *. * * dermoid cysts, for example, we seem
to * * * the secret * of Nature, and * out into the * * of her clumsiness, and * of her * * *
*, %, * tell us much of * * * used by the vital * * * * even the silent * * * upon the * * *.

The reverse-scrubber requires the preexistence of a set of approved terms. One of the sim-
plest methods for generating acceptable terms involves extracting them from a nomen-
clature that comprehensively covers the terms used in a knowledge domain. For
example, a comprehensive listing of living species will not contain dates or zip codes
or any of the objectionable language or data that should be excluded from a scrubbed data
set. In a method that I have published a list of approved doublets (approximately 200,000
two-word phrases collected from standard nomenclatures) are automatically collected for
the scrubbing application [4]. The script is fast, and its speed is not significantly reduced
by the size of the list of approved terms.

Here is a short python script. scrub.py, that will take any line of text and produce a
scrubbed output. It requires an external file, doublets.txt, containing an approved list
of doublet terms.

import sys, re, string
doub file = open ("doublets.txt", "xr")
doub_hash = {}
for line in doub file:
line = line.rstrip()
doub_hash[line] =" "
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doub file.close()
print ("What would you like to scrub?")
line = sys.stdin.readline ()
line = line.lower ()
line = line.rstrip()
linearray = re.split(r' +', line)
lastword = "*"
for i in range (0, len(linearray)) :
doublet =" ".join(linearray[i:1+2])
if doublet in doub hash:
print (" " + linearray[i], end="")
lastword =" " + linearray[i+1]
else:
print (lastword, end="")
lastword = " *"
if (i ==len(linearray) +1):
print (lastword, end="")

Section 3.8. Case Study (Advanced): Identifiers in Image
Headers

Plus ca change, plus c’est la meme chose.
Old French saying (“The more things change, the more things stay the same.”)

As it happens, nothing is ever as simple as it ought to be. In the case of an implementation of
systems that employ long sequence generators to produce unique identifiers, the most com-
mon problem involves indiscriminate reassignment of additional unique identifiers to the
same data object, thus nullifying the potential benefits of the unique identifier systems.

Let us look at an example wherein multiple identifiers are redundantly assigned to the
same image, corrupting the identifier system. In Section 4.3, we discuss image headers,
and we provide examples wherein the ImageMagick “identify” utility could extract the
textual information included in the image header. One of the header properties created,
inserted, and extracted by ImageMagick’s “identify” is an image-specific unique string.
[Glossary ImageMagick]

When ImageMagick is installed in our computer, we can extract any image’s unique
string, using the “identify” utility and the “-format” attribute, on the following system
command line: [Glossary Command line]

c:\>identify -verbose -format "$#" eqn.jpg

Here, the image file we are examining is “eqn.jpg”. The “%#” character string is ImageMa-
gick’s special syntax indicating that we would like to extract the image identifier from the
image header. The output is shown.
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219e41b4c761e4bb04fbde7f71cc84cdbae53a26639d4bf33155a5f62ee36e33

We can repeat the command line whenever we like, for this image; and the same image-
specific unique sequence of characters will be produced.

Using ImageMagick, we can insert text into the “comment” section of the header, using
the “-set” attribute. Let us add the text, “I'm modifying myself”:

c:\ftp>convert egn.jpg -set comment "I'mmodifying myself" eqn.jpg

”

Now, let us extract the comment that we just added, to satisfy ourselves that the “-set
attribute operated as we had hoped. We do this using the “-format” attribute and the
“%c” character string, which is ImageMagick’s syntax for extracting the comment section
of the header.

c:\ftp>identify -verbose -format "%c" eqn.jpg
The output of the command line is:
I'mmodifying myself

Now, let us run, one more time, the command line that produces the unique character
string that is unique for the eqn.jpg image file

c:\ftp>identify -verbose -format "%#" eqn.jpg
The output is:
cb448260d6eeeb2e9f2dcb929fa421b474021584e266d486a6190067a278639fF

What just happened? Why has the unique character string specific for the eqn.jpg image
changed? Has our small modification of the file, which consisted of adding a text comment
to the image header, resulted in the production of a new image object, worthy of a new
unique identifier?

Before answering these very important questions, let us pose the following gedanken
question. Imagine you have a tree. This tree, like every living organism, is unique. It has a
unique history, a unique location, and a unique genome (i.e., a unique sequence of nucle-
otides composing its genetic material). In ten years, its leaves drop off and are replaced ten
times. Its trunk expands in size and its height increases. In the ten years of its existence,
has the identify of the tree changed? [Glossary Gedanken]

You would probably agree that the tree has changed, but that it has maintained its iden-
tity (i.e., it is still the same tree, containing the descendants of the same cells that grew
within the younger version of itself ).

In informatics, a newly created object is given an identifier, and this identifier is immu-
table (i.e., cannot be changed), regardless of how the object is modified. In the case of the
unique string assigned to an image by ImageMagick, the string serves as an authenticator,
not as an identifier. When the image is modified a new unique string is created. By com-
paring the so-called identifier string in copies of the image file, we can determine whether
any modifications have been made. That is to say, we can authenticate the file.
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Getting back to the image file in our example, when we modified the image by inserting
a text comment, ImageMagick produced a new unique string for the image. The identity of
the image had not changed, but the image was different from the original image (i.e., no
longer authentic). It seems that the string that we thought to be an identifier string was
actually an authenticator string. [Glossary Authentication]

If we want an image to have a unique identifier that does not change when the image is
modified, we must create our own identifier that persists when the image is modified.

Here is a short Python script, image_id.py, that uses Python’s standard UUID method to
create an identifier, which is inserted into the comment section of the image’s header, and
flanking the identifier with XML tags. [Glossary XML, HTML]

import sys, os, uuid

my id = "<image id>" + str(uuid.uuid4()) + "</image id>"
in command = "convert leaf.jpg -set comment \"" + my id + "\" leaf.jpg"
os.system(in command)

out command = "identify -verbose -format \"%c\" leaf.jpg"
print ("\nHere's the unique identifier:")

os.system(out command)

print ("\nHere's the unique authenticator:")
os.system("identify -verbose -format \"%#\" leaf.jpg")
os.system("convert leaf.jpg -resize 325x500! leaf.jpg")
print ("\nHere's the new authenticator:")
os.system("identify -verbose -format \"%#\" leaf.jpg")
print ("\nHere's the unique identifier:")

os.system(out command)

Here is the output of the image_id.py script:

Here's the unique identifier:
<image i1d>b0836a26-8f0e-4a6b-842d-9b0dde2b3f59</image id>

Here's the unique authenticator:
98c9fe07e90ced43f49961abe226cdlccffeed8eddlads6a9dieas3aded3215a

Here's the new authenticator:
017e401d80a4laafa289ae9c2aladb7c00477£7a943143141912189499d69%ad2

Here's the unique identifier:
<image i1d>b0836a26-8f0e-4a6b-842d-9b0dde2b3f59</image id>

What did the script do and what does it teach us? It employed the UUID utility to create a
unique and permanent identifier for the image (leaf.jpg, in this case), and inserted the
unique identifier into the image header. This identifier, “b0836a26-8f0e-4a6b-842d-
9b0dde2b3f59,” did not change when the image was subsequently modified. A new
authenticator string was automatically inserted into the image header, by ImageMagick,
when the image was modified. Hence, we achieved what we needed to achieve: a unique
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identifier that never changes, and a unique authenticator that changes when the image is
modified in any way.

If you have followed the logic of this section, then you are prepared for the following
question posed as an exercise for Zen Buddhists. Imagine you have a hammer. Over the
years, you have replaced its head, twice, and its handle, thrice. In this case, with nothing
remaining of the original hammer, has it maintained its identity (i.e., is it still the same
hammer?). The informatician would answer “Yes,” the hammer has maintained its unique
identity, but it is no longer authentic (i.e., it is what it must always be, though it has
become something different).

Section 3.9. Case Study: One-Way Hashes

I live on a one-way street that'’s also a dead end. I'm not sure how I got there.
Steven Wright

A one-way hash is an algorithm that transforms a string into another string is such a way
that the original string cannot be calculated by operations on the hash value (hence the
term “one-way” hash). Popular one-way hash algorithms are MD5 and Standard Hash
Algorithm (SHA). A one-way hash value can be calculated for any character string, includ-
ing a person’s name, or a document, or even another one-way hash. For a given input
string, the resultant one-way hash will always be the same.

Here are a few examples of one-way hash outputs performed on a sequential list of
input strings, followed by their one-way hash (md5 algorithm) output.

Jules Berman => Ri0oaVTIAilwnS8 +nvKhfA
"Whatever" => n2YtKKG6E4MyEZvUKyGWrw
Whatever => OkXaDVQFYjwkQ +MOC8dpOQ

jules berman => S1nuYpmyn8VXLsxBWwO57Q
Jules J. Berman => 174wZ/CsIbxt3goH2aCS+A
Jules J Berman => yZQfIJmAf4dIYO6BA0gGZ7g
Jules Berman => Ri0o0aVTIAilwnS8 +nvKhfA

The one-way hash values are a seemingly random sequence of ASCII characters (the charac-
ters available on a standard keyboard). Notice that a small variation among input strings
(e.g., exchanging an uppercase for alowercase character, adding a period or quotation mark)
produces a completely different one-way hash output. The first and the last entry (Jules Ber-
man) yield the same one-way hash output (Ri0oaVTIAilwnS8+nvKhfA) because the two
input strings are identical. A given string will always yield the same hash value, so long as
the hashing algorithm is not altered. Each one-way hash has the same length (22 characters
for this particular md>5 algorithm) regardless of the length of the input term. A one-way hash
output of the same length (22 characters) could have been produced for a string or file or doc-
ument of any length. Once produced, there is no feasible mathematical algorithm that can
reconstruct the input string from its one-way hash output. In our example, there is no way
of examining the string “Ri0oaVTTAilwnS8+nvKhfA” and computing the name Jules Berman.



Chapter 3 » Identification, Deidentification, and Reidentification 75

We see that the key functional difference between a one-way hash and a UUID
sequence is that the one-way hash algorithm, performed on a unique string, will always
yield the same random-appearing alphanumeric sequence. A UUID algorithm has no
input string; it simply produces unique alphanumeric output, and never (almost never)
produces the same alphanumeric output twice.

One-way hashes values can serve as ersatz identifiers, permitting Big Data resources
to accrue data, over time, to a specific record, even when the record is deidentified
(e.g., even when its UUID identifier has been stripped from the record). Here is how
it works [18]:

1. A datarecord is chosen, before it is deidentified, and a one-way hash is performed on
its unique identifier string.

2. Therecord is deidentified by removing the original unique identifier. The output of the
one-way hash (from step 1) is substituted for the original unique identifier.

3. Therecord is deidentified because nobody can reconstruct the original identifier from
the one-way hash that has replaced it.

4. The same process is done for every record in the database.

5. All of the data records that were associated with the original identifier will now have the
same one-way hash identifier and can be collected under this substitute identifier,
which cannot be computationally linked to the original identifier.

Implementation of one-way hashes carry certain practical problems. If anyone happens to
have a complete listing of all of the original identifiers, then it would be a simple matter to
perform one-way hashes on every listed identifier. This would produce a look-up table
that can match deidentified records back to the original identifier, a strategy known as
a dictionary attack. For deidentification to work, the original identifier sequences must
be kept secret.

One-way hash protocols have many practical uses in the field of information science
[21,18,4]. It is very easy to implement one-way hashes, and most programming languages
and operating systems come bundled with one or more implementations of one-way hash
algorithms. The two most popular one-way hash algorithms are md5 (message digest
version 5) and SHA (Secure Hash Algorithm). [Glossary HMAC, Digest, Message digest,
Check digit]

Here we use Cygwin’s own md5sum.exe utility on the command line to produce a
one-way hash for an image file, named dash.png:

c:\ftp>c:\cygwiné4\bin\md5sum.exe dash.png
Here is the output:

db50dc33800904ab5£4ac90597d7b4ea *dash.png
We could call the same command line from a Python script:

import sys, os
os.system("c:/cygwiné4 /bin/md5sum.exe dash.png")
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The output will always be the same, as long as the input file, dash.png, does not change:
db50dc33800904ab5£f4ac90597d7b4ea *dash.png

OpenSSL contains several one-way hash implementations, including both md5 and sev-
eral variants of SHA.

One-way hashes on files are commonly used as a quick and convenient authentication
tool. When you download a file from a Web site, you are likely to see that the file distributor
has posted the file’s one-way hash value. When you receive the file, it is a good idea to cal-
culate the one-way hash on the file that you have received. If the one-way hash value is
equal to the posted one-way hash value, then you can be certain that the file received is
an exact copy of the file that was intentionally sent. Of course, this does not ensure that
the file that was intentionally sent was a legitimate file or that the website was an honest
file broker. We will be using our knowledge of one-way hashes when we discuss trusted time
stamps (Section 8.5), blockchains (Section 8.6) and data security protocols (Section 18.3).

Glossary

ASCII ASCII is the American Standard Code for Information Interchange, 1SO-14962-1997. The ASCII
standard is a way of assigning specific 8-bit strings (a string of 0s and 1s of length 8) to the alphanu-
meric characters and punctuation. Uppercase letters are assigned a different string of 0s and 1s than
their matching lowercase letters. There are 256 ways of combining 0s and 1s in strings of length 8. This
means that that there are 256 different ASCII characters, and every ASCII character can be assigned a
number-equivalent, in the range of 0-255. The familiar keyboard keys produce ASCII characters that
happen to occupy ASCII values under 128. Hence, alphanumerics and common punctuation are repre-
sented as 8-bits, with the first bit, “0”, serving as padding. Hence, keyboard characters are commonly
referred to as 7-bit ASCII, and files composed exclusively of common keyboard characters are referred
to as plain-text files or as 7-bit ASCII files.

These are the classic ASCII characters:

T"HSSE! () *+,-./0123456789: ;<=>
? @ABCDEFGHIJKLMNOPQRSTUVWXYZ
[\] " ~abcdefghijklmnopgrstuvwxyz{|}~

Python has several methods for removing non-printable characters from text, including the
“printable” method, as shown in this short script, printable.py.

# -*- coding: 1is0-8859-15 -*-

import string
in string = "priniéaaatable"

out_string="".join(s for s in in string if s in string.printable)
print (out_strung)

output:

printable

It is notable that the first line of code violates a fundamental law of Python programming; that the
pound sign signifies that a comment follows, and that the Python interpreter will ignore the pound
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sign and any characters that follow the pound sign on the line in which they appear. For obscure rea-
sons, the top line of the snippet is a permitted exception to the rule. In nonpythonic language, the top
line conveys to the Python compiler that it may expect to find non-ASCII characters encoded in the iso-
8859-15 standard.

The end result of this strange snippet is that non-ASCII characters are stripped from input strings; a handy
script worth saving.

American Standard Code for Information Interchange Long form of the familiar acronym, ASCIL.

Annotation Annotation involves describing data elements with metadata or attaching supplemental
information to data objects.

Authentication A process for determining if the data object that is received (e.g., document, file, image) is
the data object that was intended to be received. The simplest authentication protocol involves one-
way hash operations on the data that needs to be authenticated. Suppose you happen to know that a
certain file, named temp.txt will be arriving via email and that this file has an MD5 hash of
“a0869a42609af6c712caeba454f47429”. You receive the temp.txt file, and you perform an MD5 one-
way hash operation on the file.

In this example, we will use the md>5 hash utility bundled into the CygWin distribution (i.e., the Linux emu-
lator for Windows systems). Any md5 implementation would have sufficed.

c:\cygwiné4\bin>openssl md5 temp. txt
MD5 (temp.txt) = a0869a42609af6c712cacbas54£47429

We see that the md5 hash value generated for the received file is identical to the md5 hash value produced
on the file, by the file’s creator, before the file was emailed. This tells us that the received, temp.txt, is
authentic (i.e., it is the file that you were intended to receive) because no other file has the same MD5
hash. Additional implementations of one-way hashes are described in Section 3.9.

The authentication process, in this example, does not tell you who sent the file, the time that the file
was created, or anything about the validity of the contents of the file. These would require a protocol
that included signature, time stamp, and data validation, in addition to authentication. In common
usage, authentication protocols often include entity authentication (i.e., some method by which
the entity sending the file is verified). Consequently, authentication protocols are often confused with
signature verification protocols. An ancient historical example serves to distinguish the concepts of
authentication protocols and signature protocols. Since earliest of recorded history, fingerprints were
used as a method of authentication. When a scholar or artisan produced a product, he would press his
thumb into the clay tablet, or the pot, or the wax seal closing a document. Anyone doubting the
authenticity of the pot could ask the artisan for a thumbprint. If the new thumbprint matched the
thumbprint on the tablet, pot, or document, then all knew that the person creating the new thumb-
print and the person who had put his thumbprint into the object were the same individual. Hence,
ancient pots were authenticated. Of course, this was not proof that the object was the creation of
the person with the matching thumbprint. For all anyone knew, there may have been a hundred dif-
ferent pottery artisans, with one person pressing his thumb into every pot produced. You might argue
that the thumbprint served as the signature of the artisan. In practical terms, no. The thumbprint, by
itself, does not tell you whose print was used. Thumbprints could not be read, at least not in the same
way as a written signature. The ancients needed to compare the pot’s thumbprint against the thumb-
print of the living person who made the print. When the person died, civilization was left with a bunch
of pots with the same thumbprint, but without any certain way of knowing whose thumb produced
them. In essence, because there was no ancient database that permanently associated thumbprints
with individuals, the process of establishing the identity of the pot-maker became very difficult once
the artisan died. A good signature protocol permanently binds an authentication code to a unique
entity (e.g., a person). Today, we can find a fingerprint at the scene of a crime; we can find a matching
signature in a database; and we can link the fingerprint to one individual. Hence, in modern times,



78 PRINCIPLES AND PRACTICE OF BIG DATA

fingerprints are true “digital” signatures, no pun intended. Modern uses of fingerprints include keying
(e.g., opening locked devices based on an authenticated fingerprint), tracking (e.g., establishing the
path and whereabouts of an individual by following a trail of fingerprints or other identifiers), and body
part identification (i.e., identifying the remains of individuals recovered from mass graves or from the
sites of catastrophic events based on fingerprint matches). Over the past decade, flaws in the vaunted
process of fingerprint identification have been documented, and the improvement of the science of
identification is an active area of investigation [22].

Check digit A checksum that produces a single digit as output is referred to as a check digit. Some of the
common identification codes in use today, such as ISBN numbers for books, come with a built-in
check digit. Of course, when using a single digit as a check value, you can expect that some transmitted
errors will escape the check, but the check digit is useful in systems wherein occasional mistakes are
tolerated; or wherein the purpose of the check digit is to find a specific type of error (e.g., an error pro-
duced by a substitution in a single character or digit), and wherein the check digit itself is rarely trans-
mitted in error.

Command line Instructions to the operating system, that can be directly entered as a line of text from the
a system prompt (e.g., the so-called C prompt, “c:\>", in Windows and DOS operating systems; the
so-called shell prompt, “$”, in Linux-like systems).

Command line utility Programs lacking graphic user interfaces that are executed via command line
instructions. The instructions for a utility are typically couched as a series of arguments, on the com-
mand line, following the name of the executable file that contains the utility.

Data cleaning More correctly, data cleansing, and synonymous with data fixing or data correcting. Data
cleaning is the process by which errors, spurious anomalies, and missing values are somehow handled.
The options for data cleaning are: correcting the error, deleting the error, leaving the error unchanged,
or imputing a different value [23]. Data cleaning should not be confused with data scrubbing.

Data munging Refers to a multitude of tasks involved in preparing data for some intended purpose (e.g.,
data cleaning, data scrubbing, and data transformation). Synonymous with data wrangling.

Data scraping Pulling together desired sections of a data set or text by using software.

Data scrubbing A term that is very similar to data deidentification and is sometimes used improperly as a
synonym for data deidentification. Data scrubbing refers to the removal of unwanted information
from data records. This may include identifiers, private information, or any incriminating or otherwise
objectionable language contained in data records, as well as any information deemed irrelevant to the
purpose served by the record.

Data wrangling Jargon referring to a multitude of tasks involved in preparing data for eventual analysis.
Synonymous with data munging [24].

Deidentification The process of removing all of the links in a data record that can connect the informa-
tion in the record to an individual. This usually includes the record identifier, demographic informa-
tion (e.g., place of birth), personal information (e.g., birthdate), and biometrics (e.g., fingerprints). The
deidentification strategy will vary based on the type of records examined. Deidentifying protocols exist
wherein deidentificated records can be reidentified, when necessary.

Digest Asused herein, “digest” is equivalent to a one-way hash algorithm. The word “digest” also refers to
the output string produced by a one-way hash algorithm.

Electronic medical record Abbreviated as EMR, or as EHR (Electronic Health Record). The EMR is the
digital equivalent of a patient’s medical chart. Central to the idea of the EMR is the notion that all
of the documents, transactions, and all packets of information containing test results and other infor-
mation on a patient are linked to the patient’s unique identifier. By retrieving all data linked to the
patient’s identifier, the EMR (i.e., the entire patient’s chart) can be assembled instantly.

Encapsulation The concept, from object oriented programming, that a data object contains its associated
data. Encapsulation is tightly linked to the concept of introspection, the process of accessing the data
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encapsulated within a data object. Encapsulation, Inheritance, and Polymorphism are available fea-
tures of all object-oriented languages.

Encryption A common definition of encryption involves an algorithm that takes some text or data and
transforms it, bit-by-bit, into an output that cannot be interpreted (i.e., from which the contents of
the source file cannot be determined). Encryption comes with the implied understanding that there
exists some reverse transform that can be applied to the encrypted data, to reconstitute the original
source. As used herein, the definition of encryption is expanded to include any protocols by which files
can be shared, in such a way that only the intended recipients can make sense of the received docu-
ments. This would include protocols that divide files into pieces that can only be reassembled into the
original file using a password. Encryption would also include protocols that alter parts of a file while
retaining the original text in other parts of the file. As described in Chapter 5, there are instances when
some data in a file should be shared, while only specific parts need to be encrypted. The protocols that
accomplish these kinds of file transformations need not always employ classic encryption algorithms
(e.g., Winnowing and Chaffing [25], threshold protocols [21]).

Gedanken Gedanken is the German word for “thought.” A gedanken experiment is one in which the sci-
entist imagines a situation and its outcome, without resorting to any physical construction of a scien-
tific trial. Albert Einstein, a consummate theoretician, was fond of inventing imaginary scenarios, and
his use of the term “gedanken trials” has done much to popularize the concept. The scientific literature
contains multiple descriptions of gedanken trials that have led to fundamental breakthroughs in our
understanding of the natural world and of the universe [26].

HMAC Hashed Message Authentication Code. When a one-way hash is employed in an authentication
protocol, it is often referred to as an HMAC.

HTML HyperText Markup Language is an ASCII-based set of formatting instructions for web pages.
HTML formatting instructions, known as tags, are embedded in the document, and double-bracketed,
indicating the start point and end points for instruction. Here is an example of an HTML tag instructing
the web browser to display the word “Hello” in italics: <i>Hello </i>. All web browsers conforming to
the HTML specification must contain software routines that recognize and implement the HTML
instructions embedded within in web documents. In addition to formatting instructions, HTML also
includes linkage instructions, in which the web browsers must retrieve and display a listed web page,
or a web resource, such as an image. The protocol whereby web browsers, following HTML instruc-
tions, retrieve web pages from other Internet sites, is known as HTTP (HyperText Transfer Protocol).

ImageMagick An open source utility that supports a huge selection of robust and sophisticated image
editing methods. ImageMagick is available for download at: https://www.imagemagick.org/script/
download.php

Instance An instance is a specific example of an object that is not itself a class or group of objects. For
example, Tony the Tiger is an instance of the tiger species. Tony the Tiger is a unique animal and is
not itself a group of animals or a class of animals. The terms instance, instance object, and object
are sometimes used interchangeably, but the special value of the “instance” concept, in a system
wherein everything is an object, is that it distinguishes members of classes (i.e., the instances) from
the classes to which they belong.

Intellectual property Data, software, algorithms, and applications that are created by an entity capable of
ownership (e.g., humans, corporations, and universities). The entity holds rights over the manner in
which the intellectual property can be used and distributed. Protections for intellectual property may
come in the form of copyrights and patent. Copyright applies to published information. Patents apply
to novel processes and inventions. Certain types of intellectual property can only be protected by being
secretive. For example, magic tricks cannot be copyrighted or patented; this is why magicians guard
their intellectual property so closely. Intellectual property can be sold outright, essentially transferring
ownership to another entity; but this would be a rare event. In other cases, intellectual property is
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retained by the creator who permits its limited use to others via a legal contrivance (e.g., license, con-
tract, transfer agreement, royalty, and usage fee). In some cases, ownership of the intellectual property
is retained, but the property is freely shared with the world (e.g., open source license, GNU license,
FOSS license, and Creative Commons license).

Message digest Within the context of this book, “message digest”, “digest”, “HMAC”, and “one-way hash”
are equivalent terms.

Minimal necessary In the field of medical informatics, there is a concept known as “minimal necessary”
that applies to shared confidential data [9]. It holds that when records are shared, only the minimum
necessary information should be released. Information not directly relevant to the intended purposes
of the study should be withheld.

Object-oriented programming In object-oriented programming, all data objects must belong to one of
the classes built into the language or to a class created by the programmer. Class methods are subrou-
tines that belong to a class. The members of a class have access to the methods for the class. There is a
hierarchy of classes (with superclasses and subclasses). A data object can access any method from any
superclass of its class. All object-oriented programming languages operate under this general strategy.
The two most important differences among the object oriented programming languages relate to syn-
tax (i.e., the required style in which data objects call their available methods) and content (the built-in
classes and methods available to objects). Various esoteric issues, such as types of polymorphism
offered by the language, multi-parental inheritance, and non-Boolean logic operations may play a role
in how expert programmer’s choose a specific object-oriented language for the job at-hand.

One-way hash A one-way hash is an algorithm that transforms one string into another string (a fixed-
length sequence of seemingly random characters) in such a way that the original string cannot be cal-
culated by operations on the one-way hash value (i.e., the calculation is one-way only). One-way hash
values can be calculated for any string, including a person’s name, a document, or an image. For any
given input string, the resultant one-way hash will always be the same. If a single byte of the input
string is modified, the resulting one-way hash will be changed, and will have a totally different
sequence than the one-way hash sequence calculated for the unmodified string.

Most modern programming languages have several methods for generating one-way hash values. Regard-
less of the language we choose to implement a one-way hash algorithm (e.g., md5, SHA), the output
value will be identical. One-way hash values are designed to produce long fixed-length output strings
(e.g., 256 bits in length). When the output of a one-way hash algorithm is very long, the chance of a
hash string collision (i.e., the occurrence of two different input strings generating the same one-way
hash output value) is negligible. Clever variations on one-way hash algorithms have been repurposed
as identifier systems [27,28,29,30]. A detailed discussion of one-way hash algorithms can be found in
Section 3.9, “Case Study: One-Way Hashes.”

Privacy versus confidentiality The concepts of confidentiality and of privacy are often confused, and it is
useful to clarify their separate meanings. Confidentiality is the process of keeping a secret with which
you have been entrusted. You break confidentiality if you reveal the secret to another person. You vio-
late privacy when you use the secret to annoy the person whose confidential information was
acquired. If you give a friend your unlisted telephone number in confidence, then your fried is
expected to protect this confidentiality by never revealing the number to other persons. In addition,
your friend may be expected to protect your privacy by resisting the temptation to call you in the mid-
dle of the night, complain about a mutual acquaintance. In this case, the same information object
(unlisted telephone number) is encumbered by separable confidentiality and privacy obligations.

Pseudorandom number generator It is impossible for computers to produce an endless collection of
truly random numbers. Eventually, algorithms will cycle through their available variations and begins
to repeat themselves, producing the same set of “random” numbers, in the same order; a phenomenon
referred to as the generator’s period. Because algorithms that produce seemingly random numbers are
imperfect, they are known as pseudorandom number generators. The Mersenne Twister algorithm,
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which has an extremely long period, is used as the default random number generator in Python. This
algorithm performs well on most of the tests that mathematicians have devised to test randomness.

Randomness Various tests of randomness are available [31]. One of the easiest to implement takes advan-
tage of the property that random strings are uncompressible. If you can show that if a character string,
a series of numbers, or a column of data cannot be compressed by gzip, then it is pretty safe to con-
clude that the data is randomly distributed, and without any informational value.

Reidentification A term casually applied to any instance whereby information can be linked to a specific
person after the links between the information and the person associated with the information were
removed. Used this way, the term reidentification connotes an insufficient deidentification process. In
the healthcare industry, the term “reidentification” means something else entirely. In the United States,
regulations define “reidentification” under the “Standards for Privacy of Individually Identifiable
Health Information”. Reidentification is defined therein as a legally valid process whereby deidentified
records can be linked back to the respective human subjects, under circumstances deemed compelling
by a privacy board. Reidentification is typically accomplished via a confidential list of links between
human subject names and deidentified records, held by a trusted party. As used by the healthcare
industry, reidentification only applies to the approved process of re-establishing the identity of a dei-
dentified record. When a human subject is identified through fraud, trickery, or through the deliberate
use of computational methods to break the confidentiality of insufficiently deidentified records, the
term “reidentification” would not apply.

Social Security Number The common strategy, in the United States, of employing social security num-
bers as identifiers is often counterproductive, owing to entry error, mistaken memory, or the intention
to deceive. Efforts to reduce errors by requiring individuals to produce their original social security
cards puts an unreasonable burden on honest individuals, who rarely carry their cards, and provides
an advantage to dishonest individuals, who can easily forge social security cards. Institutions that
compel patients to provide a social security number have dubious legal standing. The social security
number was originally intended as a device for validating a person’s standing in the social security sys-
tem. More recently, the purpose of the social security number has been expanded to track taxable
transactions (i.e., bank accounts, salaries). Other uses of the social security number are not protected
by law. The Social Security Act (Section 208 of Title 42 U.S. Code 408) prohibits most entities from com-
pelling anyone to divulge his/her social security number. Legislation or judicial action may one day
stop healthcare institutions from compelling patients to divulge their social security numbers as a con-
dition for providing medical care. Prudent and forward-thinking institutions will limit their reliance on
social security numbers as personal identifiers.

Time stamp Many data objects are temporal events and all temporal events must be given a time stamp
indicating the time that the event occurred, using a standard measurement for time. The time stamp
must be accurate, persistent, and immutable. The Unix epoch time (equivalent to the Posix epoch
time) is available for most operating systems and consists of the number of seconds that have elapsed
since January 1, 1970, midnight, Greenwhich mean time. The Unix epoch time can easily be converted
into any other standard representation of time. The duration of any event can be easily calculated by
subtracting the beginning time from the ending time. Because the timing of events can be maliciously
altered, scrupulous data managers employ a trusted time stamp protocol by which a time stamp can be
verified. A trusted time stamp must be accurate, persistent, and immutable. Trusted time stamp pro-
tocols are discussed in Section 8.5, “Case Study: The Trusted Time stamp.”

URL Unique Resource Locator. The Web is a collection of resources, each having a unique address, the
URL. When you click on a link that specifies a URL, your browser fetches the page located at the unique
location specified in the URL name. If the Web were designed otherwise (i.e., if several different web
pages had the same web address, or if one web address were located at several different locations),
then the web could not function with any reliability.
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URN Unique Resource Name. Whereas the URL identifies objects based on the object’s unique location in
the Web, the URN is a system of object identifiers that are location-independent. In the URN system,
data objects are provided with identifiers, and the identifiers are registered with, and subsumed by,
the URN.

For example:

urn:isbn-13:9780128028827

Refers to the unique book, “Repurposing Legacy Data: Innovative Case Studies,” by Jules Berman

urn:uuid:e29d0078-f7f6-11e4-8efl-e808el9el8e5

Refers to a data object tied to the UUID identifier e29d0078-f7f6-11e4-8ef1-e808e19e18e5.

In theory, if every data object were assigned a registered URN, and if the system were implemented as
intended, the entire universe of information could be tracked and searched.

UUID UUID, the abbreviation for Universally Unique IDentifiers, is a protocol for assigning identifiers to
data objects, without using a central registry. UUIDs were originally used in the Apollo Network Com-
puting System [3].

Utility In the context of software, a utility is an application that is dedicated to performing one specific
task, very well, and very fast. In most instances, utilities are short programs, often running from the
command line, and thus lacking any graphic user interface. Many utilities are available at no cost, with
open source code. In general, simple utilities are preferable to multi-purpose software applications
[32]. Remember, an application that claims to do everything for the user is, most often, an application
that requires the user to do everything for the application.

XML Abbreviation for eXtensible Markup Language. A syntax for marking data values with descriptors
(metadata). The descriptors are commonly known as tags. In XML, every data value is enclosed by
a start-tag, indicating that a value will follow, and an end-tag, indicating that the value had preceded
the tag. For example: < name >Tara Raboomdeay </name >. The enclosing angle brackets, “<>", and
the end-tag marker, “/”, are hallmarks of XML markup. This simple but powerful relationship between
metadata and data allows us to employ each metadata/data pair as though it were a small database
that can be combined with related metadata/data pairs from any other XML document. The full value
of metadata/data pairs comes when we can associate the pair with a unique object, forming a so-called
triple.
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Section 4.1. Metadata

Life is a concept.
Patrick Forterre [1]

When you think about it, numbers are meaningless. The number “8” has no connection to
anything in the physical realm until we attach some information to the number (e.g., 8
candles, 8 minutes). Some numbers, like “0” or “—5” have no physical meaning under
any set of circumstances. There really is no such thing as “0 dollars”; it is an abstraction
indicating the absence of a positive number of dollars. Likewise, there is no such thing as
“—5 walnuts”; it is an abstraction that we use to make sense of subtractions (5—10=—25).

When we write “8 walnuts,” “walnuts” is the metadata that tells us what is being
referred to by the data, in this case the number “8.”

When we write “8 o’clock”, “8” is the data and “o’clock” is the metadata.

Section 4.2. eXtensible Markup Language

The purpose of narrative is to present us with complexity and ambiguity.
Scott Turow

XML (eXtensible Markup Language) is a syntax for attaching descriptors (so-called
metadata) to data values. [Glossary Metadata]
In XML, descriptors are commonly known as tags.
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XML has its own syntax; a set of rules for expressing data/metadata pairs. Every data
value is flanked by a start-tag and an end-tag. Enclosing angle brackets, “<>", and the
end-tag marker, “/”, are hallmarks of XML markup. For example:

<name >Tara Raboomdeay </name >

This simple but powerful relationship between metadata and data allows us to employ
every metadata/data pair as a miniscule database that can be combined with related
metadata/data pairs from the same XML document or from different XML documents.

It is impossible to overstate the importance of XML (eXtensible Markup Language) as a
data organization tool. With XML, every piece of data tells us something about itself. When
a data value has been annotated with metadata, it can be associated with other, related data,
evenwhen the other dataislocated in a seemingly unrelated database. [Glossary Integration].

When all data is flanked by metadata, it is relatively easy to port the data into spread-
sheets, where the column headings correspond to the metadata tags, and the data values
correspond to the value found in the cells of the spreadsheet. The rows correspond to the
record number.

A file that contains XML markup is considered a proper XML document only if it is well
formed. Here are the properties of a well-formed XML document.

— The document must have a proper XML header. The header can vary somewhat, but

it usually looks something like:
<?xml version="1.0" ?>

— XML files are ASCII files consisting of characters available to a standard keyboard.

— Tags in XML files must conform to composition rules (e.g., spaces are not permitted
within a tag, and tags are case-sensitive).

— Tags must be properly nested (i.e., no overlapping). For example, the following is
properly nested XML.

<chapter><chapter titles>Introspection</chapter title></chapters>
Compare the previous example, with the following, improperly nested XML.
<chapter><chapter titles>Introspection</chapter></chapter titles>

Web browsers will not display XML files that are not well formed.

The actual structure of an XML file is determined by another XML file known as an
XML Schema. The XML Schema file lists the tags and determines the structure for those
XML files that are intended to comply with a specific Schema document. A valid XML file
conforms to the rules of structure and content defined in its assigned XML Schema.

Every XML file that is valid under a particular Schema will contain data that is
described using the same tags that are listed in that same XML schema, permitting data
integration among those files. This is one of the strengths of XML.

The greatest drawback of XML is that data/metadata pairs are not assigned to a unique
object. XML describes its data, but it does not tell us the object of the data. This gaping
hole in XML was filled by RDF (Resource Description Framework), a modified XML syntax
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designed to associate every data/metadata pair with a unique data object. Before we can
begin to understand RDE we need to understand the concept of “meaning,” in the context
of information science.

Section 4.3. Semantics and Triples

Supplementary bulletin from the Office of Fluctuation Control, Bureau of Edible
Condiments, Soluble and Indigestible Fats and Glutinous Derivatives,
Washington, D.C. Correction of Directive #943456201, . . . the quotation on ground-

hog meat should read ‘ground hog meat.’
Bob Elliot and Ray Goulding, comedy routine

Metadata gives structure to data values, but it does not tell us anything about how the data
value relates to anything else. For example,

<height in feet inches>5'11"</height in feet inchess>

What does it mean to know that 5'11” is a height attribute, expressed in feet and inches?
Nothing really. The metadata/data pair has no meaning, as it stands, because it does not
describe anything in particular. If we were to assert that John Harrington has a height of
511”7, then we would be making a meaningful statement. This brings us to ask ourselves:
What is the meaning of meaning? This question sounds like another one of those
Zen mysteries that has no answer. In informatics, “meaningfulness” is achieved when
described data (i.e., a metadata/data pair) is bound to the unique identifier of a data
object.
Let us look once more at our example:

"John Harrington's height is five feet eleven inches."

This sentence has meaning because there is data (five feet eleven inches), and it is
described (person’s height), and it is bound to a unique individual (John Harrington).
Let us generate a unique identifier for John Harrington using our UUID generator (dis-
cussed in Section 3.3) and rewrite our assertion in a format in which metadata/data pairs
are associated with a unique identifier:

9c7bfe97-e637-461£-a30b-d931b97907fe name John Harrington
9c7bfe97-e637-461£-a30b-d931b97907fe height 5r'11"

We now have two meaningful assertions: one that associates the name “John Harrington”
with a unique identifier (9c7bfe97-e637-461f-a30b-d931b97907fe); and one that tells us that
the object associated with the unique identifier (i.e., John Harrington) is 5'11” tall. We could
insert these two assertions into a Big Data resource, knowing that both assertions fulfill
our definition of meaning. Of course, we would need to have some process in place to
ensure that any future information collected on our unique John Harrington (i.e., the John
Harrington assigned the identifier 9c7bfe97-e637-461f-a30b-d931b97907fe) will be
assigned the same identifier.
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A statement with meaning does not need to be a true statement (e.g., The height of John
Harrington was not 5 feet 11 inches when John Harrington was an infant). That is to say, an
assertion can be meaningful but false.

Semantics is the study of meaning. In the context of Big Data, semantics is the tech-
nique of creating meaningful assertions about data objects. All meaningful assertions,
without exception, can be structured as a 3-item list consisting of an identified data object,
a data value, and a descriptor for the data value. These 3-item assertions are referred to as
“triples.” Just as sentences are the fundamental informational unit of spoken languages,
the triple is the fundamental unit of computer information systems.

In practical terms, semantics involves making assertions about data objects (i.e., mak-
ing triples), combining assertions about data objects (i.e., aggregating triples), and assign-
ing data objects to classes; hence relating triples to other triples. As a word of warning, few
informaticians would define semantics in these terms, but I would suggest that all legit-
imate definitions for the term “semantics” are functionally equivalent to the definition
offered here. For example every cell in a spreadsheet is a data value that has a descriptor
(the column header), and a subject (the row identifier). A spreadsheet can be pulled apart
and re-assembled as a set of triples (known as a triplestore) equal in number to the
number of cells contained in the original spreadsheet. Each triple would be an assertion
consisting of the following:

<row identifier> <column header> <content of cell >

Likewise, any relational database, no matter how many relational table are included, can
be decomposed into a triplestore. The primary keys of the relational tables would corre-
spond to the identifier of the RDF triple. Column header and cell contents complete the
triple.

If spreadsheets and relational databases are equivalent to triplestores, then is there
any special advantage to creating triplestores? Yes. A triple is a stand-alone unit of
meaning. It does not rely on the software environment (e.g., excel spreadsheet or
SQL database engine) to convey its meaning. Hence, triples can be merged without
providing any additional structure. Every triple on the planet could be concatenated
to create the ultimate superduper triplestore, from which all of the individual triples
pertaining to any particular unique identifier, could be collected. This is something
that could not be done with spreadsheets and database engines. Enormous triplestores
can serve as native databases or as a large relational table, or as pre-indexed tables.
Regardless, the final products have all the functionality of any popular database
engine [2].

Section 4.4. Namespaces

It is once again the vexing problem of identity within variety; without a solution to

this disturbing problem there can be no system, no classification.
Roman Jakobson
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A namespace is the metadata realm in which a metadata tag applies. The purpose of a
namespace is to distinguish metadata tags that have the same name, but different mean-
ing. For example, within a single XML file, the metadata term “date” may be used to signify
a calendar date, or the fruit, or the social engagement. To avoid confusion, the metadata
term is given a prefix that is associated with a Web document that defines the term within
an assigned Web location. [Glossary Namespace]

For example, an XML page might contain three date-related values, and their metadata
descriptors:

<calendar:date>June 16, 1904</caldendar:date>
<agriculture:date>Thoory</agriculture:date>
<social:date>Pyramus and Thisbe<social:date>

At the top of the XML document you would expect to find declarations for the namespaces
used in the XML page. Formal XML namespace declarations have the syntax:

xmlns:prefix="URI"

In the fictitious example used in this section, the namespace declarations might
appear in the “root” tag at the top of the XML page, as shown here (with fake web
addresses):

<root xmlns:calendar="http://www.calendercollectors.org/"
xmlns:agriculture="http://www.farmersplace.org/"
xmlns:social ="http://hearts_throbbing.com/" >

The namespace URIs are the web locations that define the meanings of the tags that reside
within their namespace.

The relevance of namespaces to Big Data resources relates to the heterogeneity of
information contained in or linked to a resource. Every description of a value must be pro-
vided a unique namespace. With namespaces, a single data object residing in a Big Data
resource can be associated with assertions (i.e., object-metadata-data triples) that include
descriptors of the same name, without losing the intended sense of the assertions.
Furthermore, triples held in different Big Data resources can be merged, with their proper
meanings preserved.

Here is an example wherein two resources are merged, with their data arranged as
assertion triples.

Big Data resource 1

29847575938125 calendar:date February 4, 1986
83654560466294 calendar:date June 16, 1904

Big Data resource 2

57839109275632 social:date Jack and Ji1l1l
83654560466294 social:date Pyramus and Thisbe


http://www.calendercollectors.org
http://www.farmersplace.org
http://hearts_throbbing.com
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Merged Big Data Resource 1 + 2

29847575938125 calendar:date February 4, 1986
57839109275632 social:date Jack and Jill
83654560466294 social:date Pyramus and Thisbe
83654560466294 calendar:date June 16, 1904

There you have it. The object identified as 83654560466294 is associated with a “date”
metadata tag in both resources. When the resources are merged, the unambiguous
meaning of the metadata tag is conveyed through the appended namespaces (i.e., social:
and calendar:)

Section 4.5. Case Study: A Syntax for Triples

I really do not know that anything has ever been more exciting than diagramming

sentences.
Gertrude Stein

If you want to represent data as triples, you will need to use a standard grammar and syn-
tax. RDF (Resource Description Framework) is a dialect of XML designed to convey triples.
Providing detailed instruction in RDF syntax, or its dialects, lies far outside the scope of
this book. However, every Big Data manager must be aware of those features of RDF that
enhance the value of Big Data resources. These would include:

1. The ability to express any triple in RDF (i.e., the ability to make RDF statements).
2. The ability to assign the subject of an RDF statement to a unique, identified, and
defined class of objects (i.e., that ability to assign the object of a triple to a class).

RDF is a formal syntax for triples. The subjects of triples can be assigned to classes of
objects defined in RDF Schemas and linked from documents composed of RDF triples.
RDF Schemas will be described in detail in Section 5.9.

When data objects are assigned to classes, the data analysts can discover new relation-
ships among the objects that fall into a class, and can also determine relationships among
different related classes (i.e., ancestor classes and descendant classes, also known as
superclasses and subclasses). RDF triples plus RDF Schemas provide a semantic structure
that supports introspection and reflection. [Glossary Child class, Subclass, RDF Schema,
RDEFS, Introspection, Reflection]

3. The ability for all data developers to use the same publicly available RDF Schemas and
namespace documents with which to describe their data, thus supporting data
integration over multiple Big Data resources.

This last feature allows us to turn the Web into a worldwide Big Data resource composed of
RDF documents.
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We will briefly examine each of these three features in RDE First, consider the following
triple:

pubmed:8718907 creator Bill Moore

Every triple consists of an identifier (the subject of the triple), followed by metadata, fol-
lowed by a value. In RDF syntax the triple is flanked by metadata indicating the beginning
and end of the triple. This is the <rdf:description > tag and its end-tag </rdf:description).
The identifier is listed as an attribute within the <rdf:description > tag, and is described
with the rdf:about tag, indicating the subject of the triple. There follows a metadata
descriptor, in this case <author >, enclosing the value, “Bill Moore.”

<rdf:description rdf:about="urn:pubmed:8718907">
<creator>Bill Moore</creator>
</rdf :description>

The RDF triple tells us that Bill Moore wrote the manuscript identified with the PubMed
number 8718907. The PubMed number is the National library of Medicine’s unique iden-
tifier assigned to a specific journal article. We could express the title of the article in
another triple.

pubmed:8718907, title, "A prototype Internet autopsy database. 1625
congecutive fetal and neonatal autopsy facesheets spanning 20 years."

In RDE the same triple is expressed as:

<rdf:description rdf:about="urn:pubmed:8718907">

<title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</title>
</rdf :description>

RDF permits us to nest triples if they apply to the same unique object.

<rdf:description rdf:about="urn:pubmed:8718907">

<author>Bill Moore</author >

<title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</title>
</rdf :description>

Here we see that the PubMed manuscript identified as 8718907 was written by Bill Moore
(the first triple) and is titled “A prototype Internet autopsy database. 1625 consecutive fetal
and neonatal autopsy facesheets spanning 20 years” (a second triple).

What do we mean by the metadata tag “title”? How can we be sure that the metadata
term “title” refers to the name of a document and does not refer to an honorific (e.g., The
Count of Monte Cristo or the Duke of Earl). We append a namespace to the metadata.
Namespaces were described in Section 4.4.
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<rdf:description rdf:about="urn:pubmed:8718907">

<dc:creator>Bill Moore</dc:creator>

<dc:title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</dc:title>
</rdf :description>

In this case, we appended “dc:” to our metadata. By convention, “dc:” refers to the Dublin
Core metadata set at: http://dublincore.org/documents/2012/06/14/dces/.

We will be describing the Dublin Core in more detail, in Section 4.6. [Glossary Dublin
Core metadata].

RDF was developed as a semantic framework for the Web. The object identifier system
for RDF was created to describe Web addresses or unique resources that are available
through the Internet. The identification of unique addresses is done through the use of
a Uniform Resource Name (URN) [3]. In many cases the object of a triple designed for
the Web will be a Web address. In other cases the URN will be an identifier, such as the
PubMed reference number in the example above. In this case, we appended the “urn:”
prefix to the PubMed reference in the “about” declaration for the object of the triple.

<rdf:description rdf:about ="urn:pubmed:8718907">
Let us create an RDF triple whose subject is an actual Web address.

<rdf:Description rdf:about ="http://www.usa.gov/" >

<dc:title>USA.gov: The U.S. Government's Official Web Portal</dc:
title>
</rdf :Description>

Here we created a triple wherein the object is uniquely identified by the unique Web
address http://www.usa.gov/, and the title of the Web page is “USA.gov: The U.S. Govern-
ment’s Official Web Portal.” The RDF syntax for triples was created for the purpose of iden-
tifying information with its URI (Unique Resource Identifier). The URI is a string of
characters that uniquely identifies a Web resource (such as a unique Web address, or some
unique location at a Web address, or some unique piece of information that can be ulti-
mately reached through the Worldwide Web). In theory, using URIs as identifiers for triples
will guarantee that all triples will be accessible through the so-called “Semantic Web” (i.e.,
the Web of meaningful assertions) [3]. Using RDE Big Data resources can design a scaffold
for their information that can be understood by humans, parsed by computers, and shared
by other Big Data resources. This solution transforms every RDF-compliant Web page into
a an accessible database whose contents can be searched, extracted, aggregated, and inte-
grated along with all the data contained in every existing Big Data resource.

In practice, the RDF syntax is just one of many available formats for packaging triples,
and can be used with identifiers that have invalid URIs (i.e., that do not relate in any way to
Web addresses or Web resources). The point to remember is that Big Data resources that
employ triples can port their data into RDF syntax, or into any other syntax for triples, as
needed. [Glossary Notation 3, Turtle]


http://dublincore.org/documents/2012/06/14/dces/
http://www.usa.gov
http://USA.gov
http://www.usa.gov
http://USA.gov
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Section 4.6. Case Study: Dublin Core

For myself, I always write about Dublin, because if I can get to the heart of Dublin
I can get to the heart of all the cities of the world. In the particular is contained

the universal.
James Joyce

James Joyce believed that Dublin held the meaning of every city in the world. In a sim-
ilar vein, the Dublin Core metadata descriptors hold the meaning of every document
in the world. The principle difference between the two Dublin-centric philosophies is
that James Joyce hailed from Dublin, Ireland, while the Dublin Core metadata
descriptors hailed from Dublin, Ohio, United States. For it was in Dublin, Ohio, in
1995, that a coterie of interested Internet technologists and librarians met for the
purpose of identifying a core set of descriptive data elements that every electronic
document should contain.

The specification resulting from this early workshop came to be known as the Dublin
Core [4]. The Dublin Core elements include such information as the date that the file was
created, the name of the entity that created the file, and a general comment on the con-
tents of the file. The Dublin Core elements aid in indexing and retrieving electronic files,
and should be included in every electronic document, including every image file. The
Dublin Core metadata specification is found at:

http://dublincore.org/documents/dces/

Some of the most useful Dublin Core elements are [5]:

— Contributor—the entity that contributes to the document

— Coverage—the general area of information covered in the document

— Creator—the entity primarily responsible for creating the document

— Date—a time associated with an event relevant to the document

— Description—description of the document

— Format—file format

— Identifier—a character string that uniquely and unambiguously identifies the
document

— Language—the language of the document

— Publisher—the entity that makes the resource available

— Relation—a pointer to another, related document, typically the identifier of the related
document

— Rights—the property rights that apply to the document

— Source—an identifier linking to another document from which the current document
was derived

— Subject—the topic of the document

— Title—title of the document

— Type—genre of the document

An XML syntax for expressing the Dublin Core elements is available [6,7].
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Glossary

Child class The direct or first generation subclass of a class. Sometimes referred to as the daughter class
or, less precisely, as the subclass.

Dublin Core metadata The Dublin Core is a set of metadata elements developed by a group of librarians
who met in Dublin, Ohio. It would be very useful if every electronic document were annotated with the
Dublin Core elements. The Dublin Core Metadata is discussed in detail in Chapter 4. The syntax for
including the elements is found at: http://dublincore.org/documents/dces/

Integration Occurs when information is gathered from multiple data sets, relating diverse data extracted
from different data sources. Integration can broadly be categorized as pre-computed or computed
on-the fly. Pre-computed integration includes such efforts as absorbing new databases into a Big Data
resource or merging legacy data from with current data. On-the-fly integration involves merging data
objects at the moment when the individual objects are parsed. This might be done during a query that
traverses multiple databases or multiple networks. On-the-fly data integration can only work with data
objects that support introspection. The two closely related topics of integration and interoperability
are often confused with one another. An easy way to remember the difference is to note that integra-
tion refers to data; interoperability refers to software.

Introspection Well-designed Big Data resources support introspection, a method whereby data objects
within the resource can be interrogated to yield their properties, values, and class membership.
Through introspection the relationships among the data objects in the Big Data resource can be exam-
ined and the structure of the resource can be determined. Introspection is the method by which a data
user can find everything there is to know about a Big Data resource without downloading the complete
resource.

Metadata Data that describes data. For example in XML, a data quantity may be flanked by a beginning
and an ending metadata tag describing the included data quantity. <age >48 years </age>. In the
example, <age> is the metadata and 48 years is the data.

Namespace A namespace is the metadata realm in which a metadata tag applies. The purpose of a name-
space is to distinguish metadata tags that have the same name, but a different meaning. For example,
within a single XML file, the metadata term “date” may be used to signify a calendar date, or the fruit, or
the social engagement. To avoid confusion the metadata term is given a prefix that is associated with a
Web document that defines the term within the document’s namespace.

Notation 3 Also called n3. A syntax for expressing assertions as triples (unique subject + metadata + data).
Notation 3 expresses the same information as the more formal RDF syntax, but n3 is compact and easy
for humans to read. Both n3 and RDF can be parsed and equivalently tokenized (i.e., broken into ele-
ments that can be re-organized in a different format, such as a database record).

RDF Schema Resource Description Framework Schema (RDFS). A document containing a list of classes,
their definitions, and the names of the parent class(es) for each class (e.g., Class Marsupiala is a
subclass of Class Metatheria). In an RDF Schema, the list of classes is typically followed by a list of
properties that apply to one or more classes in the Schema. To be useful, RDF Schemas are posted
on the Internet, as a Web page, with a unique Web address. Anyone can incorporate the classes
and properties of a public RDF Schema into their own RDF documents (public or private) by linking
named classes and properties, in their RDF document, to the web address of the RDF Schema where
the classes and properties are defined.

RDFS Same as RDF Schema.

Reflection A programming technique wherein a computer program will modify itself, at run-time, based
on information it acquires through introspection. For example, a computer program may iterate over a
collection of data objects, examining the self-descriptive information for each object in the collection
(i.e., object introspection). If the information indicates that the data object belongs to a particular class
of objects, the program might call a method appropriate for the class. The program executes in a
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manner determined by descriptive information obtained during run-time; metaphorically reflecting
upon the purpose of its computational task. Because introspection is a property of well-constructed
Big Data resources, reflection is an available technique to programmers who deal with Big Data.

Subclass A class in which every member descends from some higher class (i.e., a superclass) within the
class hierarchy. Members of a subclass have properties specific to the subclass. As every member of a
subclass is also a member of the superclass, the members of a subclass inherit the properties and
methods of the ancestral classes. For example, all mammals have mammary glands because mammary
glands are a defining property of the mammal class. In addition, all mammals have vertebrae because
the class of mammals is a subclass of the class of vertebrates. A subclass is the immediate child class of
its parent class.

Turtle Another syntax for expressing triples. From RDF came a simplified syntax for triples, known as
Notation 3 or N3 [8]. From N3 came Turtle, thought to fit more closely to RDE From Turtle came
an even more simplified form, known as N-Triples.
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Section 5.1. It's All About Object Relationships

Order and simplification are the first steps toward the mastery of a subject.
Thomas Mann

Information has limited value unless it can take its place within our general understanding
of the world. When a financial analyst learns that the price of a stock has suddenly
dropped, he cannot help but wonder if the drop of a single stock reflects conditions
in other stocks in the same industry. If so, the analyst may check to ensure that other
industries are following a downward trend. He may wonder whether the downward trend
represents a shift in the national or global economies. There is a commonality to all of the
questions posed by the financial analyst. In every case, the analyst is asking a variation on
a single question: “How does this thing relate to that thing?”

Big Data resources are complex. When data is simply stored in a database, without any
general principles of organization, it becomes impossible to find the relationships among
the data objects. To be useful the information in a Big Data resource must be divided into
classes of data. Each data object within a class shares a set of properties chosen to enhance
our ability to relate one piece of data with another.

Relationships are the fundamental properties of an object that determine the class in
which it is placed. Every member of a class shares these same fundamental properties.
A core set of relational properties is found in all the ancestral classes of an object and
in all the descendant classes of an object. Similarities are just features that one or more
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objects have in common, but they are not fundamental relationships upon which classes
can be organized. Related objects tend to be similar to one another, but these similarities
occur as the consequence of their relationships; not vice versa. For example, you may have
many similarities to your father. If so, you are similar to your father because you are related
to him; you are not related to him because you are similar to him.

The distinction between grouping data objects by similarity and grouping data
objects by relationship is sometimes lost on computer scientists. I have had numerous
conversations with intelligent scientists who refuse to accept that grouping by similarity
(e.g., clustering) is fundamentally different from grouping by relationship (i.e., building a
classification). [Glossary Cluster analysis]

Consider a collection of 300 objects. Each object belongs to one of two classes, marked
by an asterisk or by an empty box. The three hundred objects naturally cluster into three
groups. It is tempting to conclude that the graph shows three classes of objects that can be
defined by their similarities, but we know from the outset that the objects fall into two
classes, and we see from the graph that objects from both classes are distributed in all
three clusters (Fig. 5.1).

Is this graph far-fetched? Not really. Suppose you have a collection of felines and
canines. The collection of dogs might include Chihuahuas, St. Bernards, and other breeds.
The collection of cats might include housecats, lions, and other species, and the data
collected on each animal might include weight, age, and hair length. We do not know what
to expect when we cluster the animals by similarities (i.e., weight, age, and hair length) but
we can be sure that short-haired cats and short-haired Chihuahuas of the same age will
probably fall into one cluster. Cheetahs and greyhounds, having similar size and build,
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FIG. 5.1 The spatial distribution of 300 objects represented by data points in three dimensions. Each data object falls
into one of two classes, represented by an asterisk or an empty box. The data naturally segregates into three clusters.
Objects of type asterisk and type box are distributed throughout each cluster.
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might fall into another cluster. The similarity clusters will mix together unrelated animals
and will separate related animals.

OK, similarities are different from relationships; but how do we know when we
are dealing with a similarity and when we are dealing with a true relationship? Here are
two stories that may clarify the functional differences between the two concepts:

1. You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail,
like alion’s tail, and a fluffy head, like a lion’s mane. With a little imagination, the mouth
of the lion seems to roar down from the sky. You have succeeded in finding similarities
between the cloud and a lion. If you look at a cloud and you imagine a teakettle
producing a head of steam, then you are establishing a relationship between the
physical forces that create a cloud and the physical forces that produce steam from a
heated kettle, and you understand that clouds are composed of water vapor.

2. You look up at the stars and you see the outline of a flying horse, Pegasus, or the soup
ladle, the Big Dipper. You have found similarities upon which to base the names of
celestial landmarks, the constellations. The constellations help you orient yourself to
the night sky, but they do not tell you much about the physical nature of the twinkling
objects. If you look at the stars and you see the relationship between the twinkling stars
in the night sky, and the round sun in the daylight sky, then you can begin to
understand how the universe operates.

For taxonomists, the importance of grouping by relationship, not by similarity, is a lesson
learned the hard way. Literally two thousand years of mis-classifications, erroneous
biological theorizations, impediments to progress in medicine and agriculture, have
occurred whenever similarities were confused with relationships. Early classifications
of animals were based on similarities (e.g., beak shape, color of coat, or number of toes).
These kinds of classifications led to the erroneous conclusion that the various juvenile
forms of holometabolous insects (i.e., insects that undergo metamorphosis) were distinct
organisms, unrelated to the adult form into which they would mature. The vast field of
animal taxonomy was a useless mess until taxonomists began to think very deeply about
classes of organisms and the fundamental properties that accounted for the relationships
among the classes. [Glossary Classification system versus identification system, Classifi-
cation versus index, Phenetics]

Geneticists have learned that sequence similarities among genes may bear
no relationship to their functionalities, their inheritance from higher organisms, their
physical locations, or to any biological process whatsoever. Geneticists use the term
homology to describe the relationship among sequences that can be credited to descent
from a common ancestral sequence. Similarity among different sequences can be non-
homologous, developing randomly in non-related organisms, or developing by conver-
gence, through selection for genes that have common functionality. Sequence similarity
that is not acquired from a common ancestral sequence seldom relates to the shared
fundamental cellular properties that characterize inherited relationships. Biological
inferences drawn from gene analyses are more useful when they are built upon
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phylogenetic relationships, rather than on superficial genetic or physiologic similarities
[1]. [Glossary Nonphylogenetic property]

The distinction between classification by similarity and classification by relationship
is vitally important to the field of computer science and to the future of Big Data analysis.
I have discussed this point with many of my colleagues, who hold the opposite view: that
the distinction between similarity classification and relationship classification is purely
semantic. There is no practical difference between the two methods. Regardless of which
side you may choose, the issue is worth pondering for a few moments.

Two arguments support the opinion that classification should be based on similarity
measures. The first argument is that classification by similarity is the standard method
by which relational classifications are built. The second argument is that relational prop-
erties are always unknown at the time that the classification is built. The foundation of
every classification must be built on measurable features and the only comparison we
have for measurable features is similarity. This argument has no scientific merit insofar
as comparisons by relationship are always feasible, though not always readily computable.

The second argument, that classification by relationship requires access to unobtain-
able knowledge is a clever observation that hits on a weakness in the relational theory
of classification. To build a classification, you must first know the relational properties
that define classes, superclasses, and subclasses; but if you want to know the relationships
among the classes, you must refer to the classification. It is another bootstrapping
problem. [Glossary Bootstrapping]

Building a classification is an iterative process wherein you hope that your tentative
selection of relational properties and your class assignments will be validated by the test
of time. You build a classification by guessing which properties are fundamental and rela-
tional and by guessing which system of classes will make sense when all of the instances of
the classes are assigned. A classification is often likened to a hypothesis that must be
tested again and again as the classification grows.

Is it ever possible to build a classification using a hierarchical clustering algorithm
based on measuring similarities among objects? The answer is a qualified yes, assum-
ing that the object features that you have measured happen to be the relational prop-
erties that define the classes. A good example of this process is demonstrated by the
work of Carl Woese and his coworkers in the field of the classification of terrestrial
organisms [2]. Woese compared ribosomal RNA sequences among organisms. Ribo-
somal RNA is involved in the precise synthesis of proteins according to instructions
coded in genes. According to Woese, the genes coding for ribosomal RNA mutate more
slowly than other genes, because ribosomal RNA has scarcely any leeway in its func-
tionality. Changes in the sequence of ribosomal RNA act like a chronometer for evolu-
tion. Using sequence similarities Woese developed a brilliant classification of living
organisms that has revolutionized evolutionary genetics. Woese’s analysis is not perfect
and where there are apparent mistakes in his classification, disputations focus on the
limitations of using similarity as a substitute for fundamental relational properties
[3,4]. [Glossary Non-living organism]
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The field of medical genetics has been embroiled in a debate, lasting well over a decade,
on the place of race in science. Some would argue that when the genomes of humans from
different races are compared, there is no sensible way to tell one genome from another, on
the basis of assigned race. The genes of a tall man and the short man are more different
than the genes of an African-American man and a white man. Judged by genetic similarity,
race has no scientific meaning [5]. On the other hand, every clinician understands that
various diseases, congenital and acquired, occur at different rates in the African-American
population than in the white population. Furthermore, the clinical symptoms, clinical
outcome, and even the treatment of these diseases in African-American and white
individuals will sometimes differ among ethnic or racial groups. Hence, many medical
epidemiologists and physicians perceive race as a clinical reality [6]. The discord stems
from a misunderstanding of the meanings of similarity and of relationship. It is quite
possible to have a situation wherein similarities are absent, while relationships pertain.
The lack of informative genetic similarities that distinguish one race from another does
not imply that race does not exist. The basis for race is the relationship created by shared
ancestry. The morphologic and clinical by-product of the ancestry relationship may occur
as various physical features and epidemiologic patterns found by clinicians. [Glossary
Cladistics]

Fundamentally, all analysis is devoted to finding relationships among objects or classes
of objects. All we ever know about the universe, and the processes that play out in our uni-
verse, can be reduced to simple relationships. In many cases the process of finding
and establishing relationships often begins with finding similarities; but it must never
end there.

Section 5.2. Classifications, the Simplest of Ontologies

Consciousness is our awareness OfOLH' own awarerness.
Descartes

The human brain is constantly processing visual and other sensory information collected
from the environment. When we walk down the street, we see images of concrete and
asphalt and millions of blades of grass, birds, dogs, and other persons. Every step we take
conveys a new world of sensory input. How can we process it all? The mathematician
and philosopher Karl Pearson (1857-1936) has likened the human mind to a “sorting
machine” [7]. We take a stream of sensory information and sort it into objects; we then
collect the individual objects into general classes. The green stuff on the ground is classified
as “grass,” and the grass is subclassified under some larger grouping, such as “plants.”
A flat stretch of asphalt and concrete may be classified as a “road” and the road might be
subclassified under “man-made constructions.” If we lacked a culturally determined
classification of objects for our world, we would be overwhelmed by sensory input, and
we would have no way to remember what we see, and no way to draw general inferences
about anything. Simply put, without our ability to classify, we would not be human [8].
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Every culture has some particular way to impose a uniform way of perceiving the
environment. In English-speaking cultures, the term “hat” denotes a universally recognized
object. Hats may be composed of many different types of materials, and they may vary greatly
in size, weight, and shape. Nonetheless, we can almost always identify a hat when we see one,
and we can distinguish a hat from all other types of objects. An object is not classified as a hat
simply because it shares a few structural similarities with other hats. A hat is classified as
a hat because it has a class relationship; all hats are items of clothing that fit over the head.
Likewise, all biological classifications are built by relationships, not by similarities [9,8].

Aristotle was one of the first experts in classification. His greatest insight came when he
correctly identified a dolphin as a mammal. Through observation, he knew that a large
group of animals was distinguished by a gestational period in which a developing embryo
is nourished by a placenta, and the offspring are delivered into the world as formed, but
small versions of the adult animals (i.e., not as eggs or larvae), and the newborn animals
feed from milk excreted from nipples, overlying specialized glandular organs (mammae).
Aristotle knew that these features, characteristic of mammals, were absent in all other
types of animals. He also knew that dolphins had all these features; fish did not. He
correctly reasoned that dolphins were a type of mammal, not a type of fish. Aristotle
was ridiculed by his contemporaries for whom it was obvious that dolphins were a type
of fish. Unlike Aristotle, they based their classification on similarities, not on relationships.
They saw that dolphins looked like fish and dolphins swam in the ocean like fish, and this
was all the proof they needed to conclude that dolphins were indeed fish. For about two
thousand years following the death of Aristotle, biologists persisted in their belief that
dolphins were a type of fish. For the past several hundred years, biologists have acknowl-
edged that Aristotle was correct after all; dolphins are mammals. Aristotle discovered and
taught the most important principle of classification; that classes are built on relation-
ships among class members; not by counting similarities [8].

Today, the formal systems that assign data objects to classes, and that relate classes
to other classes, are known as ontologies. When the data within a Big Data resource is
classified within an ontology, data analysts can determine whether observations on a
single object will apply to other objects in the same class.

A classification is a very simple form of ontology, in which each class is allowed to have
only one parent class. To build a classification, the ontologist must do the following: (1)
define classes (i.e., find the properties that define a class and extend to the subclasses
of the class); (2) assign instances to classes; (3) position classes within the hierarchy;
and (4) test and validate all the above. [Glossary Parent class]

The constructed classification becomes a hierarchy of data objects conforming to a set
of principles:

1. The classes (groups with members) of the hierarchy have a set of properties or rules
that extend to every member of the class and to all of the subclasses of the class, to
the exclusion of unrelated classes. A subclass is itself a type of class wherein the
members have the defining class properties of the parent class plus some additional
property(ies) specific for the subclass.
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2. Inahierarchical classification, each subclass may have no more than one parent class.
The root (top) class has no parent class. The biological classification of living
organisms is a hierarchical classification.

3. At the bottom of the hierarchy is the class instance. For example, your copy of this
book is an instance of the class of objects known as “books.”

4. Every instance belongs to exactly one class.

5. Instances and classes do not change their positions in the classification. As examples,
a horse never transforms into a sheep, and a book never transforms into a
harpsichord. [Glossary Intransitive property]

6. The members of classes may be highly similar to one another, but their similarities
result from their membership in the same class (i.e., conforming to class properties),
and not the other way around (i.e., similarity alone cannot define class inclusion).

Classifications are always simple; the parental classes of any instance of the classification
can be traced as a simple, non-branched list, ascending through the class hierarchy.
As an example, here is the lineage for the domestic horse (Equus caballus), from the
classification of living organisms:

Equus caballus
Equus subg. Equus
Equus

Equidae
Perissodactyla
Laurasiatheria
Eutheria

Theria

Mammalia
Amniota
Tetrapoda
Sarcopterygii
Euteleostomi
Teleostomi
Gnathostomata
Vertebrata
Craniata
Chordata
Deuterostomia
Coelomata
Bilateria
Eumetazoa
Metazoa
Fungi/Metazoa group
Eukaryota

cellular organisms
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The words in this zoological lineage may seem strange to laypersons, but taxonomists
who view this lineage instantly grasp the place of domestic horses in the classification
of all living organisms.

A classification is a list of every member class along with their relationships to other
classes. Because each class can have only one parent class, a complete classification
can be provided when we list all the classes, adding the name of the parent class for each
class on the list. For example, a few lines of the classification of living organisms might be:

Craniata, subclass of Chordata
Chordata, subclass of Duterostomia
Deuterostomia, subclass of Coelomata
Coelomata, subclass of Bilateria
Bilateria, subclass of Eumetazoa

Given the name of any class a programmer can compute (with a few lines of code), the
complete ancestral lineage for the class, by iteratively finding the parent class assigned
to each ascending class [10]. [Glossary Iterator]

A taxonomy is a classification with the instances “filled in.” This means that for each
class in a taxonomy, all the known instances (i.e., member objects) are explicitly listed. For
the taxonomy of living organisms the instances are named species. Currently, there are
several million named species of living organisms, and each of these several million
species is listed under the name of some class included in the full classification.

Classifications drive down the complexity of their data domain because every instance
in the domain is assigned to a single class and every class is related to the other classes
through a simple hierarchy.

It is important to distinguish a classification system from an identification system.
An identification system puts a data object into its correct slot within the classification.
For example, a fingerprint matching system may look for a set of features that puts a
fingerprint into a special subclass of all fingerprint, but the primary goal of fingerprint
matching is to establish the identity of an instance (i.e., to determine whether two sets of
fingerprints belong to the same person). In the realm of medicine, when a doctor renders
a diagnosis on a patient’s diseases, she is not classifying the disease; she is finding the cor-
rect slot, within the preexisting classification of diseases, that holds her patient’s diagnosis.

Section 5.3. Ontologies, Classes With Multiple Parents

...science is in reality a classification and analysis of the contents of the mind...
Karl Pearson [7]

Ontologies are constructions that permit an object to be a direct subclass of more than one
classes. In an ontology, the class “horse” might be a subclass of Equu, a zoological term; as
well as a subclass of “racing animals” and “farm animals,” and “four-legged animals.”
The class “book” might be a subclass of “works of literature,” as well as a subclass of
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“wood-pulp materials,” and “inked products.” Ontologies are unrestrained classifications.
Hence, all classifications are ontologies, but not all ontologies are classifications. Ontol-
ogies are predicated on the belief that a single object or class of objects might have
multiple different fundamental identities, and that these different identities will often
place one class of objects directly under more than one superclass. [Glossary Multiclass
classification, Multiclass inheritance]

Data analysts sometimes prefer ontologies to classifications because they permit the
analyst to find relationships among classes of objects that would have been impossible
to find under a classification. For example, a data analyst might be interested in determin-
ing the relationships among groups of flying animals, such as butterflies, birds, and bats.
In the classification of living organisms, these animals occupy classes that are not closely
related to one another; no two of the different types of flying animals share a single parent
class. Because classifications follow relationships through a lineage, they cannot connect
instances of classes that fall outside the line of descent.

Ontologies are not subject to the analytic limitations imposed by classifications. In an
ontology, a data object can be an instance of many different kinds of classes; thus, the class
does not define the essence of the object, as it does in a classification. In an ontology the
assignment of an object to a class and the behavior of the members of the objects of a
class, are determined by rules. An object belongs to a class when it behaves like the other
members of the class, according to a rule created by the ontologist. Every class, subclass,
and superclass is defined by rules; and rules can be programmed into software.

Classifications were created and implemented at a time when scientists did not have
powerful computers that were capable of handling the complexities of ontologies. For
example, the classification of all living organisms on earth was created over a period of
two millennia. Several million species have been assigned to date to the classification.
It is currently estimated that we will need to add another 10-50 million species before
we come close to completing the taxonomy of living organisms. Prior generations of sci-
entists could cope with a simple classification, wherein each class of organisms falls under
a single superclass; they could not hope to cope with a complex ontology of organisms.

The advent of powerful and accessible computers has spawned a new generation
of computer scientists who have developed powerful methods for building complex
ontologies. It is the goal of these computer scientists to analyze data in a manner that
allows us to find and understand ontologic relationships among data objects.

In simple data collections, such as spreadsheets, data is organized in a very specific
manner that preserves the relationships among specific types of data. The rows of the
spreadsheet are the individual data objects (i.e., people, experimental samples, and class
of information). The left-hand field of the row is typically the name assigned to the data
object and the cells of the row are the attributes of the data object (e.g., quantitative
measurements, categorical data, and other information). Each cell of each row occurs
in a specific order and the order determines the kind of information contained in the cell.
Hence, every column of the spreadsheet has a particular type of information in each
spreadsheet cell. [Glossary Categorical data, Observational data]
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Big Data resources are much more complex than spreadsheets. The set of features
belonging to an object (i.e., the values, sometimes called variables, belonging to the object,
and corresponding to the cells in a spreadsheet row) will be different for different classes
of objects. For example, a member of Class Automobile may have a feature such as
“average miles per gallon in city driving,” while a member of Class Mammal would not.
Every data object must be assigned membership in a class (e.g., Class Persons, Class Tissue
Samples, and Class Bank Accounts), and every class must be assigned a set of class
properties. In Big Data resources that are based on class models, the data objects are
not defined by their location in a rectangular spreadsheet; they are defined by their class
membership. Classes, in turn, are defined by their properties and by their relations to
other classes. [Glossary Properties versus classes]

The question that should confront every Big Data manager is, “Should I model my data
as a classification, wherein every class has one direct parent class; or should I model the
resource as an ontology, wherein classes may have multiparental inheritance?”

Section 5.4. Choosing a Class Model

Taxonomy is the oldest profession practiced by people with their clothes on.
Quentin Wheeler, referring to the belief that Adam was assigned the task of naming all the
creatures.

The simple, and fundamental question, “Can a class of objects have more than one parent
class?” lies at the heart of several related fields: database management, computational
informatics, object oriented programming, semantics, and artificial intelligence. Com-
puter scientists are choosing sides, often without acknowledging the problem or fully
understanding the stakes. For example, when a programmer builds object libraries in
the Python or the Perl programming languages, he is choosing to program in a permissive
environment that supports multiclass object inheritance. In Python and Perl, any object
can have as many parent classes as the programmer prefers. When a programmer chooses
to program in the Ruby programming language, he shuts the door on multiclass inheri-
tance. A Ruby object can have only one direct parent class. Many programmers are totally
unaware of the liberties and restrictions imposed by their choice of programming
language, until they start to construct their own object libraries, or until they begin to
use class libraries prepared by another programmer. [Glossary Artificial intelligence]

In object oriented programming the programming language provides a syntax whereby
a named method is “sent” to data objects and a result is calculated. The named methods
are functions and short programs contained in a library of methods created for a class. For
example, a “close” method, written for file objects, typically shuts a file so that it cannot be
accessed for read or write operations. In object-oriented languages a “close” method is
sent to an instance of class “File” when the programmer wants to prohibit access to
the file. The programming language, upon receiving the “close” method, will look for a
method named “close” somewhere in the library of methods prepared for the “File” class.
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Ifit finds the “close” method in the “File” class library, it will apply the method to the object
to which the method was sent. In simplest terms the specified file would be closed.

If the “close” method were not found among the available methods for the “File” class
library, the programming language would automatically look for the “close” method in
the parent class of the “File” class. In some languages the parent class of the “File” class
is the “Input/Output” class. If there were a “close” method in the “Input/Output” class, the
method would be sent to the “File” Object. If not, the process of looking for a “close”
method would be repeated for the parent class of the “Input/Output” class. You get the
idea. Object oriented languages search for methods by moving up the lineage of ancestral
classes for the object instance that receives the method.

In object oriented programming, every data object is assigned membership to a class of
related objects. Once a data object has been assigned to a class, the object has access to all
of the methods available to the class in which it holds membership, and to all of the
methods in all the ancestral classes. This is the beauty of object oriented programming.
If the object oriented programming language is constrained to single parental inheritance,
as happens in the Ruby programming language, then the methods available to the
programmer are restricted to a tight lineage. When the object oriented language permits
multiparental inheritance, as happens in the Perl and Python programming languages, a
data object can have many different ancestral classes spread horizontally and vertically
through the class libraries. [Glossary Beauty]

Freedom always has its price. Imagine what happens in a multiparental object oriented
programming language when a method is sent to a data object, and the data object’s class
library does not contain the method. The programming language will look for the named
method in the library belonging to a parent class. Which parent class library should be
searched? Suppose the object has two parent classes, and each of those two parent classes
has a method of the same name in their respective class libraries? The functionality of the
method will change depending on its class membership (i.e., a “close” method may have a
different function within class File than it may have within class Transactions or class
Boxes). There is no way to determine how a search for a named method will traverse
its ancestral class libraries; hence, the output of a software program written in an object
oriented language that permits multiclass inheritance is unpredictable.

The rules by which ontologies assign class relationships can become computationally
difficult. When there are no restraining inheritance rules, a class within the ontology might
be an ancestor of a child class that is an ancestor of its parent class (e.g., a single class
might be a grandfather and a grandson to the same class). An instance of a class might
be an instance of two classes, at once. The combinatorics and the recursive options
can become impossible to compute. [Glossary Combinatorics]

Those who use ontologies that allow multiclass inheritance will readily acknowledge
that they have created a system that is complex and unpredictable. The ontology expert
justifies his complex and unpredictable model on the observation that reality itself is com-
plex and unpredictable. A faithful model of reality cannot be created with a simple-
minded classification. With time and effort, modern approaches to complex systems will
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isolate and eliminate computational impedimenta; these are the kinds of problems that
computer scientists are trained to solve. For example, recursion within an ontology can
be avoided if the ontology is acyclic (i.e., class relationships are not permitted to cycle back
onto themselves). For every problem created by an ontology an adept computer scientist
will find a solution. Basically, many modern ontologists believe that the task of organizing
and understanding information cannot reside within the ancient realm of classification.

For those non-programmers who believe in the supremacy of classifications, over
ontologies, their faith may have nothing to do with the computational dilemmas incurred
with multiclass parental inheritance. They base their faith on epistemological grounds; on
the nature of objects. They hold that an object can only be one thing. You cannot pretend
that one thing is really two or more things simply because you insist that it is so. One thing
can only belong to one class. Once class can only have one ancestor class; otherwise, it
would have a dual nature. For classical taxonomists, assigning more than one parental
class to an object indicates that you have failed to grasp the essential nature of the object.
The classification expert believes that ontologies (i.e., classifications that permit one class
to have more than one parent classes and that permit one object to hold membership in
more than one class), do not accurately represent reality.

At the heart of traditional classifications is the notion that everything in the universe
has an essence that makes it one particular thing and nothing else. This belief is justified
for many different kinds of systems. When an engineer builds a radio, he knows that he can
assign names to components, and these components can be relied upon to behave
in a manner that is characteristic of its type. A capacitor will behave like a capacitor,
and a resistor will behave like a resistor. The engineer need not worry that the capacitor
will behave like a semiconductor or an integrated circuit.

What is true for the radio engineer may not hold true for the Big Data analyst. In many
complex systems the object changes its function depending on circumstances. For exam-
ple, cancer researchers discovered an important protein that plays a very important role in
the development of cancer. This protein, p53, was, at one time, considered to be the
primary cellular driver for human malignancy. When p53 mutated, cellular regulation
was disrupted and cells proceeded down a slippery path leading to cancer. In the past
few decades, as more information was obtained, cancer researchers have learned that
p53 is just one of many proteins that play some role in carcinogenesis, but the role changes
depending on the species, tissue type, cellular microenvironment, genetic background of
the cell, and many other factors. Under one set of circumstances, p53 may play a role in
DNA repair; under another set of circumstances, p53 may cause cells to arrest the growth
cycle [11,12]. It is difficult to classify a protein that changes its primary function based
on its biological context.

As someone steeped in the ancient art of classification, and as someone who has
written extensively on object oriented programming, I am impressed, but not convinced,
by arguments on both sides of the ontology/classification debate. As a matter of practi-
cality, complex ontologies are nearly impossible to implement in Big Data projects. The
job of building and operating a Big Data resource is always difficult. Imposing a complex
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ontology framework onto a Big Data resource tends to transform a tough job into an
impossible job. Ontologists believe that the Big Data resources must match the complexity
of their data domain. They would argue that the dictum “Keep it simple, stupid!” only
applies to systems that are simple at the outset. I would comment here that one of the
problems with ontology builders is that they tend to build ontologies that are much more
complex than our reality. They do so because it is actually quite easy to add layers of
abstraction to an ontology without incurring any immediate penalty. [Glossary KISS]
Without stating a preference for single-class inheritance (classifications) or multi-class
inheritance (ontologies), I would suggest that when modeling a complex system, you
should always strive to design a model that is as simple as possible. The wise ontologist will
settle for a simplified approximation of the truth. Regardless of your personal preference,
you should learn to recognize when an ontology has become too complex for its own good.
Here are the danger signs of an overly-complex ontology:

— You realize that the ontology makes no sense. The solutions obtained by data analysts
contradict direct observations. The ontologists perpetually tinker with the model in an
effort to achieve a semblance of reality and rationality. Meanwhile, the data analysts
tolerate the flawed model because they have no choice in the matter.

— For a given problem, no two data analysts seem able to formulate the query the same
way and no two query results are ever equivalent.

— The time spent on ontology design and improvement exceeds the time spent on
collecting the data that populates the ontology.

— The ontology lacks modularity. It is impossible to remove a set of classes within the
ontology without reconstructing the entire ontology. When anything goes wrong the
entire ontology must be fixed or redesigned.

— The ontology cannot be fitted into a higher level ontology or a lower-level ontology.

— The ontology cannot be debugged when errors are detected.

— Errors occur without anyone knowing where the error has occurred.

— Nobody, even the designers, fully understands the ontology model.

Simple classifications are not flawless. Here are a few danger signs of an overly-simple
classifications.

1. The classification is too granular.

You find it difficult to associate observations with particular instances within a class or to
particular classes within the classification.

2. The classification excludes important relationships among data objects.

For example, dolphins and fish both live in water. As a consequence, dolphins and fish will
both be subject to some of the same influences (e.g., ocean pollutants and water-borne
infectious agents). In this case, relationships that are not based on species ancestry are
simply excluded from the classification of living organisms and cannot be usefully
examined.
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3. The classes in the classification lack inferential competence.

Competence in the ontology field is the ability to infer answers based on the rules for class
membership. For example, in an ontology you can subclass wines into white wines and red
wines and you can create a rule that specifies that the two subclasses are exclusive. If you
know that a wine is white, then you can infer that the wine does not belong to the subclass
of red wines. Classifications are built by understanding the essential features of an object
that make it what it is; they are not generally built on rules that might serve the interests of
the data analyst or the computer programmer. Unless a determined effort has been made
to build a rule-based classification, the ability to draw logical inferences from observations
on data objects will be sharply limited.

4. The classification contains a “miscellaneous” class.

A formal classification requires that every instance belongs to a class with well-defined
properties. A good classification does not contain a “miscellaneous” class that includes
objects that are difficult to assign. Nevertheless, desperate taxonomists will occasionally
assign objects of indeterminate nature to a temporary class, waiting for further informa-
tion to clarify the object’s correct placement. In the field of biological taxonomy, the task of
creating and assigning the correct classes for the members of these unnatural and tem-
porary groupings, has frustrated biologists over many decades, and is still a source of some
confusion [13]. [Glossary Unclassifiable objects]

5. The classification is unstable.

Simplistic approaches may yield a classification that serves well for alimited number of tasks,
but fails to be extensible to a wider range of activities or fails to integrate well with classifi-
cations created for other knowledge domains. All classifications require review and revision,
but some classifications are just awful and are constantly subjected to major overhauls.

It seems obvious that in the case of Big Data, a computational approach to data clas-
sification is imperative, but a computational approach that consistently leads to failure is
not beneficial. Many of the ontologies that have been created for data collected in many of
the fields of science have been ignored or abandoned by their intended beneficiaries.
Ontologies, due to their multi-lineage ancestries, are simply too difficult to understand
and too difficult to implement.

Section 5.5. Class Blending

It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that

just ain’t so.
Mark Twain

A blended class, also known as a noisy class, results when the taxonomist assigns
unrelated objects to the same class. This almost always leads to errors in data analysis
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whose cause is nearly impossible to find. As an example of class blending, suppose you
were testing the effectiveness of an antibiotic on a group of subjects all having a specific
type of bacterial pneumonia. In this case, the accuracy of your results will be forfeit when
your study population includes subjects with viral pneumonia, smoking-related lung
damage, or a pneumonia produced by some bacteria other than the bacteria that is known
to be sensitive to the antibiotic under study. Basically, a classification has no value if its
classes contain unrelated members.

Errors induced by blending classes are often overlooked by data analysts who
incorrectly assume that the experiment was designed to ensure that each data group is
composed of a uniform and representative population. Sometimes class blending occurs
when an incompetent curator misplaces data objects into the wrong class. For example,
you would not want to hire an astronomer who cannot distinguish a moon from a planet.
More commonly, however, the problem lies within the classification itself. It is not
uncommon for the formal class definition (which includes objective criteria for including
or excluding objects from the class) to be ill-conceived.

One caveat. Efforts to eliminate class blending can be counterproductive if undertaken
with excessive zeal. For example, in an effort to reduce class blending, a researcher may
choose groups of subjects who are uniform with respect to every known observable prop-
erty. For example, suppose you want to actually compare apples with oranges. To avoid
class blending, you might want to make very sure that your apples do not include any
cumgquats or persimmons. You should be certain that your oranges do not include any
limes or grapefruits. Imagine that you go even further, choosing only apples and oranges
of one variety (e.g., Macintosh apples and Navel oranges), size (e.g., 10cm), and origin
(e.g., California). How will your comparisons apply to the varieties of apples and oranges
that you have excluded from your study? You may actually reach conclusions that are inva-
lid and irreproducible for more generalized populations within each class. In this case, you
have succeeded in eliminated class blending at the expense of losing representative sub-
populations of the classes. Some days, the more you try, the more you lose. [Glossary
Representation bias, Confounder]

Section 5.6. Common Pitfalls in Ontology Development

The hallmark of good science is that it uses models and theory but never

believes them.
Martin Wilk

Do ontologies serve a necessary role in the design and development of Big Data resources?
Yes. Because every Big Data resource is composed of many different types of information,
it becomes important to assign types of data into groups that have similar properties:
images, music, movies, documents, and so forth. The data manager needs to distinguish
one type of data object from another, and must have a way of knowing the set of properties
that apply to the members of each class. When a query comes in asking for a list of songs
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written by a certain composer, or performed by a particular musician, the data manager
will need to have a software implementation wherein the features of the query are
matched to the data objects for which those features apply. The ontology that organizes
the Big Data resource may be called by many other names (class systems, tables, data
typing, database relationships, object model), but it will always come down to some
way of organizing information into groups that share a set of properties.

Despite the importance of ontologies to Big Data resources the process of building an
ontology is seldom undertaken wisely. There is a rich and animated literature devoted to
the limitations and dangers of ontology-building [14,15]. Here are just a few pitfalls that
you should try to avoid:

— Do not build transitive classes.

Class assignment is permanent. If you assign your pet beagle to the “dog” class, you
cannot pluck him from this class and reassign him to the “feline” class. Once a dog, always
a dog. This may seem like an obvious condition for an ontology, but it can be very tempting
to make a class known as “puppy.” This practice is forbidden because a dog assigned to
class “puppy” will grow out of his class when he becomes an adult. It is better to assign
“puppy” as a property of Class Dog, with a property definition of “age less than one year.”

— Do not build miscellaneous classes.

As previously mentioned, even experienced ontologists will stoop to creating a
“miscellaneous” class, as an act of desperation. The temptation to build a
“miscellaneous” class arises when you have an instance (of a data object) that does not seem
to fall into any of the well-defined classes. You need to assign the instance to a class, but you
do not know enough about the instance to define a new class for the instance. To keep the
project moving forward, you invent a “miscellaneous” class to hold the object until a better
class can be created. When you encounter another object that does not fit into any of the
defined classes, you simply assign it to the “miscellaneous” class. Now you have two objects
in the “miscellaneous” class. Their only shared property is that neither object can be readily
assigned to any of the defined classes. In the classification of living organisms, Class Pro-
toctista was invented in the mid-nineteenth century to hold, temporarily, some of the
organisms that could not be classified as animal, plant, or fungus. It has taken a century
for taxonomists to rectify the oversight, and it may take another century for the larger sci-
entific community to fully adjust to the revisions. Likewise, mycologists (fungus experts)
have accumulated a large group of unclassifiable fungi. A pseudoclass of fungi, deuteromy-
cetes (spelled with a lowercase “d”, signifying its questionable validity as a true biologic
class) was created to hold these indeterminate organisms until definitive classes can be
assigned. At present, there are several thousand such fungi, sitting in taxonomic limbo, until
they can be placed into a definitive taxonomic class [16]. [Glossary Negative classifier]
Sometimes, everyone just drops the ball and miscellaneous classes become permanent
[17]. Successive analysts, unaware that the class is illegitimate, assumed that the
“miscellaneous” objects were related to one another (i.e., related through their
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“miscellaneousness”). Doing so led to misleading interpretations (e.g., finding similarities
among unrelated data objects, and failing to see relationships that would have been
obvious had the objects been assigned to their correct classes). The creation of an unde-
fined “miscellaneous” class is an example of a general design flaw known as “ontological
promiscuity” [14]. When an ontology is promiscuous the members of one class cannot
always be distinguished from members of other classes.

— Do not confuse properties with classes.

Whenever I lecture on the topic of classifications and ontologies, I always throw out the
following question: “Is a leg a subclass of the human body?” Most people answer yes. They
reason that the normal human body contains a leg; hence leg is a subclass of the human
body. They forget that a leg is not a type of human body, and is therefore not a subclass of
the human body. As a part of the human body, “leg” is a property of a class. Furthermore,
lots of different classes of things have legs (e.g., dogs, cows, tables). The “leg” property can
be applied to many different classes and is usually asserted with a “has_a” descriptor (e.g.,
“Fred has_aleg”). The fundamental difference between classes and properties is one of the
more difficult concepts in the field of ontology.

— Do not invent classes and properties that have already been invented [18].

Time-pressured ontologists may not wish to search, find, and study the classes and
properties created by other ontologists. It is often easier to invent classes and properties
as you need them, defining them in your own Schema document. If your ambitions are
limited to using your own data for your own purposes, there really is no compelling reason
to hunt for external ontologies. Problems will surface only if you need to integrate your
data objects with the data objects held in other Big Data resources. If every resource
invented its own set of classes and properties, then there could be no sensible compari-
sons among classes, and the relationships among the data objects from the different
resources could not be explored.

Most data records, even those that are held in seemingly unrelated databases, contain
information that applies to more than one type of class of data. A medical record, a
financial record and a music video may seem to be heterogeneous types of data, but each
is associated with the name of a person, and each named person might have an address.
The classes of information that deal with names and addresses can be integrated across
resources is they all fit into the same ontology, and if they all have the same intended
meanings in each resource. [Glossary Heterogeneous data]

— Do not use a complex data description language.

If you decide to represent your data objects as triples, you will have a choice of languages,
each with their own syntax, with which to describe your data objects. Examples of "triple"
languages, roughly listed in order of increasing complexity, are: Notation 3, Turtle, RDE
DAML/OIL, and OWL. Experience suggests that syntax languages start out simple; com-
plexity is added as users demand additional functionalities. The task of expressing triples



114 PRINCIPLES AND PRACTICE OF BIG DATA

in DAML/OIL or OWL has gradually become a job for highly trained specialists who work in
the obscure field of descriptive logic. As the complexity of the descriptive language
increases the number of people who can understand and operate the resource tends to
diminish. In general, complex descriptive languages should only be used by well-staffed
and well-funded Big Dataresources capable of benefiting from the added bells and whistles.
[Glossary RDE, Triple]

Section 5.7. Case Study: An Upper Level Ontology

An idea can be as flawless as can be, but its execution will always be full of mistakes.
Brent Scowcroft

Knowing that ontologies reach into higher ontologies, ontologists have endeavored to cre-
ate upper level ontologies to accommodate general classes of objects, under which the
lower ontologies may take their place. Once such ontology is SUMO, the Suggested Upper
Merged Ontology, created by a group of talented ontologists [19]. SUMO is owned by IEEE
(Institute of Electrical and Electronics Engineers), and is freely available, subject to a usage
license [14]. [Glossary RDF Ontology]

As an upper level ontology, SUMO contains classes of objects that other ontologies can
refer to as their superclasses. SUMO permits multiple class inheritance. For example, in
SUMO, the class of humans is assigned to two different parent classes: Class Hominid and
Class CognitiveAgent. “HumanCorpse,” another SUMO class, is defined in SUMO as “A dead
thing that was formerly a Human.” Human corpse is a subclass of Class OrganicObject; not of
Class Human. This means that a human, once it ceases to live, transits to a class that is not
directly related to the class of humans. Consequently, members of Class Human, in the
SUMO ontology, will change their class and their ancestral lineage, at different moments
in time, thus violating the non-transitive rule of classification. [Glossary Superclass]

What went wrong?

— Class HumanCorpse was not created as a subclass of Class Human. This was a mistake,
as all humans will eventually die. If we were to create two classes, one called Class Living
Human and one called Class Deceased Human, we would certainly cover all possible
human states of being, but we would be creating a situation where members of a class
are forced to transition out of their class and into another (violating the intransitive rule
of classification). The solution, in this case, is simple. Life and death are properties of
organisms, and all organisms can and will have both properties, but never at the same
time. Assign organisms the properties of life and of death, and stop there.

One last quibble. Consider these two classes from the SUMO ontology, both of which
happen to be subclasses of Class Substance.

Subclass NaturalSubstance
Subclass SyntheticSubstance
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It would seem that these two subclasses are mutually exclusive. However, diamonds occur
naturally, and diamonds can be synthesized. Hence, diamond belongs to Subclass Natur-
alSubstance and to Subclass SyntheticSubstance. The ontology creates two mutually
exclusive classes that contain members of the same objects. This is problematic, because
it violates the uniqueness rule of classifications. We cannot create sensible inference rules
for objects that occupy mutually exclusive classes.

What went wrong?

— At first glance, the concepts “NaturalSubstance” and “SyntheticSubstance” would
appear to be subclasses of “Substance.” Are they really? Would it not be better to think
that being “natural” or being “synthetic” are just properties of substances; not types of
substances. If we agree that diamonds are a member of class substance, we can say that
any specific diamond may have occurred naturally or through synthesis. We can
eliminate two subclasses (i.e., “NaturalSubstance” and “SyntheticSubstance”) and
replace them with two properties of class “Substance”: synthetic and natural. By
assigning properties to a class of objects, we simplify the ontology (by reducing the
number of subclasses), and we eliminate problems created when a class member
belongs to two mutually exclusive subclasses. We will discuss the role of properties in
classifications in Section 5.9.

As ontologies go, SUMO is one of the best, serving a useful purpose as an upper level
repository of classes that can be used freely by Big Data scientists who are trying to sim-
plify how they classify their data objects. Nonetheless, SUMO is not perfect and we are
reminded that all ontologies are works-in-progress that must be critically examined,
tested, and improved, in perpetuity. [Glossary Data scientist]

Section 5.8. Case Study (Advanced): Paradoxes

Owners of dogs will have noticed that, if you provide them with food, water, shelter,
and affection, they will think you are god. Whereas owners of cats are compelled to
realize that, if you provide them with food, water, shelter, and affection, they draw the
conclusion that they are gods.

Christopher Hitchens

The rules for constructing classifications seem obvious and simplistic. Surprisingly, the
task of building a logical, self-consistent classification is extremely difficult. Most classi-
fications are rife with logical inconsistencies and paradoxes. Let us look at a few examples.

In 1975, while touring the Bethesda, Maryland, campus of the National Institutes of
Health, I was informed that their Building 10 was the largest all-brick building in the world,
providing a home to over 7 million bricks. Soon thereafter, an ambitious construction
project was undertaken to greatly expand the size of Building 10. When the work was fin-
ished, building 10 was no longer the largest all-brick building in the world. What
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happened? The builders used material other than brick, and Building 10 lost its classifi-
cation as an all-brick building, violating the immutability rule of class assignments.

Apparent paradoxes that plague any formal conceptualization of classifications are not
difficult to find. Let us look at a few more examples.

Consider the geometric class of ellipses; planar objects in which the sum of the
distances to two focal points is constant. Class Circle is a child of Class Ellipse, for which
the two focal points of instance members occupy the same position, in the center, produc-
ing a radius of constant size. Imagine that Class Ellipse is provided with a class method
called “stretch,” in which the foci are moved further apart, thus producing flatter objects.
When the parent class “stretch” method is applied to members of the Class Circle the circle
stops being a circle and becomes an ordinary ellipse. Hence the inherited “stretch”
method forces members of Class Circle to transition out of their assigned class, violating
the intransitive rule of classifications. [Glossary Method]

Let us look at the “Bag” class of objects. A “Bag” is a collection of objects and the Class
Bag is included in most object oriented programming languages. A “Set” is also a collec-
tion of objects (i.e., a subclass of Bag), with the special feature that duplicate instances are
not permitted. For example, if Kansas is a member of the set of United States states, then
you cannot add a second state named “Kansas” to the set. If Class Bag were to have an
“increment” method, that added “1” to the total count of objects in the bag, whenever
an object is added to Class Bag, then the “increment” method would be inherited by all
of the subclasses of Class Bag, including Class Set. But Class Set cannot increase in size
when duplicate items are added. Hence, inheritance creates a paradox in the Class Set.
[Glossary Inheritance]

How does a data scientist deal with class objects that disappear from their assigned
class and reappear elsewhere? In the examples discussed here, we saw the following:

1. Building 10 at NIH was defined as the largest all-brick building in the world. Strictly
speaking, Building 10 was a structure; it had a certain weight and dimensions, and it was
constructed of brick. “Brick” is an attribute or property of buildings and properties
cannot form the basis of a class of building, if they are not a constant feature shared by all
members of the class (i.e., some buildings have bricks; others do not). Had we not
conceptualized an “all-brick” class of building, we would have avoided any confusion.

2. Class Circle qualified as a member of Class Ellipse, because a circle can be imagined as
an ellipse whose two focal points happen to occupy the same location. Had we defined
Class Ellipse to specify that class members must have two separate focal points, we
could have excluded circles from class Ellipse. Hence, we could have safely included
the stretch method in Class Ellipse without creating a paradox.

3. Class Set was made a subset of Class Bag, but the increment method of class Bag could
not apply to Class Set. We created Class Set without taking into account the basic
properties of Class Bag, which must apply to all its subclasses. Perhaps it would have
been better if Class Set and Class Bag were created as children of Class Collection; each
with its own set of properties.
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Section 5.9. Case Study (Advanced): RDF Schemas and Class
Properties

It’s OK to figure out murder mysteries, but you shouldn’t need to figure out code. You

should be able to read it.
Steve McConnell

In Section 4.5, “Case Study: A Syntax for Triples,” we introduced the topic of RDF
Schemas, and defined them as web-accessible documents that contain the definitions
of classes. How does the RDF schema know how to describe the classes in such a way
that computers can understand the class definitions and determine the properties that
convey to all the members of a class, and to every member of every subclass of a class?
Without moving too far beyond the scope of this book, we can discuss here the mar-
velous “trick” that RDF Schema employs that solves many of the complexity problems
of ontologies and many of the over-simplification issues associated with classifica-
tions. It does so by introducing the new concept of class property. The class property
permits the developer to assign features that can be associated with a class and its
members. A property can apply to more than one class, and may apply to classes that
are not directly related (i.e., neither an ancestor class nor a descendant class). The
concept of the assigned class property permits developers to create simple ontologies,
by reducing the need to create classes to account for every feature of interest to the
developer. Moreover, the concept of the assigned property gives classification devel-
opers the ability to relate instances belonging to unrelated classes through their
shared property features. The RDF Schema permits developers to build class struc-
tures that preserve the best qualities of both complex ontologies and simple
classifications.

How do the Class and Property definitions of RDF Schema work? The RDF Schema
is a file that defines Classes and Properties. When an RDF Schema is prepared, it is
simply posted onto the Internet, as a public Web page, with a unique Web address.

An RDF Schema contains a list of classes, their definition, and the names of the parent
class(es). This is followed by a list of properties that apply to one or more classes in the
Schema. The following is an example of an RDF Schema written in plain English, without
formal RDF syntax.

Class: Fungi
Definition: Contains all fungi
Subclass of: Class Opisthokonta (described in another RDF Schema)

Class Plantae

Definition: Includesmulticellular organisms suchas floweringplants,
conifers, ferns and mosses.

Subclass of: Class Archaeplastida (described in another RDF Schema)
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Property: Stationary existence
Definition: Adult organism does not ambulate under its own power.
Range of classes: Class Fungi, Class Plantae

Property: Soil-habitation
Definition: Lives in soil.
Range of classes: Class Fungi, Class Plantae

Property: Chitinous cell wall

Definition: Chitin is an extracellular material often forming part of
the matrix surrounding cells.

Range of classes: Class Opisthokonta

Property: Cellulosic cell wall

Definition: Cellulose is an extracellular material often forming part
of the matric surrounding cells.

Range of classes: Class Archaeplastida

This Schema defines two classes: Class Fungi, containing all fungal species, and Class
Plantae containing the flowering plants, conifers and mosses. The Schema defines four
properties. Two of the properties (Property Stationary existence and Property Soil-
habitation apply to two different classes. Two of the properties (Property Chitinous cell wall
and Property Cellulosic cell wall) apply to only one class.

By assigning properties that apply to several unrelated classes, we keep the class
system small, but we permit property comparisons among unrelated classes. In this case,
we defined Property Stationary growth and we indicated that the property applied to
instances of Class Fungi and Class Plantae. This schema permits databases that contain
data objects assigned to Class Fungi or data objects assigned to Class Plantae to include
data object values related to Property Stationary Growth. Data analysts can collect data
from any plant or fungus data object and examine these objects for data values related
to Stationary Growth.

Property Soil-habitation applies to Class Fungi and to Class Plantae. Objects of either
class may include soil-habitation data values. Data objects from two unrelated classes
(Class Fungi and Class Plantae) can be analyzed by a shared property.

The schema lists two other properties, Property Chitinous cell wall and Property Cel-
lulosic cell wall. In this case each property is assigned to one class only. Property Chitinous
cell wall applies to Class Opisthokonta. Property Cellulosic cell wall applies to Class
Archaeplastidae. These two properties are exclusive to their class. If a data object is
described as having a cellulosic cell wall, it cannot be a member of Class Opisthokonta.
If a data object is described as having a chitinous cell wall, then it cannot be a member
of Class Archaeplastidae.

A property assigned to a class will extend to every member of every descendant class.
Class Opisthokonta includes Class Fungi and it also includes Class Animalia, the class of
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all animals. This means that all animals may have the property of chitinous cell wall.
In point of fact, chitin is distributed widely through the animal kingdom, but is not found
in mammals.

As the name implies, RDF Schema are written in RDF syntax. In practice, many of the
so-called RDF Schema documents found on the web are prepared in alternate formats.
They are nominally RDF syntax because they create a namespace for classes and proper-
ties referred by triples listed in RDF documents.

Here is a short schema, written as Turtle triples, and held in a fictitious web site,

“http://www.fictitious_site.org/schemas/life#” [Glossary Turtle]

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@base <http://www.fictitious site.org/schemas/life#>
:Homo instance of rdfs:Class.
:HomoSapiens instance of rdfs:Class;

rdfs:subClassOf :Homo.

Turtle triples have a somewhat different syntax than N-triples or N3 triples. As you can see,
the turtle triple resembles RDF syntax in form, allowing for nested metadata/data pairs
assigned to the same object. Nonetheless, turtle triples use less verbiage than RDE but
convey equivalent information. In this minimalist RDF Schema, we specify two classes
that would normally be included in the much larger classification of living organisms:
Homo and HomoSapiens.

Atriple that refers to our “http://www.fictitious_site.org/schemas/life#” Schema might
look something like this:

:Batman instance of <http://www.fictitious site.org/schemas/
life#>:HomoSapiens.

The triple asserts that Batman is an instance of Homo Sapiens. The data “HomoSapiens”
links us to the RDF Schema, which in turn tells us that HomoSapiens is a class and is the
subclass of Class Homo.

One of the many advantages of triples is their fungibility. Once you have created your
triple list, you can port them into spreadsheets, or databases, or morph them into alternate
triple dialects, such as RDF or N3. Triples in any dialect can be transformed into any other
dialect with simple scripts using your preferred programming language.

RDF documents can be a pain to create, but they are very easy to parse. Even in instances
when an RDF file is composed of an off-kilter variant of RDE it is usually quite easy to write a
short script that will parse through the file, extracting triples, and using the components of
the triples to serve the programmer’s goals. Such goals may include: counting occurrences
of items in a class, finding properties that apply to specific subsets of items in specific classes,
or merging triples extracted from various triplestore databases. [Glossary Triplestore]

RDF seems like a panacea for ontologists, but it is seldom used in Big Data resources.
The reasons for its poor acceptance are largely due to its strangeness. Savvy data
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mangers who have led successful careers using standard database technologies are
understandably reluctant to switch over to an entirely new paradigm of information
management. Realistically, a novel and untested approach to data description, such as
RDE will take decades to catch on. Whether RDF emerges as the data description stan-
dard for Big Data resources is immaterial. The fundamental principles upon which RDF
is built are certain to dominate the world of Big Data.

Section 5.10. Case Study (Advanced): Visualizing Class
Relationships

The ignoramus is a leaf who doesn’t know he is part of a tree
Attributed to Michael Crichton

When working with classifications or ontologies, it is useful to have an image that repre-
sents the relationships among the classes. GraphViz is an open source software utility that
produces graphic representations of object relationships.

The GraphViz can be downloaded from:

http://www.graphviz.org/

GraphViz comes with a set of applications that generate graphs of various styles. Here is
an example of a GraphViz dot file, number.dot, constructed in GraphViz syntax [20]. Aside
from a few lines that provide instructions for line length and graph size the dot file is a list
of classes and their child classes.

digraph G {
size="7,7";
Object -> Numeric;
Numeric -> Integer;
Numeric -> Float;
Integer -> Fixnum
Integer -> Bignum

}

After the GraphViz exe file (version graphviz-2.14.1.exe, on my computer) is installed, you
can launch the various GraphViz methods as command lines from its working directory, or
through a system call from within a script. [Glossary Exe file, System call]

c:\ftp\dot >dot -Tpng number.dot -o number.png

The command line tells GraphViz to use the dot method to produce a rendering of the
number.dot text file, saved as an image file, with filename number.png. The output file
contains a class hierarchy, beginning with the highest class and branching until it reaches
the lowest descendant class.
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FIG. 5.2 A class hierarchy, described by the number.dot file and converted to a visual file, using GraphViz.

With a glance, we see that the highest class is Class Object (Fig. 5.2). Class Object has
one child class, Class Numeric. Numeric has two child classes, Class Integer and Class
Float. Class Integer has two child classes, Class Fixnum and Class Bignum. You might
argue that a graphic representation of classes was unnecessary; the textual listing of class
relationships was all that you needed. Maybe so, but when the class structure becomes
complex, visualization can greatly simplify your understanding of the relationships
among classes.

Here is a visualization of a classification of human neoplasms (Fig. 5.3). It was pro-
duced by GraphViz, from a .dot file containing a ranking of classes and their subclasses,
and rendered with the “twopi” method, shown: [Glossary Object rank]

c:\ftp>twopi -Tpng neoplasms.dot -o neoplasms_classes.png

We can look at the graphic version of the classification and quickly make the following
observations:

1. The root class (i.e., the ancestor to every class) is Class Neoplasm. The GraphViz utility
helped us find the root class, by placing it in the center of the visualization.

2. Every class is connected to other classes. There are no classes sitting out in space,

unrelated to other classes.

Every class that has a parent class has exactly one parent class.

4. There are no recursive branches to the graph (e.g., the ancestor of a class cannot also be
a descendant of the class).

w
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FIG. 5.3 A visualization of relationships in a classification of tumors. The image was rendered with the GraphViz
utility, using the twopi method, which produced a radial classification, with the root class in the center.

If we had only the textual listing of class relationships, without benefit of a graphic visu-
alization, it would be very difficult for a human to verify, at a glance, the internal logic of
the classification.

With a few tweaks to the neo.dot GraphViz file, we can create a nonsensical graphic
visualization:

Notice that one cluster of classes is unconnected to the other, indicating that class
Endoderm/Ectoderm has no parent classes (Fig. 5.4). Elsewhere, Class Mesoderm is both
child and parent to Class Neoplasm. Class Melanocytic and Class Molar are each the child
class to two different parent classes. At a glance, we have determined that the classification
is highly flawed. The visualization simplified the relationships among classes, and allowed
us to see where the classification went wrong. Had we only looked at the textual listing of
classes and subclasses, we may have missed some or all of the logical flaws in our
classification.
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FIG. 5.4 A corrupted classification that might qualify as a valid ontology.

At this point, you may be thinking that visualizations of class relationships are nice, but
who has the time and energy to create the long list of classes and subclasses, in GraphViz
syntax, that are the input files for the GraphViz methods? Now comes one of the great
payoffs of data specifications. You must remember that good data specifications are
fungible. A modestly adept programmer can transform a specification into whatever
format is necessary to do a particular job. In this case, the classification of neoplasms
had been specified as an RDF Schema (vida supra). An RDF Schema includes the defini-
tions of classes and properties, with each class provided with the name of its parent class
and each property provided with its range (i.e., the classes to which the property applies).
Because class relationships in an RDF Schema are specified, it is easy to transform an RDF
Schema into a .dot file suitable for Graphviz.

Here is a short RDF python script, dot.py that parses an RDF Schema (contained in
the plain-text file, schema.txt) and produces a GraphViz .dot file, named schema.dot.
[Glossary Metaprogramming]
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import re, string
infile = open('schema.txt', "xr")
outfile = open ("schema.dot", "w")
outfile.write ("digraph G {\n")
outfile.write("size=\"15,15\";\n")
outfile.write ("ranksep=\"3.00\";\n")
clump = ""
for line in infile:
namematch = re.match(r'\<\/rdfs\:Class>"', line)
if (namematch) :
father=""
child=""
clump = re.sub(r'\n', ' ', clump)
fathermatch = re.search(r'\:resource\=\"[a-zA-Z0-9\:\/\_\.\-1*
\# ([a-zA-Z\_]+)\"', clump)
if fathermatch:
father = fathermatch.group (1)
childmatch = re.search(r'rdf\:ID\=\"([a-2zA-Z\_1+)\"', clump)
if childmatch:
child = childmatch.group (1)
outfile.write(father + " -> " + child + ";\n")
clump =""
else:
clump = clump + line
outfile.write("}\n")

The first 15 lines of output of the dot.pl script:

digraph G {

size="15,15";

ranksep="2.00";

Class -> Tumor classification;

Tumor classification -> Neoplasm;
Tumor classification -> Unclassified;
Neural tube -> Neural tube parenchyma;
Mesoderm -> Sub_coelomic;

Neoplasm -> Endoderm_or_ ectoderm;
Unclassified -> Syndrome;

Neoplasm -> Neural crest;

Neoplasm -> Germ cell;

Neoplasm -> Pluripotent non germ cell;
Sub coelomic -> Sub_coelomic_gonadal;
Trophectoderm -> Molar;
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The full schema.dot file, not shown, is suitable for use as an input file for the GraphViz
utility.

Glossary

Artificial intelligence Artificial intelligence is the field of computer science that seeks to create machines
and computer programs that seem to have human intelligence. The field of artificial intelligence some-
times includes the related fields of machine learning and computational intelligence. Over the past few
decades the term “artificial intelligence” has taken a battering from professionals inside and outside
the field, for good reasons. First and foremost is that computers do not think in the way that humans
think. Though powerful computers can now beat chess masters at their own game, the algorithms for
doing so do not simulate human thought processes. Furthermore, most of the predicted benefits from
artificial intelligence have not come to pass, despite decades of generous funding. The areas of neural
networks, expert systems, and language translation have not met expectations. Detractors have sug-
gested that artificial intelligence is not a well-defined subdiscipline within computer science as it has
encroached into areas unrelated to machine intelligence, and has appropriated techniques from other
fields, including statistics and numerical analysis. Some of the goals of artificial intelligence have been
achieved (e.g., speech-to-text translation), and the analytic methods employed in Big Data analysis
should be counted among the enduring successes of the field.

Beauty To mathematicians, beauty and simplicity are virtually synonymous, both conveying the idea that
someone has managed to produce something of great meaning or value from a minimum of material.
Euler’s identity, relating e, i, pi, 0, and 1 in a simple equation, is held as an example of beauty in math-
ematics. When writing this book, I was tempted to give it the title, “The Beauty of Data,” but I feared
that a reductionist flourish, equating data simplification with beauty, was just too obscure.

Bootstrapping The act of self-creation, from nothing. The term derives from the ludicrous stunt of pulling
oneself up by one’s own bootstraps. Its shortened form, “booting” refers to the startup process in com-
puters in which the operating system is somehow activated via its operating system, which has not
been activated. The absurd and somewhat surrealistic quality of bootstrapping protocols serves as
one of the most mysterious and fascinating areas of science. As it happens, bootstrapping processes
lie at the heart of some of the most powerful techniques in data simplification (e.g., classification,
object oriented programming, resampling statistics, and Monte Carlo simulations).

It is worth taking a moment to explore the philosophical and the pragmatic aspects of bootstrap-
ping. Starting from the beginning, how was the universe created? For believers, the universe was cre-
ated by an all-powerful deity. If this were so, then how was the all-powerful deity created? Was the deity
self-created, or did the deity simply bypass the act of creation altogether? The answers to these
questions are left as an exercise for the reader, but we can all agree that there had to be some kind
of bootstrapping process, if something was created from nothing. Otherwise, there would be no
universe, and this book would be much shorter than it is. Getting back to our computers, how is it
possible for any computer to boot its operating system, when we know that the process of managing
the startup process is one of the most important functions of the fully operational operating system?
Basically, at startup, the operating system is non-functional. A few primitive instructions hardwired
into the computer’s processors are sufficient to call forth a somewhat more complex process from
memory, and this newly activated process calls forth other processes, until the operating system is
eventually up and running. The cascading rebirth of active processes takes time and explains why
booting your computer may seem to be a ridiculously slow process.

What is the relationship between bootstrapping and classification? The ontologist creates a clas-
sification based on a worldview in which objects hold specific relationships with other objects. Hence,
the ontologist’s perception of the world is based on preexisting knowledge of the classification of
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things; which presupposes that the classification already exists. Essentially, you cannot build a clas-
sification without first having the classification. How does an ontologist bootstrap a classification into
existence? She may begin with a small assumption that seems, to the best of her knowledge, unassail-
able. In the case of the classification of living organisms, she may assume that the first organisms were
primitive, consisting of a few self-replicating molecules and some physiologic actions, confined to a
small space, capable of a self-sustaining system. Primitive viruses and prokaryotes (i.e., bacteria) may
have started the ball rolling. This first assumption might lead to observations and deductions, which
eventually yield the classification of living organisms that we know today. Every thoughtful ontologist
will admit that a classification is, at its best, a hypothesis-generating machine; not a factual represen-
tation of reality. We use the classification to create new hypotheses about the world and about the clas-
sification itself. The process of testing hypotheses may reveal that the classification is flawed; that our
early assumptions were incorrect. More often, testing hypotheses will reassure us that our assump-
tions were consistent with new observations, adding to our understanding of the relations between
the classes and instances within the classification.

Categorical data Non-numeric data in which objects are assigned categories, with categories having no
numeric order. Yes or no, male or female, heads or tails, snake-eyes or boxcars, are types of unordered
categorical data. Traditional courses in mathematics and statistics stress the analysis of numeric data,
but data scientists soon learn that much of their work involves the collection and analysis of non-
numeric data.

Cladistics The technique of producing a hierarchy of clades, wherein each branch includes a parent spe-
cies and all its descendant species, while excluding species that did not descend from the parent
(Fig.5.5). If a subclass of a parent class omits any of the descendants of the parent class, then the parent
class is said to be paraphyletic. If a subclass of a parent class includes organisms that did not descend
from the parent, then the parent class is polyphyletic. A class can be paraphyletic and polyphyletic, if it
excludes organisms that were descendants of the parent and if it includes organisms that did not
descend from the parent. The goal of cladistics is to create a hierarchical classification that consists
exclusively of monophyletic classes (i.e., no paraphyly, no polyphyly). Classifications of the kinds
described in this chapter, are monophyletic.

Classification system versus identification system It is important to distinguish a classification system
from an identification system. An identification system matches an individual organism with its
assigned object name (or species name, in the case of the classification of living organisms). Identi-
fication is based on finding several features that, taken together, can help determine the name of an
organism. For example, if you have a list of characteristic features: large, hairy, strong, African, jungle-
dwelling, knuckle-walking; you might correctly identify the organisms as a gorilla. These identifiers are
different from the phylogenetic features that were used to classify gorillas within the hierarchy of

Uy

FIG. 5.5 Schematic (cladogram) of all the descendant branches of a common ancestor (stem at bottom of image). The
left and the right groups represent clades insofar as they contain all their descendants and exclude classes that are not
descendants of the group root. The middle group is not a valid clade because it does not contain all of the descendants
of its group root (i.e., it is paraphyletic). Specifically, it excludes the left-most group in the diagram. From Wikimedia
Commons, author "Life of Riley".
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organisms (Animalia: Chordata: Mammalia: Primates: Hominidae: Homininae: Gorillini: Gorilla). Spe-
cifically, you can identify an animal as a gorilla without knowing that a gorilla is a type of mammal. You
can classify a gorilla as a member of Class Gorillini without knowing that a gorilla happens to be large.
One of the most common mistakes in science is to confuse an identification system with a classifica-
tion system. The former simply provides a handy way to associate an object with a name; the latter is a
system of relationships among objects.

Classification versus index In practice, an index is an alphabetized listing of the important terms in a
work (e.g., book), with the locations of each term within the work. Ideally, though, an index should
be much more than that. An idealized index is a conceptualization of a corpus of work that enables
users to locate the concepts that are discussed and created within the work. How does an idealized
index differ from a classification? A classification is a way of organizing concepts in classes, wherein
the relationships of the concepts are revealed. The classification can incorporate all of the information
held in an index by encapsulating the concept locations together with the names of the concepts.
Because the relationships among the objects in a classification can be used to draw inferences about
the objects, we can think of a classification as an index that can help us think.

Cluster analysis Clustering algorithms provide a way of taking a large set of data objects that seem to have
no relationship to one another, and to produce a visually simple collection of clusters wherein each
cluster member is similar to every other member of the same cluster. The algorithmic methods for
clustering are simple. One of the most popular clustering algorithms is the k-means algorithm, which
assigns any number of data objects to one of k clusters [21]. The number k of clusters is provided by the
user. The algorithm is easy to describe and to understand, but the computational task of completing
the algorithm can be difficult when the number of dimensions in the object (i.e., the number of attri-
butes associated with the object), is large. There are some serious drawbacks to the algorithm: (1) The
final set of clusters will sometimes depend on the initial, random choice of k data objects. This means
that multiple runs of the algorithm may produce different outcomes; (2) The algorithms are not guar-
anteed to succeed. Sometimes, the algorithm does not converge to a final, stable set of clusters; (3)
When the dimensionality is very high, the distances between data objects (i.e., the square root of
the sum of squares of the measured differences between corresponding attributes of two objects)
can be ridiculously large and of no practical meaning. Computations may bog down, cease altogether,
or produce meaningless results. In this case, the only recourse may require eliminating some of the
attributes (i.e., reducing dimensionality of the data objects); (4) The clustering algorithm may succeed,
producing a set of clusters of similar objects, but the clusters may have no practical value. They may
miss important relationships among the objects, or they might group together objects whose similar-
ities are totally non-informative. The biggest drawback associated with cluster analyses is that
researchers may mistakenly believe that that the groupings produced by the method constitute a valid
biological classification. This is not the case because biological entities (genes, proteins, cells, organs,
organisms) may share many properties and still be fundamentally different. For example, two genes
may have the same length and share some sub-sequences, but both genes may have no homology with
one another (i.e., no shared ancestry) and may have no common or similar expressed products.
Another set of genes may be structurally dissimilar but may belong to the same family. The groupings
produced by cluster analysis should never be equated with a classification. At best, cluster analysis
produces groups that can be used to start piecing together a biological classification.

Combinatorics The analysis of complex data often involves combinatorics; the evaluation, on some
numeric level, of combinations of things. Often, combinatorics involves pairwise comparisons of
all possible combinations of items. When the number of comparisons becomes large, as is the case
with virtually all combinatoric problems involving large data sets, the computational effort becomes
massive. For this reason, combinatorics research has become a subspecialty in applied mathematics
and data science. There are four “hot” areas in combinatorics. The first involves building increasingly
powerful computers capable of solving complex combinatoric problems. The second involves
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developing methods whereby combinatoric problems can be broken into smaller problems that can be
distributed to many computers, to provide relatively fast solutions to problems that could not other-
wise be solved in any reasonable length of time The third area of research involves developing new
algorithms for solving combinatoric problems quickly and efficiently. The fourth area, perhaps the
most promising area, involves developing innovative non-combinatoric solutions for traditionally
combinatoric problems, a golden opportunity for experts in the field of data simplification.

Confounder Unanticipated or ignored factor that alters the outcome of a data analysis. Confounders are
particularly important in Big Data analytics, because most analyses are observational; based on col-
lected parameters from large numbers of data records, and there is very little control over confounders.
Confounders are less of a problem in controlled prospective experiments, in which a control group and
a treated group are alike, to every extent feasible; only differing in their treatment. Differences between
the control group and the treated group are presumed to be caused by the treatment, as all of the con-
founders have been eliminated. One of the greatest challenges of Big Data analytics involves develop-
ing new analytic protocols that reduce the effect of confounders in observational studies.

Data scientist Anyone who practices data science and who has some expertise in a field subsumed by
data science (i.e., informatics, statistics, data analysis, programming, and computer science).

Exe file Short for executable file and also known as application file. A file containing a program, in binary
code, that can be executed when the name of the file is invoked on the command line.

Heterogeneous data Sets of data that are dissimilar with regard to content, purpose, format, organization,
and annotations. One of the purposes of Big Data is to discover relationships among heterogeneous
data sources. For example, epidemiologic data sets may be of service to molecular biologists who have
gene sequence data on diverse human populations. The epidemiologic data is likely to contain differ-
ent types of data values, annotated and formatted in a manner that is completely different from the
data and annotations in a gene sequence database. The two types of related data, epidemiologic and
genetic, have dissimilar content; hence they are heterogeneous to one another.

Inheritance The method by which a child is endowed with features of the parent. In object oriented pro-
gramming, inheritance is passed from parent class to child class, meaning that the child class has
access to all of the methods and properties that are held in the parent class.

Intransitive property One of the criteria for a classification is that every object (sometimes referred to as
member or as instance) belongs to exactly one class. From this criteria comes the intransitive property
of classifications; namely, an object cannot change its class. Otherwise an object would belong to more
than one class at different times. It is easy to apply the intransitive rule under most circumstances.
A cat cannot become a dog and a horse cannot become a sheep. What do we do when a caterpillar
becomes a butterfly? In this case, we must recognize that caterpillar and butterfly represent phases
in the development of one particular instance of a species, and do not belong to separate classes.

Iterator Iterators are simple programming shortcuts that call functions that operate on consecutive
members of a data structure, such as a list, or a block of code. Typically, complex iterators can be
expressed in a single line of code. Perl, Python and Ruby all have iterator methods. In Ruby, the iterator
methods are each, find, collect, and inject. In Python, there are types of objects that are iterable (not to
be confused with “irritable”), and these objects accept implicit or scripted iteration methods.

KISS Acronym for Keep It Simple Stupid. With respect to Big Data, there are basically two schools of
thought. This first is that reality is quite complex, and the advent of powerful computers and enormous
data collections allows us to tackle important problems, despite their inherent size and complexity.
KISS represents a second school of thought; that Big Problems are just small problems that are waiting
to be simplified.

Metaprogramming A metaprogram is a program that creates or modifies other programs. Metaprogram-
ming is a particularly powerful feature of languages that are modifiable at runtime. Perl, Python, and
Ruby are all metaprogramming languages. There are several techniques that facilitate metaprogram-
ming features, including introspection and reflection.
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Method Roughly equivalent to functions, subroutines, or code blocks. In object-oriented languages, a
method is a subroutine available to an object (class or instance). In Ruby and Python, instance
methods are declared with a “def” declaration followed by the name of the method, in lowercase. Here
is an example, in Ruby, for the “hello” method, is written for the Salutations class.

class Salutations
def hello
puts "hello there"
end

end

Multiclass classification A misnomer imported from the field of machine translation, and indicating the
assignment of an instance to more than one class. Classifications, as defined in this book, impose one-
class classification (i.e., an instance can be assigned to one and only one class). It is tempting to think
that a ball should be included in class “toy” and in class “spheroids,” but multiclass assignments create
unnecessary classes of inscrutable provenance, and taxonomies of enormous size, consisting largely of
replicate items.

Multiclass inheritance Inontologies, multiclass inheritance occurs when a child class has more than one
parent class. For example, a member of Class House may have two different parent classes: Class Shel-
ter, and Class Property. Multiclass inheritance is generally permitted in ontologies but is forbidden in
classifications that restrict inheritance to a single parent class (i.e., each class can have at most one
parent class, though it may have multiple child classes). When an object-oriented program language
permits multiparental inheritance (e.g., Perl and Python programming languages), data objects may
have many different ancestral classes spread horizontally and vertically through the class libraries.
There are many drawbacks to multi-class inheritance in object oriented programming languages
and these have been discussed at some length in the computer science literature [22]. Medical taxon-
omists should understand that when multi-class inheritance is permitted, a class may be an ancestor
of a child class that is an ancestor of its parent class (e.g., a single class might be a grandfather and a
grandson to the same class). An instance of a class might be an instance of two classes, at once. The
combinatorics and the recursive options can become computationally difficult or impossible. Those
who use taxonomies that permit multiclass inheritance will readily acknowledge that they have cre-
ated a system that is complex. Ontology experts justify the use of multiclass inheritance on the obser-
vation that such ontologies provide accurate models of nature and that faithful models of reality
cannot be created with simple, uniparental classification. Taxonomists who rely on simple, uniparen-
tal classifications base their model on epistemological grounds; on the nature of objects. They hold
that an object can have only one nature and can belong to only one defining class, and can be derived
from exactly one parent class. Taxonomists who insist upon uniparental class inheritance believe that
assigning more than one parental class to an object indicates that you have failed to grasp the essential
nature of the object [22-24].

Negative classifier One of the most common mistakes committed by ontologists involves classification by
negative attribute. A negative classifier is a feature whose absence is used to define a class. An example
is found in the Collembola, popularly known as springtails, a ubiquitous member of Class Hexapoda,
and readily found under just about any rock. These organisms look like fleas (same size, same shape)
and were formerly misclassified among the class of true fleas (Class Siphonaptera). Like fleas, spring-
tails are wingless, and it was assumed that springtails, like fleas, lost their wings somewhere in
evolution’s murky past. However, true fleas lost their wings when they became parasitic. Springtails
never had wings, an important taxonomic distinction separating springtails from fleas. Today, spring-
tails (Collembola) are assigned to Class Entognatha, a separate subclass of Class Hexapoda. Alter-
nately, taxonomists may be deceived by a feature whose absence is falsely conceived to be a
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fundamental property of a class of organisms. For example, all species of Class Fungi were believed to
have a characteristic absence of a flagellum. Based on the absence of a flagellum, the fungi were
excluded from Class Opisthokonta and were put in Class Plantae, which they superficially resembled.
However, the chytrids, which have a flagellum, were have been shown to be a primitive member of
Class Fungi. This finding places fungi among the true descendants of Class Opisthokonta (from which
Class Animalia descended). This means that fungi are much more closely related to people than to
plants, a shocking revelation [13]!

Non-living organism Herein, viruses and prions are referred to as non-living organisms. Viruses lack key
features that distinguish life from non-life. They depend entirely on host cells for replication; they do
not partake in metabolism, and do not yield energy; they cannot adjust to changes in their environ-
ment (i.e., no homeostasis), nor can they respond to stimuli. Most scientists consider viruses to be
mobile genetic elements that can travel between cells (much as transposons are considered mobile
genetic elements that travel within a cell). All viruses have a mechanism that permits them to infect
cells and to use the host cell machinery to replicate. At minimum, viruses consist of a small RNA or
DNA genome, encased by a protective protein coat, called a capsid. Class Mimiviridae, discovered
in 1992, occupies a niche that seems to span the biological gulf separating living organisms from
viruses. Members of Class Mimiviridae are complex, larger than some bacteria, with enormous
genomes (by viral standards), exceeding a million base pairs and encoding upwards of 1000 proteins.
The large size and complexity of Class Mimiviridae exemplifies the advantage of a double-stranded
DNA genome. Class Megaviridae is a newly reported (October, 2011) class of viruses, related to Class
Mimiviridae, but even larger [25]. Biologically, the life of a mimivirus is not very different from that of
obligate intracellular bacteria (e.g., Rickettsia). The discovery of Class Mimiviridae inspires biologists
to reconsider the “non-living” status relegated to viruses and compels taxonomists to examine the
placement of viruses within the phylogenetic development of prokaryotic and eukaryotic
organisms [13].

Nonphylogenetic property Properties that do not hold true for a class; hence, cannot be used by ontol-
ogists to create a classification. For example, we do not classify animals by height, or weight because
animals of greatly different heights and weights may occupy the same biological class. Similarly, ani-
mals within a class may have widely ranging geographic habitats; hence, we cannot classify animals by
locality. Case in point: penguins can be found virtually anywhere in the southern hemisphere, includ-
ing hot and cold climates. Hence, we cannot classify penguins as animals that live in Antarctica or that
prefer a cold climate. Scientists commonly encounter properties, once thought to be class-specific that
prove to be uninformative, for classification purposes. For many decades, all bacteria were assumed to
be small; much smaller than animal cells. However, the bacterium Epulopiscium fishelsoni grows to
about 600 microns by 80 microns, much larger than the typical animal epithelial cell (about 35 microns
in diameter) [26]. Thiomargarita namibiensis, an ocean-dwelling bacterium, can reach a size of
0.75mm, visible to the unaided eye. What do these admittedly obscure facts teach us about the art
of classification? Superficial properties, such as size, seldom inform us how to classify objects. The
ontologist must think very deeply to find the essential defining features of classes.

Object rank A generalization of Page rank, the indexing method employed by Google. Object ranking
involves providing objects with a quantitative score that provides some clue to the relevance or the
popularity of an object. For the typical object ranking project, objects take the form of a key word
phrase.

Observational data Data obtained by measuring existing things or things that occurred without the help
of the scientist. Observational data needs to be distinguished from experimental data. In general,
experimental data can be described with a Gaussian curve, because the experimenter is trying to
measure what happens when a controlled process is performed on every member of a uniform pop-
ulation. Such experiments typically produce Gaussian (i.e., bell-shaped or normal) curves for the
control population and the test population. The statistical analysis of experiments reduces to the chore
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of deciding whether the resulting Gaussian curves are different from one another. In observational
studies, data is collected on categories of things, and the resulting data sets often follow a Zipf distri-
bution, wherein a few types of data objects account for the majority of observations For this reason,
many of the assumptions that apply to experimental data (i.e., the utility of parametric statistical
descriptors including average, standard deviation and p-values), will not necessarily apply to obser-
vational data sets [24].

Parent class The immediate ancestor, or the next-higher class (i.e., the direct superclass) of a class.
For example, in the classification of living organisms, Class Vertebrata is the parent class of Class
Gnathostomata. Class Gnathostomata is the parent class of Class Teleostomi. In a classification, which
imposes single class inheritance, each child class has exactly one parent class; whereas one parent
class may have several different child classes. Furthermore, some classes, in particular the bottom
class in the lineage, have no child classes (i.e., a class need not always be a superclass of other classes).
A class can be defined by its properties, its membership (i.e., the instances that belong to the class), and
by the name of its parent class. When we list all of the classes in a classification, in any order, we can
always reconstruct the complete class lineage, in their correct lineage and branchings, if we know the
name of each class’s parent class [13].

Phenetics The classification of organisms by feature similarity, rather than through relationships. Starting
with a set of feature data on a collection of organisms, you can write a computer program that will
cluster the organisms into classes, according to their similarities. In theory, one computer program,
executing over a large dataset containing measurements for every earthly organism, could create a
complete biological classification. The status of a species is thereby reduced from a fundamental
biological entity, to a mathematical construction.

There are a host of problems consequent to computational methods for classification. First, there
are many different mathematical algorithms that cluster objects by similarity. Depending on the cho-
sen algorithm, the assignment of organisms to one species or another would change. Secondly, math-
ematical algorithms do not cope well with species convergence. Convergence occurs when two species
independently acquire identical or similar traits through adaptation; not through inheritance from a
shared ancestor. Examples are: the wing of a bat and the wing of a bird; the opposable thumb of
opossums and of primates; the beak of a platypus and the beak of a bird. Unrelated species frequently
converge upon similar morphologic adaptations to common environmental conditions or shared
physiological imperatives. Algorithms that cluster organisms based on similarity are likely to group
divergent organisms under the same species.

It is often assumed that computational classification, based on morphologic feature similarities,
will improve when we acquire whole-genome sequence data for many different species. Imagine
an experiment wherein you take DNA samples from every organism you encounter: bacterial colonies
cultured from a river, unicellular non-bacterial organisms found in a pond, small multicellular organ-
isms found in soil, crawling creatures dwelling under rocks, and so on. You own a powerful sequencing
machine, that produces the full-length sequence for each sampled organism, and you have a powerful
computer that sorts and clusters every sequence. At the end, the computer prints out a huge graph,
wherein all the samples are ordered and groups with the greatest sequence similarities are clustered
together. You may think you have created a useful classification, but you have not really, because you
do not know anything about the organisms that are clustered together. You do not know whether each
cluster represents a species, or a class (a collection of related species), or whether a cluster may be
contaminated by organisms that share some of the same gene sequences, but are phylogenetically
unrelated (i.e., the sequence similarities result from chance or from convergence, but not by descent
from a common ancestor). The sequences do not tell you very much about the biological properties of
specific organisms, and you cannot infer which biological properties characterize the classes of clus-
tered organisms. You have no certain knowledge whether the members of any given cluster of organ-
isms can be characterized by any particular gene sequence (i.e., you do not know the characterizing
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gene sequences for classes of organisms). You do not know the genus or species names of the organ-
isms included in the clusters, because you began your experiment without a presumptive taxonomy.
Basically, you simply know what you knew before you started; that individual organisms have unique
gene sequences that can be grouped by sequence similarity.

Taxonomists, who have long held that a species is a natural unit of biological life, and that the
nature of a species is revealed through the intellectual process of building a consistent taxonomy
[27], are opposed to the process of phenetics-based classification [27,13]. In the realm of big data, com-
putational phenetics may create a complex web of self-perpetuating nonsense that cannot be sensibly
analyzed. Over the next decade or two, the brilliance or the folly of computational phenetics will most
likely be revealed.

Properties versus classes When creating classifications, the most common mistake is to assign class
status to a property. When a property is inappropriately assigned as a class, then the entire classifica-
tion is ruined. Hence, it is important to be very clear on the difference between these two concepts, and
to understand why it is human nature to confuse one with the other. A class is a holder of related
objects (e.g., items, records, categorized things). A property is a feature or trait that can be assigned
to an item. When inclusion in a class requires items to have a specific property, we often name the
class by its defining property. For example Class Rodentia, which includes rats, mice, squirrels, and
gophers, are all gnawing mammals. The word rodent derives from the Latin roots rodentem, rodens,
from rodere, “to gnaw.” Although all rodents gnaw, we know that gnawing is not unique to rodents.
Rabbits (Class Lagormorpha) also gnaw.

Objects from many different classes may have some of the same properties. Here’s another
example. Normal human anatomy includes two legs. This being the case, is “leg” a subclass of
“human.” The answer is no. A leg is not a type of human. Having a leg is just one of many properties
associated with normal human anatomy. You would be surprised how many people can be tricked into
thinking that a leg, which is itself an object, should be assigned as a subclass of the organisms to which
it is attached. Some of this confusion comes from the way that we think about relationships between
objects and properties. We say “He is hungry,” using a term of equality, “is” to describe the relationship
between “He” and “hungry.” Technically, the sentence, “He is hungry” asserts that “He” and “hungry”
are equivalent objects. We never bother to say “He has hunger,” but other languages are more fastid-
ious. A German might say “Ich habe Hunger,” indicating that he has hunger, and avoiding any infer-
ence that he and hunger are equivalent terms (i.e., never “Ich bin Hunger”). It may seem like a trivial
point, but mistaking classes for properties is a common error that nearly always leads to disaster.

RDF Resource Description Framework (RDF) is a syntax in XML notation that formally expresses asser-
tions as triples. The RDF triple consists of a uniquely identified subject plus a metadata descriptor for
the data plus a data element. Triples are necessary and sufficient to create statements that convey
meaning. Triples can be aggregated with other triples from the same data set or from other data sets,
so long as each triple pertains to a unique subject that is identified equivalently through the data sets.
Enormous data sets of RDF triples can be merged or functionally integrated with other massive or
complex data resources.

RDF Ontology A term that, in common usage, refers to the class definitions and relationships included in
an RDF Schema document. The classes in an RDF Schema need not comprise a complete ontology. In
fact, a complete ontology could be distributed over multiple RDF Schema documents.

Representation bias Occurs when the population sampled does not represent the population intended for
study. For example, the population for which the normal range of prostate specific antigen (PSA) was
based, was selected from a county in the state of Minnesota. The male population under study consisted
almost exclusively of white men (i.e., virtually no African-Americans, Asians, Hispanics, etc.). It may
have been assumed that PSA levels would not vary with race. It was eventually determined that the
normal PSA ranges varied greatly by race [28]. The Minnesota data, though plentiful, did not represent
racial subpopulations. A sharp distinction must drawn between Big-ness and Whole-ness [29].
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Superclass Any of the ancestral classes of a subclass. For example, in the classification of living organisms,
the class of vertebrates is a superclass of the class of mammals. The immediate superclass of a class
is its parent class. In common parlance, when we speak of the superclass of a class, we are usually
referring to its parent class.

System call Refers to a command, within a running script, that calls the operating system into action,
momentarily bypassing the programming interpreter for the script. A system call can do essentially
anything the operating system can do via a command line.

Triple In computer semantics, a triple is an identified data object associated with a data element and the
description of the data element. In theory, all Big Data resources can be composed as collections of
triples. When the data and metadata held in sets of triples are organized into ontologies consisting
of classes of objects and associated properties (metadata), the resource can potentially provide intro-
spection (the ability of a data object to be self-descriptive). An in-depth discussion of triples is found in
Chapter 4, “Metadata, Semantics, and Triples.”

Triplestore A list or database composed entirely of triples (statements consisting of an item identifier plus
the metadata describing the item plus an item of data. The triples in a triplestore need not be saved in
any particular order, and any triplestore can be merged with any other triplestore; the basic semantic
meaning of the contained triples is unaffected. Additional discussion of triplestores can be found in
Section 6.5, “Case Study: A Visit to the TripleStore.”

Turtle Another syntax for expressing triples. From RDF came a simplified syntax for triples, known as
Notation 3 or N3 [30]. From N3 came Turtle, thought to fit more closely to RDE From Turtle came
an even more simplified form, known as N-Triples.

Unclassifiable objects Classifications create a class for every object and taxonomies assign each and
every object to its correct class. This means that a classification is not permitted to contain unclassified
objects; a condition that puts fussy taxonomists in an untenable position. Suppose you have an object,
and you simply do not know enough about the object to confidently assign it to a class. Or, suppose you
have an object that seems to fit more than one class, and you can’'t decide which class is the correct
class. What do you do?

Historically, scientists have resorted to creating a “miscellaneous” class into which otherwise
unclassifiable objects are given a temporary home, until more suitable accommodations can be pro-
vided. I have spoken with numerous data managers, and everyone seems to be of a mind that
“miscellaneous” classes, created as a stopgap measure, serve a useful purpose. Not so. Historically,
the promiscuous application of “miscellaneous” classes has proven to be a huge impediment to the
advancement of science. In the case of the classification of living organisms, the class of protozoans
stands as a case in point. Ernst Haeckel, a leading biological taxonomist in his time, created the King-
dom Protista (i.e., protozoans), in 1866, to accommodate a wide variety of simple organisms with
superficial commonalities. Haeckel himself understood that the protists were a blended class that
included unrelated organisms, but he believed that further study would resolve the confusion. In a
sense, he was right, but the process took much longer than he had anticipated; occupying generations
of taxonomists over the following 150 years.

Today, Kingdom Protista no longer exists. Its members have been reassigned to positions among
the animals, plants, and fungi. Nonetheless, textbooks of microbiology still describe the protozoans,
just as though this name continued to occupy a legitimate place among terrestrial organisms. In the
meantime, therapeutic opportunities for eradicating so-called protozoal infections, using class-
targeted agents, have no doubt been missed [13].

You might think that the creation of a class of living organisms, with no established scientific rela-
tion to the real world, was a rare and ancient event in the annals of biology, having little or no chance
of being repeated. Not so. A special pseudoclass of fungi, deuteromyctetes (spelled with a lowercase
“d,” signifying its questionable validity as a true biologic class) has been created to hold fungi of
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indeterminate speciation. At present, there are several thousand such fungi, sitting in a taxonomic
limbo, waiting to be placed into a definitive taxonomic class [16,13].
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Section 6.1. Knowledge of Self

All science is description and not explanation.
Karl Pearson [1]

Not very long ago a cancer researcher sent me one of his published papers. For his study,
he used a publicly available collection of gene micro-array data collected on tumors. He
knew that I was a long-time proponent of open access scientific data sets and that I had
been encouraging my colleagues to use these available data sources for various analytic
projects. I read the paper with admiration, but the “methods” section of the paper did not
provide much description of the human lung cancer tissues that were used to generate the
micro-array data. [Glossary Open access]

I called the researcher and asked, perhaps a bit undiplomatically, the following ques-
tion: “The methods section indicates that data on 12 lung cancer tissues, provided by the
repository, were studied. How do you distinguish whether these were 12 lung cancer
samples from 12 different patients, or 12 samples of tissue all taken from one lung cancer,
in one patient?” If it were the former (12 lung cancers from each of 12 patients), his study
conclusions would have applied to a sampling of different tumors and might reasonably
apply to lung cancers in general. If it were the latter (12 samples of one tumor), then his
generalized conclusion was unjustified.

There was a pause on the line, and [ was told that he had neglected to include that infor-
mation in the manuscript, but the paper included a link to the repository Web site, where
the detailed sample information was stored.

After our conversation, I visited the Web site, and found that there was very little infor-
mation describing the samples included in the database. There was a sample number,
followed by the name of a type of cancer (lung cancer, in this case), and then there was
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the raw gene-array data. Were the multiple samples taken from multiple patients, or were
all those samples taken from one tumor, in one patient? We could not say, because the data
would not tell us.

I contacted the researcher again and reiterated the problem. He agreed that the people at
the repository should have been more attentive to data annotation. It has been my
experience that some data analysts believe that their professional responsibility begins with
the received data. In their opinion, pre-analytic issues, such as those described above, do
not fall under their professional jurisdiction. This approach to Big Data analysis is an invi-
tation for disaster. Studies emanating from Big Data resources have no scientific value and
the Big Data resources are all a waste of time and money, if data analysts cannot uncover all
the information that fully describes their data.

The aforementioned story serves as an introduction to the concept of introspection, a
term that is not commonly applied to Big Data resources; but should be. Introspection is a
term taken from the field of object oriented programming, and it refers to the ability of
data objects to describe themselves, when called upon. In object oriented programming
languages, everything is objectified. Variables are objects, parameters are objects,
methods are objects, and so on. Every object carries around its own data values, as well
as an identifier, and self-descriptive information, including its class assignment (i.e., the
name of the class of objects to which it belongs). An object can have its own methods
(similar to subroutines), and it has access to a library of methods built for its class
(i.e., class methods) and from the ancestor classes in its lineage (i.e., superclass methods).

Most object oriented programming languages have methods that can call an object to
describe itself. To illustrate, let us see how Ruby, a popular object oriented programming
language, implements introspection.

“,”,

First, let us create a new object, “x”; we will assign “hello world” to the object.

x = "hello world" yields "hello world"

Ruby knows that “hello world” is a string and automatically assigns “x” to Class String. We
can check any object to see determine its class by sending the “class” method to the object,
as shown.

x.class yields String

When we send the “class” method to x, Ruby outputs its class assignment, “String.” Every
class (except the top level class in the hierarchy) has a single parent class, also known as a
superclass. We can learn the name of the superclass of Class String, by sending the super-
class method, as shown.

x.class.superclass yields Object

Ruby tells us that the superclass of Class String is Class Object.
Ruby assigns a unique identifier to every created object. We can find the object
identifier by sending “x” the object_id method.

x.object id yields 22502910
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The unique object identifier for “x” is 22502910.

“y, ”

If we ever need to learn the contents of “x,” we can send the inspect method to the object.
X.lnspect yields "hello world"

Ruby reminds us that “x” contains the string, “hello world.”
Every data object in Ruby inherits dozens of class methods. We can generate a list of

“y,n

methods available to “x” by sending it the “methods” method.
x.methods

Ruby yields a list of dozens of methods, including a few that we can try out here: “length”,

” o«

“is_a?”, “upcase”, “downcase”, “capitalize”, and “reverse.”
x.length yields 11
The length method, sent to “x” yields the number of characters in “hello world.”

x.1is_a?(String) yields true

When Ruby uses the is_a? method to determine if x is a member of Class String, it yields
“true.”

x.1s_a? (Integer) yields false

When Ruby uses the is_a? method to determine if x is a member of Class Integer, it yields
“false.”

X.upcase yields "HELLO WORLD"
x.downcase yields "hello world"
X.capitalize yields "Hello world"
X.reverse yields "dlrow olleh"

“y,n”

String methods sent to the “x” object return appropriate values, as shown above.

What happens when we send “x” a method from a library of methods built for some
other class?

The “nonzero?” method tests to see whether an object of Class Integer is zero. This
method is useful to avoid division by zero.

Let us see what happens when we send “x” the “nonzero?” method.

X.nonzero? Yields NoMethodError: undefined method “nonzero?'
for "hello world":String

Ruby sends us an error message, indicating that “nonzero?” is an undefined method for an
object of Class String.

How does introspection, a feature of object oriented programming languages, apply to
Big Data? In principle, Big Data resources must have the same features of introspection
that are automatically provided by object oriented programming languages. Specifically,
all data pertaining to the object must be encapsulated within data objects to include the
raw data, a description for the raw data (the so-called metadata), the name of the class to
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which the data object belongs, and a unique identifier that distinguishes the data object
from all other data objects.

I must admit that most Big Data resources lack introspection. Indeed, most Big Data
managers are unfamiliar with the concept of introspection as it applies to Big Data. When
you speak to the people who manage and use these resources, you may be surprised to
learn that they are happy, even ecstatic, about their introspection-free resource. As far
as they are concerned, their resource functions just fine, without introspection. When
pressed on the subject of data introspection, data managers may confess that their Big
Data resources may fall short of perfection, but their users have accommodated them-
selves to minor deficiencies.

There is always a price to pay when Big Data resources lack introspection. Symptoms of
an introspection-free Big Data resource include:

— Theresource is used for a narrow range of activities, somewhat less than was originally
proposed when the resource was initiated.

— Theresource is used by a small number of domain experts; to all others, the resource is
inscrutable.

— The data records for the resource cannot be verified. It is impossible to eliminate the
possibility that records may have been duplicated or that data may have been
mistakenly inserted into the wrong records (i.e., the data records may have been
corrupted).

— The resource cannot merge its data with data contained in other Big Data resources.

— The resource cannot match its record identifiers with record identifiers from
other resources. For example, if each of two Big Data resources has a record on
the same individual, the resources cannot sensibly combine the two records into
a single record.

— The resource cannot add legacy data, collected by their own institution on older
software system, into the current Big Data resource.

— Despite employing a crew of professionals for the resource, only one individual seems
to be privy to the properties of data objects in the largely undocumented system. When
he is absent, the system tends to crash.

Introspection is not a feature that you can attach to a Big Data resource, as an after-
thought. Introspection is a foundational component of any well-designed data resource.
Most Big Data resources will never attain the level of introspection available in object ori-
ented programming languages, but some introspective features would seem essential.

Section 6.2. Data Objects: The Essential Ingredient of Every Big
Data Collection

Computer Science is no more about computers than astronomy is about telescopes.
Edsger W. Dijkstra
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If you have been following the computer science literature, you may have noticed that the
term “data object” has been slowly replacing the shorter, simpler, and more understand-
able term “data.” Do we really need to clutter our minds with yet another example of
dispensable technojargon?

Yes, we must. Despite every intention to minimize the use of jargon in this book, the
term “data object” has already insinuated itself into this book dozens of times. Back in
Section 3.1, we offered a loose definition of data object as “a collection of data that
contains self-describing information, and one or more data values.” In this section, we will
expand the definition to indicate the role of data objects in Big Data construction and
analyses.

Like everything else in this fledgling field of Big Data, there is no canonical definition
for “data object.” As you might expect, practitioners of subdisciplines of computer science
provide definitions of data object that coincide with the way they happen to employ data
objects in their work. For example, someone who works exclusively with relational data-
bases will refer to data tables, indexes, and views as data objects. A programmer who uses
assembly language might refer to a data object as any data that can be referenced from a
particular address in memory. A programmer who works with a typed language, such as
Ada, might think of a data object as being data that has been assigned a particular type
(e.g., string, integer, float).

We can try to find a reasonable definition for data object that serves the imperatives of
Big Data, but before we do, let us look at a few triples.

75898039563441 name G. Willikers
75898039563441 gender male
75898039563441 age 35

75898039563441 1is_a class_member human

These triples tell us a few things about a 35-year-old male named G. Willikers, who is a
human. Without losing any information, we can rearrange this collection of triples under
its identifier, as shown here:

75898039563441

name G. Willikers
gender male

age 35

is_a class_member human

Now, we can begin to see how a collection of triples, all having the same identifier, might
compose a single data object. What we have is one identifier followed by all the available
meta/data data pairs that bind to the same identifier. Someone who prefers working with
spreadsheets might interpret this as a row (with “75898039563441” as its key); having
metadata as its column headers, and having the data as the contents of the row’s cells.
We can guess that the relational database programmer would recognize this as a table.
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The assembly language programmer would look at the same collection and surmise that
it represents the data culled from a referenced address in memory.

For our purposes, let us try to think of the collection as a data object, defined as an
object identifier along with all of the data/metadata pairs that rightly belong to the object
identifier, and that includes one data/metadata pair that tells us the object’s class
(i.e., “human” in this example).

By adding a triple that provides class membership, the data object immediately gains all
of the properties associated with its class “Human,” and this might include a birth date, a
social security number, and an address. If a programmer were to write a set of computational
methods for the class “Human,” then every member of class “Human,” including instance
7589803956344 1, would be qualified to access those methods. In the next section, we will
describe how programmers use the information available within data objects to understand
and to utilize the relationships among data objects. Before proceeding, there are a few prop-
erties of data objects that we should examine. Notice that there is no special order for the
data/metadata pairs encapsulated within the data object. We could shuffle the data/meta-
data pairs any way we please. Furthermore, if each data/metadata pair was attached to its
identifier (75898039563441, in this case), as a triple, then there would be no special reason to
store the components of the data object in one particular memory location.

The following triple could be stored in a server in California:

75898039563441 name G. Willikers
The next triple could be stored in a server in Iceland:
75898039563441 gender male

The triples that compose the data object may exist anywhere and everywhere (i.e., stored
as replicates), and we might have no knowledge of the number of object’s data/metadata
pairs that exist at any moment of time. Wherever the pieces of the data object may reside,
they will forever have the same unique identifier, and will always belong to the same data
object. It is best to think of a data object as an abstraction that is made practical by
software created by programmers. Object oriented programming languages are designed
to create data objects assigned to classes, and provide them with useful computational
methods.

Section 6.3. How Big Data Uses Introspection

“Si sol deficit, respicit me nemo” (“If the sun’s gone, nobody looks at me”)
Latin motto

Let us look at how data objects are used to understand and explore Big Data. First, we must
understand a few new concepts that have been developed for Object-Oriented program-
ming languages, but which apply to all data that supports introspection: encapsulation,
inheritance, polymorphism, and reflection.



Chapter 6 * Introspection 143

Encapsulation refers to general property of a data object to contain the data pertaining
to itself (i.e., its identifier and its data/metadata pairs). When we say “contain,” we are not
referring to a physical container. We are indicating that there is some way by which a
programmer can access an object’s identifier and its data/metadata pairs, through
methods provided by a programming language. The data can be scattered on servers
throughout the globe. So long as there are methods for retrieving the data/metadata pairs,
and ascertaining that these pairs belong to a unique data object, and to no other data
object, then we say that the data object encapsulates its data.

Inheritance refers to the ability of a data object to respond appropriately to methods
created for its class, and for all of its ancestral classes. For example, all members of Class
Document can respond to methods created for its class, such as a “screen_display”
method, or a “printer_print” or a “copy_me” method. Furthermore, since all documents
are composed of strings of alphanumeric sequences, we know that Class Document is
a descendant of Class String. Hence, members of Class Document will inherit the methods
created for Class String, such as a “lowercase” method, a “concatenate” method, or a
“find_substring” method.

This object oriented concept of inheritance fits nicely with the concept of inheritance,
as known to zoologists: every animal inherits the properties of its ancestors. For example,
humans are descendants of the class of animals known as the vertebrates (i.e., Class Ver-
tebrata). This means that every human, like all animal classes that descend from Class Ver-
tebrata, contains a vertebra, and all such animals have shared properties inherited from
their common ancestor (e.g., they all have anatomic structures derived from gill arches
that appear in embryologic development and they all share genes and proteins that were
included in the vertebrates from which they descended).

The key thing to understand, whether you are a computer programmer or a zoologist, is
that inheritance only helps us if we have created a sensible classification (see the princi-
ples of classification in Section 5.2).

Polymorphism is the ability of an object to respond to a named method in a manner
that is appropriate for its own class. For example, if I sent a “double” method to an object
belonging to Class Integer, I might expect it to multiply its contained integer by itself
(e.g., 5 * 2 =10). If I sent the “double” method to an object belonging to Class String,
I might expect it to simply concatenate the contained string to itself (e.g., “3y228hw”
would become “3y228hw3y228hw”).

How does a data object know how to respond polymorphically (i.e., in a manner appro-
priate for its class) to a method? In object oriented programming, classes have methods
that apply to every instance (i.e., member) belonging to the class. When you send the
“double” method to an integer object the integer object knows the name of its own class
and will look inside its class object for a class method named “double.” If it finds the
method, it will do whatever its class method tells it to do; in this case, it will multiply
its integer contents by two. If the double method were sent to a member of Class String,
the data object would pull the “double” method written for objects of the String class,
and would respond appropriately; by concatenating its contained string to itself.
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Polymorphism is achieved by having objects respond to different methods, written for dif-
ferent classes. The different methods may happen to have the same name (i.e., “double” in
this example), but each data object only has access to the “double” method that was writ-
ten for its class.

Now, suppose the data object looks within the collection of methods available to its
class, and fails to find what it’s looking for. In that case, it will look at the methods con-
tained in the parent class of Class String. Remember, in a good classification, every class
contains the name of its parent class; hence the ancestral lineage of any class object can be
computationally traced, up to the root class of the classification. This means that a class
object can search its entire ancestry, if need be, looking for a “double” method. When it
finds the method, it stops and does whatever the method instructs it to perform. This
is known as inheritance polymorphism.

Underlying all these methods (encapsulation, inheritance, and polymorphism) is a
technique known as abstraction. Abstraction encompasses all techniques wherein data
objects are unencumbered by the details of their operational repertoires. For example,
the programmer who sends a method to an object does not need to create the program
by which the method operates. Object methods can be chosen from class libraries. The
object that receives the method does not need to contain the instructions for executing
the method. The object simply needs to know the class to which it has been assigned
membership. Objects will always pull the methods that are appropriate for their own clas-
ses. In object oriented languages, the class libraries subsume the nitty-gritty of program-
ming, and the burden of holding all the information required by data objects is abstracted
into the class structure of the data domain. Not surprisingly, programs written in object
oriented programming languages are famously short, consisting mostly of one-word
methods, sent to one-word names for complex data objects.

There is one more concept that we must discuss: reflection. If you were to take
introspective data gleaned on-the-fly during the execution of a program and you used
that data to modify the run-time instructions of the same program, then you would be
achieving reflection. There are many situations when reflection might come in handy.
For example, you might use introspection to determine that a data object was created
prior to 2010; and then exclude that data object from subsequent computations
intended to show the average value of measurements performed from 2010 to the
present.

What are the benefits of these object-oriented concepts. For the purposes of Big Data,
object-oriented approaches drive down the complexity of the system. Once the classi-
fication has been created, and all of the data objects are assigned to one and only one
class within the classification, all of the wonderful concepts of object-oriented program-
ming (encapsulation, inheritance, polymorphism, and reflection) come to us gratis. The
methods in the class libraries can be written without knowing anything about the
individual class objects. The instances of class objects can exist unencumbered by
any information pertaining to the classification, other than the name of the class in
which they belong.
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Section 6.4. Case Study: Time Stamping Data

People change and forget to tell each other.
Lillian Hellman, playwright (1905-1984)

Consider the following assertions:

Alexander Goodboy, 34 inches height
Alexander Goodboy, 42 inches height
Alexander Goodboy, 46 inches height
Alexander Goodboy, 52 inches height

At first glance these assertions seem contradictory. How can Alexander Goodboy be 34, 42,
46, and 52 inches tall? The confusion is lifted when we add some timing information to the
assertions:

Alexander Goodboy, age 3 years, 34 inches height
Alexander Goodboy, age 5 years, 42 inches height
Alexander Goodboy, age 7 years, 46 inches height
Alexander Goodboy, age 9 years, 52 inches height

All events, measurements and transactions occur at a particular time, and it is essential to
annotate data objects with their moment of creation and with every moment when addi-
tional data is added to the data object (i.e., event times) [2]. It is best to think of data
objects as chronicles of a temporal sequence of immutable versions of the object. In
the case of Alexander Goodboy, the boy changes in height as he grows, but each annotated
version of Alexander Goodboy (e.g., Alexander Goodboy, age 3 years, height 34 inches) is
eternal and immutable. [Glossary Immutability]

Time stamping is nothing new. Ancient scribes were fastidious time stampers. It would
be an unusual Sumerian, Egyptian, or Mayan document that lacked an inscribed date. In
contrast, it is easy to find modern, Web-based news reports that lack any clue to the date
that the Web page was created. Likewise, it is a shameful fact that most spreadsheet data
lacks time stamps for individual data cells. Data sets that lack time stamps, unique iden-
tifiers, and metadata have limited value to anyone other than the individual who created
the data and who happens to have personal knowledge of how the data was created and
what the data means.

Fortunately, all computers have an internal clock. This means that all computer events
can be time stamped. Most programming languages have a method for generating the
epoch time; the number of seconds that have elapsed since a particular moment in time.
On most systems the epoch is the first second of January 1, 1970. Perl, Python, and Ruby
have methods for producing epoch time. For trivia-sake, we must observe that the UUID
time stamp is generated for an epoch time representing the number of seconds elapsed
since the first second of Friday, October 15, 1582 (See Section 5.1, “Unique Identifiers”).
This moment marks the beginning of the Gregorian calendar. The end of the Julian
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calendar occurred on October 4, 1582. The 11 days intervening, from the end of the Julian
calendar to the start of the Gregorian calendar, are lost somewhere in time and space.
From Python’s interactive environment:

import time

print (time.time ())
output:
1442353742.456994

if you would like the GMT (Greenwich Mean Time), try this gmtime.py script:

import time

print (time.gmtime ())

output:

time.struct time (tm year=2017, tm mon=10, tm mday=12, tm hour=14,
tm min=3, tm sec=0, tm_wday=3, tm yday=285, tm isdst=0)

It is very important to understand that country-specific styles for representing the
date are a nightmare for data scientists. As an example, consider: “2/4/97.” This
date signifies February 4, 1997 in America; and April 2, 1997 in Great Britain and
much of the world. There basically is no way of distinguishing with certainty 2/4/97
and 4/2/97.

It is not surprising that an international standard, the ISO-8601, has been created
for representing date and time [3]. The international format for date and time is: YYYY-
MM-DD hh:mm:ss.

The value “hh” is the number of complete hours that have passed since midnight. The
upper value of hh is 24 (midnight). If hh = 24, then the minute and second values must be
zero (think about it). An example of and ISO-8601-compliant data and time is:

1995-02-04 22:45:00
An alternate form, likewise ISO-8601-compliant, is:
1995-02-04T22:45:002

In the alternate form, a “T” replaces the space left between the date and the time, indicat-
ing that time follows date. A “Z” is appended to the string indicating that the time and date
are computed for UTC (Coordinated Universal Time, formerly known as Greenwich Mean
Time, and popularly known as Zulu time, hence the “Z”).

Here is a Python script, format_time.py, that generates the date and time, compliant
with ISO-8601.

import time, datetime

timenow = time.time ()

print (datetime.datetime.fromtimestamp (timenow) .strftime ('%Y-%m-
$H:%M:%S"'))

oe

d
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Here is the output of the format_time.py script:
2015-09-16 07:44:09

It is sometimes necessary to establish, beyond doubt, that a time stamp is accurate and
has not been modified. Through the centuries, a great many protocols have been devised
to prove that a time stamp is trustworthy. One common implementation of a trusted time
stamp protocol involves sending a message digest (i.e., a one-way hash) of a confidential
document to a time stamp authority. The timestamp authority adds a date to the received
message digest and returns a time-annotated message, encrypted with the time stamp
authority’s private key, containing the original one-way hash plus the trusted date. The
received message can be decrypted with the timestamp authority’s public key to reveal
the date/time and the message digest that is unique for the original document. It might
seem as though the trusted time stamp process is a lot of work, but regular users of these
services can routinely process hundreds of documents in seconds. We will be revisiting the
subject of time stamps in Chapter 8, Immutability and Immortality. [Glossary Message
digest, Symmetric key, Trusted time stamp]

Section 6.5. Case Study: A Visit to the TripleStore

Before I speak, 1 have something important to say.
Groucho Marx

Enormous benefits follow when data objects are expressed as triples and assigned to
defined classes. All of the attributes of object oriented programming languages (i.e., inher-
itance, encapsulation, abstraction, and polymorphism) are available to well-organized
collections of triples. Furthermore, desirable features in any set of data, including integra-
tion, interoperability, portability, and introspection are available to data scientists who
analyze triplestore data. Most importantly, when triples are collected as a triplestore, a
simple analysis of the triplestore yields all the relations among data objects, and all the
information needed to assemble every data object,
Here is a small example of a triplestore:

9f0ebdf2"object name™Class
9f0ebdf2"property"subclass of
9f0ebdf2 " property property
9f0ebdf2 "property "definition
9f0ebdf2"property"object name
9f0ebdf2"property " instance of
9f0ebdf2""subclass of"Class
9f0ebdf2"instance of"Class
701cb7ed "object name” Property
701cb7ed "subclass_of"Class
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701cb7ed"definition” " "the metadata class

77cb79d5 " ocbject name™ instance of
77cb79d5 " instance of"Property

77cb79d5 " definition”" the name of the class to which the object is an
instance

a03fbc3b”object nameobject name
a03fbc3b”instance of "Property
a03fbec3bdefinition 'word equivalent of its predicate identifying
sequence

dele5aal”object name  subclass_ of

dele5aal” instance of "Property
delOeb5aaldefinition "the name of the parent class of the referred object
4b675067 object name ‘property

4b675067 instance of "Property

4b675067 definition"an identifier a for class property
c37529c5 object namedefinition
c37529c5 " instance _of " Property
c37529c5definition”"the meaning of the referred object
a29c59c0”object name " dob

a29c59c0” instance of " Property

a29c59c0definition"date of birth, as Day, Month, Year
a34ale35 object name"glucose at time

a34ale35 instance of "Property

a34ale35definition"glucose level in mg/D1 at time drawn (GMT)
03cc6948"object name Organism

03cc6948 " subclass of "Class

7d7ff42b " object_name " Hominidae

7d7ff42b "subclass of"Organism

7d7££42b " property dob

alOce8ec6 object name  Homo

alOce8ec6 subclass of"Hominidae

alOce8ec6 property "glucose at time

al648579  object name Homo sapiens

alée48579 subclass of "Homo

98495efc"object name”Andy Muzeack
98495efc"instance of Homo sapiens

98495efc™"dob™1 January, 2001

98495efc"glucose _at time™87, 02-12-2014 17:33:09

Perusal of the triples provides the following observations:

1. Individual triples are easy to understand, consisting only of a unique
identifier followed by a metadata/data pair. We could have used any
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separator, but in this example, we chose to separate the parts of the triple by a
double caret, “”.
7d7f£42b " subclass _ofOrganism
As noted, the individual parts of the triple are:

7d7£f£f42b is the identifier
subclass_ of is the metadata
Organism is the data

Notice that these triples are expressed in a format different from RDE Notation3, or Turtle.
Do we care? Not at all. We know that with a few lines of code, we could convert our triples-
tore into any alternate format we might prefer. Furthermore, our triplestore could be con-
verted into a spreadsheet, in which the identifiers are record keys, the metadata are
column headings, and the data occupy cells. We could also port our triples into a database,
if we so desired.

2. Using triples, we have defined various classes and properties. For example:

03cc6948 " object name  Organism

03cc6948 " subclass of"Class
With one triple, we create a new object, with name Organism, and we associate it with a
unique identifier (03cc6948). With another triple, we establish that the Organism object is
a class that happens to be the child class of the root class, Class. Because Organism is a
subclass of Class, it will inherit all of the properties of its parent class.

Let’s skip down to the bottom of the file:

98495efcobject name "Andy Muzeack
98495efc™instance of"Homo sapiens
98495efc"dob™"1 January, 2001
98495efc™glucose at time™87, 02-12-2014 17:33:09

Here we create a few triples that provide information about a person named Andy
Muzeack. First, we assign a unique identifier to our new object, named Andy Muzeack.
We learn, from the next triple that Andy Muzeack is a member of class Homo Sapiens.
As such, we infer that Andy Muzeack inherits all the properties contained in class Homo
(the parent class of class Homo Sapiens) and all the ancestors of class Homo, leading to the
top, or root ancestor, class Class. We learn that Andy Muzeack has a “dob” of January 1,
2001. By ascending the list of triples, we learn that “dob” is a property, with a unique
identifier (a29c59c0), and a definition, “date of birth, as Day, Month, Year.” Finally, we learn
that Andy Muzeack has a glucose_at_time of “87, 02-12-2014 17:33:09.” Elsewhere in the
triplestore, we find that the “glucose_at_time” metadata is defined as the glucose level in
mg/Dl at time drawn, in Greenwich Mean Time.

If we wished, we could simply concatenate our triplestore with other triplestores that
contain triples relevant to Andy Muzeack. It would not make any difference how the triples
are ordered. If Andy Muzeack’s identifier is reconcilable, the metadata is defined, and each
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triple is assigned to a class, then we will be able to fully understand and analyze the data
held in the triplestore. [Glossary Reconciliation]

Of course, when we have millions and billions of triples, we could not perform our ana-
lyses by reading through the file. We would need scripts and/or a database application.
Here is a simple Python script, nested.py, that loads a triplestore into a nested dictionary,
and reads the dictionary items:

import collections, sys, re, string, os
from collections import defaultdict
def make dictionary() :
return defaultdict (make dictionary)
tripledictionary=defaultdict (make dictionary)
triple file = open("triple 2.txt", "r")
for line in triple file:
line = line.rstrip()
triple items = line.split(""")
tripledictionary[triple items[0]] [triple items[1]] [triple items
(211 ="
triple file.close()
def iter all(tripledictionary,depth=0):
for key,value in tripledictionary.items () :
if (depth ==0):
print ("\nidentifier " + key)
else:
print ("-"* (depth) + key)
if type(value) is defaultdict:
iter all(value,depth+1)
iter all(tripledictionary)

Here is the partial output of the nested.py script:

identifier a34ale35

-definition

--glucose level inmg/D1 at time drawn (GMT)
-object name

--glucose at time

-instance of

--Property

identifier a29c59c0

-definition

--date of birth, as Day, Month, Year
-object name

--dob



Chapter 6 * Introspection 151

-instance of
--Property
identifier 7d7££42b
-object name
--Hominidae
-subclass_of
--Organism
-property

--dob

identifier aOce8ecé6
-object name

- -Homo
-subclass_of
--Hominidae
-property
--glucose_at_time
identifier 98495efc
-object name
--Andy Muzeack
-instance of
--Homo sapiens
-glucose_at_ time
--87, 02-12-2014 17:33:09
-dob

--1 January, 2001

The first listed data object, followed by its nested metadata/data pairs, is “a34ale35.”

identifier a34ale35

-definition

--glucose level inmg/D1l at time drawn (GMT)
-object name

--glucose _at time

-instance of

--Property

The triples belonging to “a34ale35” tell us that the data object is a Property. The property’s
name is “glucose_at_time,” and the object is defined as the “glucose level in mg/Dl at time
drawn (GMT).” Had we examined all of the output of the nested.py script, we would have
learned that “glucose_at_time” is a property of Class Homo, the subclass of Class
Hominidae.

The last listed data object is “98495efc.”
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identifier 98495efc
-object name

--Andy Muzeack
-instance of

- -Homo sapiens
-glucose _at time

--87, 02-12-2014 17:33:09
-dob

--1 January, 2001

The triples are telling us what we have previously learned; that “98495efc” isamember of Class
Homo sapiens, named Andy Muzeack, and that he has a glucose_at_time of 87 mg/Dl drawn
at December 2, 2014, at 5:33 Greenwhich Mean Time. He was born on January 1, 2001.

Triplestores can be difficult to understand, at first, owing to the seemingly convoluted
self-definitions of the highest-level classes and properties. For example, must we really
know that a property is a member of Class Property and that Class Property is a subclass
of Class Class? Yes and no. These preliminary triples must exist somewhere, but they need
not appear in every triplestore. Ideally, the high level triples would be stored, for reference,
in an upper level ontology. Most triplestores would have the appearance of a list of
spreadsheet cells with row and column headers attached. The power of a well-designed
triplestore comes from the ease with which they can be merged, integrated, and
introspected.

Section 6.6. Case Study (Advanced): Proof That Big Data
Must Be Object-Oriented

The worst form of inequality is to try to make unequal things equal.
Aristotle

Everyone knows what the meaning of the following equation (or do we?):

X=y

Does it mean that x and y are the same thing? Certainly, if x is equal to zero, and x equals y,
then y must also equal zero. But what if x is the truck blocking my view in traffic? Must
I assume that y is the same truck, also blocking my view in traffic? Or does it mean that
y is the same kind of truck as x, but not blocking my view?

Perhaps the equation is an assignment function, indicating that the value of y is being
assigned to x. In this case, if y is 5, then x is assigned the value of 5. In that case, what hap-
pens when y is incremented by 1, to become y + 1, or 6. Does X, being equal to y, also
become equal to 6, or does it keep its assigned value of 5?

Suppose x is a global variable (i.e., a variable that persists for the life of the executing
program) and y is a local variable (a variable that persists only for the life of the subroutine
in which it is created). Then what happens to x when y’s subroutine ends?
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Maybe the equivalency between x and y indicates that x and y happen to contain the
same types and quantities of data objects. For example x is equivalent to y if x contains an
orange and an apple and y contains an orange and an apple. If y gives x its apple and its
orange, then does x become 2x? If so, then how do we describe the result of a transaction
where y gives x its apple but retains its orange. Do we then have 1.5x and 0.5y. Have we
become guilty of falsely comparing apples and oranges?

What is the point of all this annoying sophistry? The “=" sign is an example of a poly-
morphic method. Equality can indicate the assignment of a variable, the establishment of
identity, a property of belonging to sets of objects, or any number of alternate meanings.
Each meaning of “=" is determined by the class of objects it operates upon.

You can see that if the simple “=" sign is polymorphic, then other methods that operate
on objects of different types can also be polymorphic. For example, a “rounding” method
applied to a geometric object would be quite different from a “rounding” method applied
to a floating point number.

How does this relate to Big Data? Remember that Big Data is complex, meaning that it
contains heterogeneous data types. When Big Data contains may different types of data
(i.e., may different classes of data objects), we must be prepared to accommodate poly-
morphic methods. The only way to accommodate polymorphic methods is with
object-oriented rules. Doing so guarantees that an object will respond to a method based
on the method’s defined functionality within the object’s class.

Hence, Big Data must be object oriented.

Glossary

Immutability Immutability is the principle that data collected in a Big Data resource is permanent, and
can never be modified. At first thought, it would seem that immutability is a ridiculous and impossible
constraint. In the real world, mistakes are made, information changes, and the methods for describing
information changes. This is all true, but the astute Big Data manager knows how to accrue informa-
tion into data objects without changing the pre-existing data. Methods for achieving this seemingly
impossible trick are described in Chapter 8.

Message digest Within the context of this book, “message digest”, “digest”, “HMAC”, and “one-way hash”
are equivalent terms.

Open access A document is open access if its complete contents are available to the public. Open access
applies to documents in the same manner as open source applies to software.

Reconciliation Usually refers to identifiers, and involves verifying an object that is assigned a particular
identifier in one information system will be provided the same identifier in some other system. For
example, if you were assigned identifier 967bc9e7-fea0-4b09-92e7-d9327c405d78 in a legacy record
system, you should like to be assigned the same identifier in the new record system. If that were
the case, your records in both systems could be combined. If you were assigned an identifier in
one system that is different from your assigned identifier in another system, then the two identifiers
must be reconciled to determine that they both refer to the same unique data object (i.e., yourself ).
This may involve creating a link between the two identifiers. Despite claims to the contrary, there is no
possible way by which information systems with poor identifier systems can be sensibly reconciled.
Consider this example. A hospital has two separate registry systems: one for dermatology cases and
another for psychiatry cases. The hospital would like to merge records from the two services.
Because of sloppy identifier and registration protocols, a single patient has been registered 10 times
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in the dermatology system, and 6 times in the psychiatry system, each time with different addresses,
social security numbers, birthdates and spellings of the name. A reconciliation algorithm is applied,
and one of the identifiers from the dermatology service is matched positively against one of the records
from the psychiatry service. Performance studies on the algorithm indicate that the merged records
have a 99.8% chance of belonging to the same patient. So what? Though the two merged identifiers
correctly point to the same patient, there are 14 (9 + 5) residual identifiers for the patient still
unmatched. The patient’s merged record will not contain his complete clinical history. Furthermore,
in this hypothetical instance, analyses of patient population data will mistakenly attribute one
patient’s clinical findings to as many as 15 different patients, and the set of 15 records in the corrupted
deidentified dataset may contain mixed-in information from an indeterminate number of additional
patients! If the preceding analysis seems harsh, consider these words, from the Healthcare Information
and Management Systems Society, “A local system with a poorly maintained or ‘dirty’ master person
index (MPI) will only proliferate and contaminate all of the other systems to which it links” [4].

Symmetric key A key (i.e., a password) that can be used to encrypt and decrypt the same file. AES is an

encryption/decryption algorithm that employs a symmetric key.

For example, you may wish to use the AES protocol to encrypt the file myfile.txt, using the following com-

mand line code:

openssl.exe aesl28 -inmyfile.txt -out myfile.aes -pass pass:12345

In this example, the encrypted output file is myfile.aes, and the password is “12345”.
To decrypt the encrypted file, you would use the same password that you used to encrypt the file, and
a decrypt instruction (“-d” in this case):

openssl aesl28 -d -inmyfile.aes -out myfiledecrypted.txt -pass pass:12345

Trusted time stamp It is sometimes necessary to establish, beyond doubt, that a time stamp is accurate

and has not been modified. Through the centuries, a great many protocols have been devised to prove
that a time stamp is trustworthy. One of the simplest methods, employed in the late twentieth century,
involved creating a digest of a document (e.g., a concatenated sequence consisting of the first letter of
each line in the document) and sending the sequence to a newspaper for publication in the
“Classifieds” section. After publication of the newspaper, anyone in possession of the original docu-
ment could extract the same sequence from the document, thus proving that the document had
existed on the date that the sequence appeared in the newspaper’s classified advertisements.

Near the end of the twentieth century, one-way hash values become the sequences of choice for trusted

time stamp protocols. Today, newspapers are seldom used to establish trust in time stamps. More com-
monly, a message digest of a confidential document is sent to a time stamp authority that adds a date
to the digest and returns a message, encrypted with the time stamp authority’s private key, containing
the original one-way hash plus the trusted date. The received message can be decrypted with the time
stamp authority’s public key, to reveal the data/time and the message digest that is unique for the orig-
inal document. It seems like the modern trusted time stamp protocol is a lot of work, but those who use
these services can quickly and automatically process huge batches of documents.
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Section 7.1. Standards

The nice thing about standards is that you have so many to choose from.
Andrew S. Tanenbaum

Everyone is taught, at an early age, the standard composition of a written letter. You start
with the date, then you include the name and address of your correspondent, then you
write a salutation (e.g., “Dear Abby,”), then comes the body of the letter, followed by a clos-
ing (e.g., “Best wishes,”) and your name and signature on the next lines. It is all rather rigid
and anyone can recognize a page of correspondence, from across the room, just by the
configuration of lines and paragraphs on the page.

Now, consider the reminder notes that you leave for yourself. You might jot a thought
down on a Post-it and hang your Post-it notes on your refrigerator, you might use a small
paper notepad, or you might write something on your computer or your smartphone. You
might carry a little voice recorder for this purpose. The point is that there are an endless
variety of methods whereby people leave notes for themselves, yet there is only one format
for writing a letter to a friend.

The reason for this disparity in available options relates to the important distinction
between self and non-self. When you write a note to yourself, you are free to do as you
please. When you write a note to another person, you must conform to a standard.

The entire concept of data integration, and software interoperability draws from the
same basic rule. If you intend to create your own data to serve your own purposes, then
you need not be concerned with data integration and software interoperability. Everyone
else must toe the line.

Until the last decade or two, most data systems were created for use within one orga-
nization or corporation. The last thing on anyone’s minds was providing access to out-
siders. All this has changed. Today, data means very little if it cannot be integrated with
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related data sources. Today’s software protocols operate with standard application pro-
gramming interfaces that mediate the interchange of data over operating systems and net-
works. [Glossary Data interfaces]

In small data projects, a single standard will often support the successful interchange
of data. In a Big Data project, data integration and system interoperability might involve
the use of multiple standards with data conforming to multiple versions of each standard.
Sharing the data across networks may involve the use of many different interchange pro-
tocols. The purpose of this chapter is familiarize data managers with standards issues that
are important to Big Data resources.

Standards are sometimes touted as the solution to every data integration issue [1].
When implemented as intended, they can support the exchange of data between hetero-
geneous systems [2]. Such exchanges may involve non-equivalent databases (i.e., data-
bases with different data models, different software holding different types of data).
Exchanges may also involve information transfer between humans and databases, or
between software agents and mechanical devices. Any exchanges between one data
source and another data source can benefit from standards for describing the data and
standards for transferring the data.

Whereas a single, all-purpose, unchanging, and perpetual standard is a blessing for Big
Data managers, an assortment of incompatible standards can be a curse. The utility of
data standards has been undermined by the proliferation of standards, the frequent ver-
sioning of data standards, the intellectual property encumbrances placed upon standards,
the tendency for standards to increase in complexity over time, the abandonment of
unpopular standards, and the idiosyncratic ways in which standards are implemented
by data managers.

Look at the field of information science and the growing role of Big Data in science and
society; it is tempting to believe that the profusion of standards that we see today is the
result of rapid growth in a new field. As the field matures, there will be a filtering-out pro-
cess wherein the weaker standards are replaced by the strongest, most useful standards,
until we reach a point when a few tested and stable standards dominate. This scenario will
probably never happen. To the contrary, there is every indication that the number of stan-
dards will increase, that the newly created standards will not serve their intended pur-
poses, and that future revisions of these early and inadequate standards will be more
complex and less useful than their inadequate predecessors.

Of course, the future need not be so dreary, but it is worth taking a look at some of the
scientific, economic, legal, and social forces that push us to create more and more stan-
dards of lower and lower quality.

1. There is no guiding force that has either the authority or the popular support to
limit the flood of new standards. They just keep coming

Today, there are thousands of organizations that develop standards; these are called
Standards Development Organizations (SDOs). The development of standards has
become part of the established culture of technology. SDOs may become members of a
Standards Activities Organization, such as the American National Standards Institute
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(ANSI), which coordinates between Standards Development Organizations and Standards
Organizations, providing guidance and procedures to attain certified new standards.
Above the Standards Activities Organizations are the standards certifying agencies. The
two most important are ISO (International Organization for Standardization) and IEC
(International Electrochemical Commission).

Aside from SDOs, there are independent-minded groups that create their own stan-
dards without following the aforementioned route. These groups often develop standards
for their members of for their own private consumption. They see no reason to make the
effort to follow a path to the ISO or the IEC. There is no way to count the number of inde-
pendent standards that are being created.

In addition to the standards produced by SDOs and independent groups, there are the
de facto standards that seem to arise out of thin air and rapidly gain in popularity. These
represent the “better mousetraps” that somebody builds and to which the world beats a
path. In the long run, de facto standards such as TCP/IP, QWERTY keyboards, PDF files,
and Microsoft Word DOC documents, will have a much greater influence than any official
standards.

2. Standards can be easy to create, especially if they are narrowly focused.

Many standards are created for a niche audience. When the topic is very narrow, a stan-
dard can be developed in under a month, through the part-time efforts of a few motivated
individuals. The time-consuming component of the standards process is vetting; getting
your committee members and your user community to read, understand, approve, sup-
port, and use the finished product. For the technically-minded, the vetting process can be
an insurmountable obstacle. The creators of the standard may not have the stamina,
social skills, money, or influence to produce a popular and widely implemented standard.
Nonetheless, it is relatively easy to write a standards document and publish it as a journal
article or as a Web posting, vetted or not.

3. Standards are highly profitable, with many potential revenue streams.

When there is no industry standard for data representation, then each vendor may prepare
his or her own proprietary data model to establish “vendor lock-in.” The customer’s data is
held in the format provided by the vendor. Because the format is proprietary, competing
vendors cannot appropriate the format in their own hardware and software. The customer
becomes locked into the vendor’s original system, upgrades, and add-ons. Proprietary sys-
tems provide vendors with an opportunity to gain customer loyalty, without necessarily
producing a superior product.

One of the purposes of industry-wide standards is to abolish proprietary systems. The
hope is that if every vendor’s software, hardware and data models were equivalent, then
buyers could break away from locked-in systems; the free market would prevail.

Who sits on standards development committees? Who has the time to invest in the
vetting process? Who has the expertise to write a standard? Who can afford to send
representatives across the globe to attend committee meetings? Vendors; vendors write
the standards, vendors vet the standards, and vendors implement the standards.
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Large corporations can afford to send a delegation of standards experts to a standards
committee. Furthermore, the corporation that sends delegates will pay for membership
in the committee. Consequently, the standards committee becomes dependent on corpo-
rations that finance the standards process, and this dependence strengthens the corpora-
tion’s influence. The corporation will work to create a standard that can be technically
supported by the products in place or under development. The standards-making corpo-
rations secure an advantage over competitors who do not participate in the standards
committee meetings and who cannot anticipate the outcome of the standards process
or who cannot comply with finalized rulings for reasons of system incompatibility or sim-
ply because the proposed standard is technically beyond the capacity of their staff.

It is one of the great ironies of informatics that standards are written by the very
same people who are the standard’s intended targets of restraint. Vendors are clever
and have learned to benefit from the standards-making process. In some cases, a mem-
ber of a standards committee may knowingly insert a fragment of patented property
into the standard. After the standard is released and implemented in many different
vendor systems, the patent holder rises to assert the hidden patent. In this case, all
those who implemented the standard may find themselves required to pay a royalty
for the use of some intellectual property sequestered within the standard. The practice
of hiding intellectual property within a standard or device is known as patent farming
or patent ambushing [3]. The patent farmer plants seeds in the standard and harvests
his crop when the standard has grown to maturity; a rustic metaphor for some highly
sophisticated and cynical behavior.

Savvy standards committees take measures to reduce patent farming. This often
takes the form of an agreement, signed by all members of the standards committee,
to refrain from asserting patent claims on the users of the standards. There are several
ways to circumvent these agreements. If a corporation holds patents on components
of a standard, the corporation can sell their patents to a third party. The third party
would be a so-called patent holding company that buys patents in selected technol-
ogies with the intention of eventually asserting patents over an array of related activ-
ities [4]. If the patent holder asserts the patent, the corporation might profit from
patent farming, through their sale of the patent, without actually breaking the agree-
ment. [Glossary Patent farming]

Corporations can profit from standards indirectly by obtaining patents on the uses
of the standard; not on the patent itself. For example, an open standard may have been
created that can be obtained at no cost, is popular among its intended users, and
contains no hidden intellectual property. An interested corporation or individual
may discover a use for the standard that is non-obvious, novel, and useful; these are
the three criteria for awarding patents. The corporation or individual can patent the
use of the standard, without needing to patent the standard itself. The patent holder
will have the legal right to assert the patent over anyone who uses the standard for
the purpose claimed by the patent. This patent protection will apply even when the
standard is free and open.
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The world of standards is a very strange place. Big Data managers are particularly vulner-
able to the legal trappings associated with standards because Big Data is complex and diverse
and requires different standards for different types of data and for different types of software.

4. Standards are popular (everyone wants one of their own).

Having your own standard is somewhat of a status symbol. Whenever a team of scientists
develops anew method, a variant of an old method, and an organized way of collecting the
data produced by the method, there will be a natural urge to legitimize and aggrandize
their efforts with a new standard. The standard will dictate how the method is used,
and how the data is collected, labeled, and stored. In the late 1990s the most favored
way to represent data was through a new markup language; basically a list of specialized
XML tags and a Schema that dictated the nesting hierarchy of the tags. In almost every
case, these niche markup languages were self-contained constructs that did not re-use
tags from related markup languages. For example, many different markup languages con-
tained an equivalent tag that described the sample name or the sample identifier, but
these mark-up languages did not refer to pre-existing equivalent tags in other Schemas
(i.e., they did not make use of established namespaces). Consequently, a Babel of markup
languages sprang into existence, with no attempt at harmonizing the languages or sharing
content among the different languages. Thankfully, the markup language fad has passed,
but a basic problem persists. Deep down, scientists believe that their way of organizing
their own data should be the standard for the entire world. This irrational belief accounts
for much of the unchecked proliferation of personalized standards.

5. Most standards are created for reasons that applied in the past, but which
do not apply in the Big Data era.

For the last half century the purpose of a standard was to ensure that everyone who
created a particular type of object (e.g., a physical object, or a document, or a collection
of a specific type of information) would do so in the same way, so that the objects could be
compared and categorized.

For example, imagine an international standard for death certificates. You would
naturally want each certificate to contain the same information, including the name of
the deceased, identifying information (e.g., date of birth, gender, race), causes of death
and contributing factors, all coded in accordance with a standard nomenclature. With
the cause of death, you would want to find details of the circumstances of the death
(e.g., date and time of death, time at which the certificate was signed). Regarding format,
you might want every country to list the contents of the document in the same order, num-
bered identically, so that item 4 in a Portuguese death certificate would correspond to item
4 in an Australian certificate. You may want the layout of the documents to be identical
(e.g., name of deceased in the upper left, date of birth of deceased in the upper right).
These restrictions are intended to facilitate comparisons among death certificates world-
wide. This detailed approach to layout is terribly outdated and largely irrelevant to the
purposes of standards in Big Data resources.
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In the Big Data universe the purpose of a standard is not to compare one document
with another document of the same kind; the purpose of a standard is to enable data ana-
lysts to relate data objects within a document to data objects contained in documents of a
different kind.

This last point is the most difficult for people to accept, particularly those people who
have been supporters of data standards and who have used them to good effect in their
work. It is a near-impossible task to convince someone to abandon a paradigm that has
served him or her well. But it is worth a try!

Let us reexamine the role of the standard death certificate in Big Data analysis. The
“cause of death” section will contain the primary cause of death plus any diseases that
contributed to the primary cause of death. Another database, in a hospital information
system, might list various diseases that co-exist in living patients. By comparing data in
the database of death certificates with data in a hospital information system, it may be
possible to find sets of diseases that co-occur with a high risk of death. By comparing
the average age at which a particular disease is associated with death, it may be possible
to predict when a disease under treatment is likely to lead to death. The occurrence of dis-
eases in particular racial groups included in death certificate data may lead to disparities
found in the occurrence of the same diseases in a living population. These are extremely
simple examples wherein data values included in one standard data set (death certificates)
are compared with data values in another standard data set (Electronic Health Records).
The comparisons are made between selected data values in heterogeneous data sets; the
comparisons are not made between two documents that conform to the same standard.

The phenomenon of data integration over heterogeneous sources is repeated in virtu-
ally every Big Data effort. A real estate property with a known address is matched against
crime statistics collected for its listed zip code. A planting chart based on a list of popular
flowers and vegetables within a locality is matched against a climate zone dataset matched
to geographic region. A data set of personal buying preferences for a population of indi-
viduals is matched against a list of previously sold items, and their features, and a list of
items-for-sale and their features. In each case, the comparisons are made for data values
held in heterogeneous data sets.

In an earlier era, standards served to create data homogeneity. In the Big Data era,
standards should help us find the data relationships in heterogeneous data sources.

Section 7.2. Specifications Versus Standards

Good specifications will always improve programmer productivity far better than

any programming tool or technique.
Milt Bryce

The two terms, “standards” and “specifications” are used interchangeably in the informat-
ics literature, but they are different from one another in very important ways. A “standard”
is a set of construction rules that tells you how to represent a required set of information.
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For a given subject (i.e., an image, a movie, a legal certificate, a programming language),
the standard tells you exactly how the contents must be organized, from top to bottom,
and the contents that must be included, and how those contents are expressed. For a stan-
dard to have value, it generally requires approval from a standards-certifying organization
(such as the ISO), or from some large and influential industry group.

A specification is a general way of describing objects (i.e., physical objects such as
nuts and bolts or symbolic objects such as numbers) so that anyone can fully under-
stand your intended meaning. Specifications do not force you to include specific types
of information, and do not impose a specific order on the data contained in the docu-
ment. Specifications are not generally certified by a standards organization. Their legit-
imacy depends on their popularity. Examples of specifications are RDF (Resource
Description Framework) produced by the W3C (WorldWide Web Consortium), and
TCP/IP (Transfer Control Protocol/Internet Protocol), maintained by the Internet Engi-
neering Task Force.

The strength of a standard is that it imposes uniformity; the weakness of a standard is
that it has no flexibility and impedes innovation. An engineer might want to manufacture
a cup with a very wide bottom rim and a narrow top rim; or with no handle; or with three
handles; or with an attached computer chip. If the standard prohibits the bottom rim
diameter to exceed the top rim diameter, or requires exactly one handle, or has no method
for describing ancillary attachments, then the innovator cannot comply with the standard.

The strength of the specification is that it is highly flexible; the weakness of the spec-
ification that its flexibility allows designers to omit some of the information required to
fully specify the object. In practice, proper implementation of specifications is ensured
by usability tests. If everyone seems to understand your implementation of a specification,
and if your implementation functions adequately, and operates with other systems with-
out problems, then the specification has served its intended purpose.

Both standards and specifications suffer from the following:

1. New versions may appear, without much notice, and the new versions may not
be fully compatible with older versions.

For example, Python 3.x has a somewhat different syntax than Python 2.x. Your Python 2.x
programs will not necessarily run in a Python 3.x environment, and your Python 3.x pro-
grams may not run in a Python 2.x environment. Incompatible programs may run for a
while, and then stop when a conflict arises. Because the glitch is caused by a language
incompatibility, not a programming error, you may find the debugging process
exasperating.

2. Both standards and specifications may be overly complex.

It is easy for a standards committee to create a complex standard or for an organization to
develop a specification language that contains thousands of metadata tags. A complex
standard or specification can easily exceed human comprehension. Data managers
may be hesitant to stake their resource on tools that they cannot understand.
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3. There are too many standards and specifications from which to choose.

Big Data managers would like to stay in conformance with industry standards. The prob-
lem is that Big Data serves many different purposes and must comply with many different
standards, all at the same time.

After a standard has been created, there follows a Darwinian struggle for supremacy.
Standards committees sometimes display group behavior that can be described as anti-
social or even sociopathic. They want their standard to be the only standard used in a data
domain. If there are other standards in the data domain, they sometimes use coercive
methods to force everyone to use their standard.

The most common coercive argument involves threatening colleagues with the
inflated claim that everyone will be using the standard; failing to switch to the standard
will result in loss of business opportunities. The proponents of a standard may suggest
that those who fail to adopt the standard will be ostracized and marginalized by their col-
leagues. I have personally heard coercive arguments from some of my colleagues who, in
every other respect, are decent and altruistic individuals. The reason for their nastiness
often comes down to economics. Vendors and Big Data managers select a standard in
the full knowledge that a poor choice may bring financial ruin. If the vendor builds a data
model to fit a standard, and their market does not adapt the standard, then they will not be
able to sell their software. If a Big Data manager annotates terabytes of data in confor-
mance with an ontology that is soon-to-be-abandoned by its user community, then the
value of the resource will plummet. Nevertheless, there can be no excuses for bad behav-
ior; coercion should not be tolerated.

A few commonsense measures might help the data manager:

— Learn how to decompose the standard document into an organized collection of
data objects that can be merged with other data object collections or inserted
into a preferred data model.

— Iffeasible, avoid using any standard as your data object model for the resource. It is
often best to model your own data in a simple but flexible format that can be ported
into any selected standard, as needed.

— Know the standards you use. Read the license agreements. Keep your legal staff
apprised of your pending decisions.

— Try your best to use standards that are open source or that belong to the public
domain. [Glossary Public domain]

Section 7.3. Versioning

I visited the Sage of reverend fame

And thoughtful left more burdend than I came.
I went- - and ere I left his humble door

The busy World had quite forgot his name.

Ecclesiastes
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In the year 2000 I attended a workshop in San Diego whose purpose was to introduce
pathologists to new, standardized protocols for describing different types of cancer spec-
imens (e.g., cancer of the adrenal gland, cancer of the prostate, cancer of the lung, etc.)
This was not the first such standardization effort. Over the past decade, several groups
had been pushing for standards that would ensure that pathology reports prepared in
any United States hospital would contain the same kind of information for a given type
of specimen. Having a reporting standard seemed like a good idea, but as I looked at
the protocols I saw lots of problems. Lists of required items seemed incomplete and many
of the descriptors were poorly defined. Some of the descriptors were non-qualitative and
required subjective data. The final reports would not be highly reproducible between lab-
oratories or within a single laboratory. These deficiencies are par for the course in any
standards effort. I asked the chairman how she planned to deal with producing and con-
trolling new versions of the standard. She replied that because the standards had been pre-
pared by experts and thoroughly tested by a panel of implementers, there would be no
need to develop new versions of the standard. She was telling me that the new standard
had been born perfect! Eighteen years have passed, during which time the standards have
been subjected to unceasing modifications. [Glossary Reproducibility]

For most types of standards and specifications, versioning is a requirement. Nomen-
clatures in every area of science and technology are constantly being updated. Every year,
the Medical Subject Headings comes out with an updated version. Some nomenclatures
are actually named according to the version (e.g., ICD-10 is the tenth version of the Inter-
national Classification of Diseases). New versions of nomenclatures are not simple expan-
sions of older versions. Aside from the addition of new terms, old terms must be retired,
and new coding sequences are sometimes created. The relationships among terms (i.e.,
the class or classes to which a term belongs) might change.

Without exception, all large nomenclatures are unstable. Changes in a nomenclature
may have a ripple effect, changing the meaning of terms that are not included in the
nomenclature. Here is an example from the world of mycology (the study of fungi). When
the name of a fungus changes, so must the name of the associated infection. Consider
“Allescheria boydii,” People infected with this organisms were said to suffer from the dis-
ease known as allescheriasis. When the organism’s name was changed to Petriellidium
boydii, the disease name was changed to petriellidosis. When the fungal name was chan-
ged, once more, to Pseudallescheria boydii, the disease name was changed to pseudal-
lescheriasis [5]. All three names appear in the literature (past and present). In this case,
changes in the fungal nomenclature necessitate reciprocal changes in every disease
nomenclature. Such changes may require months, years, and even decades to adjudicate
and finalize in the newer version of the nomenclature. Within this period, the term may
change again and the corrected version of the disease nomenclature may be obsolete on
its release date.

We discussed classifications and ontologies in Chapter 5. Classifications have a very
strong advantage over ontologies with regard to the ease of versioning. Because each class
in a classification is restricted to a single parent, the hierarchical tree of a classification is
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simple. When a class needs to be repositioned in the classification tree, it is a simple mat-
ter to move the class, with its intact branches, to another node on the tree. We do this from
time to time with the classification of living organisms.

Unlike the case with uniparental classifications, it is virtually impossible to make
sweeping changes in multiparental ontologies. In every complex ontology, we can expect
to encounter class branches insinuated across multiple classes. A class cannot simply be
cut and repositioned elsewhere. The more complex the ontology, the more difficult it is to
modify its structure.

Section 7.4. Compliance Issues

It's not worth doing something unless someone, somewhere, would much rather you
weren't doing it.
Terry Pratchett.

When it comes to complex standards, compliance is in the eye of the beholder.
One vendor’s concept of standard-compliant software might be entirely different
from another vendor’s concept. Standards organizations seldom have the time, man-
power, money, or energy to ensure compliance with their standards; consequently, the
implementations of standards are often non-standard and incompatible with one
another.

In large part, non-compliance is caused by the instability of modern standards. As we
have seen, standards themselves may contain flaws related to the complexity of the tech-
nologies they model. When a technology outpaces the standard built for the technology, it
may be impossible for businesses to adequately model all of their data and processes
within the standard.

Small businesses may not have the manpower to keep abreast of every change in a
complex standard. Large businesses may have the staff and the expertise to stay compli-
ant; but they may lack the incentive. If they produce a product that works well, and is
believed, wrongly or not, to be compliant with a standard, then it may be in the best inter-
est of the business to purposefully introduce a bit of non-compliance. The expectation
being that small deviations from the standard will create incompatibilities between their
products and their competitors; thus achieving vendor lock-in. Their customers will be
loath to switch to another vendor’s products if they fear that their original system will
not support software or hardware produced by rival companies.

Compliance with specifications is, in general, much easier than compliance with stan-
dards. Data specifications provide a syntax and a general method for describing data
objects, without demanding much in the way of structuring the data. In most cases, it
is relatively easy to produce a program that determines whether a file conforms to a
specification.

When a file conforms to the syntax of a specification, it is said to be well formed. When
a file conforms to a document that describes how certain types of objects should be



Chapter 7 » Standards and Data Integration 165

annotated (e.g., which tags should be used, the relationships among tags, the data value
properties that can be assigned to tags, the inclusion of all required tags), then the file is
said to be valid. A file that is fully compliant with a specification is said to be well formed
and valid.

In the case of RDF (as discussed in Section 4.5), a well-formed document would comply
with RDF syntax rules. A valid file would conform to the classes and properties found in
the RDF Schemas linked from within the RDF statements contained in the file.

Section 7.5. Case Study: Standardizing the Chocolate Teapot

History doesn’t repeat itself, but it rhymes.
Attributed variously to Mark Twain and to Joseph Anthony Wittreich

Malcolm Duncan has posted an insightful and funny essay entitled “The Chocolate Teapot
(Version 2.3)” [6]. In this essay, he shows how new versions of nomenclatures may unin-
tentionally alter the meanings of classes of terms contained in earlier versions, making it
impossible to compare or sensibly aggregate and interpret terms and concepts contained
in any of the versions. The essay is a must-read for anyone seriously interested in termi-
nologies, but we can examine a few of the points raised by Duncan.

Suppose you have a cooking-ware terminology with a single “teapot” item. We will call
this Version 1.0. Early teapots were made of porcelain and porcelain came in two colors;
white and blue. Version 2 of the terminology might accommodate the two sub-types: blue
teapot and white teapot. If a teapot were neither blue nor white, it would presumably
be coded under the parent term, “teapot.” Suppose version 3 expands to accommodate
some new additions to the teapot pantheon: chocolate teapot, ornamental teapot, china
teapot, and industrial teapot. Now the teapot world is shaken by a tempest of monumental
proportions. The white and the blue teapots, implicitly considered to be made of porce-
lain, like all china teapots, stand divided across the subtypes. How does one deal with a
white porcelain teapot that is not a china teapot? If we had previously assumed that a tea-
pot was an item in which tea is made, how do we adjust, conceptually, to the new term
“ornamental teapot?” If the teapot is ornamental, then it has no tea-making functionality,
and if it cannot be used to make tea, how can it be a teapot? Must we change our concept
of the teapot to include anything that looks like a teapot? If so, how can we deal with the
new term “industrial teapot,” which is likely to be a big stainless steal vat that has more in
common, structurally, with a microbrewery fermenter than with an ornamental teapot?
What is the meaning of a chocolate teapot? Is it something made of chocolate, is it
chocolate-colored, or does it brew chocolate-flavored tea? Suddenly we have lost the abil-
ity to map terms in version 3 to terms in versions 1 and 2. We no longer understand the
classes of objects (i.e., teapots) in the various versions of our cookware nomenclature.
We cannot unambiguously attach nomenclature terms to objects in our data collection
(e.g., blue china teapot). We no longer have a precise definition of a teapot or of the sub-
types of teapot.
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Glossary

Data interfaces Interfaces to Big Data resources often come in one of several types including:

Direct user interfaces. These interfaces permit individuals to submit simple queries, constructed within a
narrow range of options, producing an output that is truncated to produce a manageable visual dis-
play. Google is an example. You never know what information is excluded from the indexed resource, or
exactly how the search is conducted, and the output may or may not have the results you actually need.
Regarding the actual query, it is limited to words and phrases entered into a box, and although it per-
mits some innovative methods to specify the query, it does not permit you to enter hundreds of items
at once, or to search based on a user-invented algorithms, or to download the entire search output into
a file. Basically, Google gives users the opportunity to enter a query according to a set of Google-
specified query rules, and Google provides an output. What happens in the very short moment that
begins when the query has been launched, and ends when the reply is displayed, is something that
only Google fully understands. For most users, the Google reply may as well be conjured by magic.

Programmer or software interfaces. These are standard commands and instructions that a data service
releases to the public, and that individual developers can use to link to and interact with the service.
The usual term applied to these interfaces is API (Application Programming Interface), but other
related terms, including Saa$S (Software as a Service) might also apply. Amazon is an example of a com-
pany that provides an API. Web developers can use the Amazon API to link to information related to
specific Amazon products. Current information for the product can be displayed on the third party
Web site, and a buyer’s link can broker a purchase. The API enables transactions to be completed
through interactions between the developer’s software and the company’s software.

Autonomous agent interfaces. These are programs that are launched into a network of communicating
computers, carrying a query. The program contains communication and interface protocols that
enable it to interrogate various databases. The response from a database is stored and examined.
Depending on the information received, the autonomous agent might proceed to another database
or may modify its interrogation of the first database. The agent continues to collect and process infor-
mation, traveling to different networked databases in the process. At some point, the software program
returns to the client (the user who initiated the query) with its collected output. Web crawlers, familiar
to anyone who reviews Internet server logs, are somewhat primitive examples of partly autonomous
software agents. They use an interface (Internet protocols) to visit servers, conducting an inventory of
the contents, and visiting other servers based on the addresses of links listed on Web pages. If a Big
Data resource opens its data to programs that employ a compatible communications protocol (such
as a Web services language), then the problem of constructing a software agent becomes relatively
straightforward. Opening a system to autonomous agents comes with risk. The consequences of open-
ing a system to complex interactions with innumerable agents, each operating under its own set of
instructions, is difficult, or impossible, to predict and control [7].

Patent farming Also known as patent ambushing [3]. The practice of hiding intellectual property within a
standard or device, at the time of its creation, is known as patent farming. After the property is mar-
keted, the patent farmer announces the presence of his or her hidden patented material and presses for
royalties; metaphorically harvesting his crop.

Public domain Data that is not owned by an entity. Public domain materials include documents whose
copyright terms have expired, materials produced by the federal government, materials that contain
no creative content (i.e., materials that cannot be copyrighted), or materials donated to the public
domain by the entity that holds copyright. Public domain data can be accessed, copied, and
re-distributed without violating piracy laws. It is important to note that plagiarism laws and rules
of ethics apply to public domain data. You must properly attribute authorship to public domain doc-
uments. If you fail to attribute authorship or if you purposefully and falsely attribute authorship to the
wrong person (e.g., yourself ), then this would be an unethical act and an act of plagiarism.
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Reproducibility Reproducibility is achieved when repeat studies produce the same results, over and over.
Reproducibility is closely related to validation, which is achieved when you draw the same conclu-
sions, from the data, over and over again. Implicit in the concept of “reproducibility” is that the original
research must somehow convey the means by which the study can be reproduced. This usually
requires the careful recording of methods, algorithms, and materials. In some cases, reproducibility
requires access to the data produced in the original studies. If there is no feasible way for scientists
to undertake a reconstruction of the original study, or if the results obtained in the original study can-
not be obtained in subsequent attempts, then the study is irreproducible. If the work is reproduced,
but the results and the conclusions cannot be repeated, then the study is considered invalid.
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Section 8.1. The Importance of Data That Cannot Change

Cheese is milk’s leap toward immortality
Clifton Fadiman (editor of Mathematical Magpie)

Immutability is one of those issues, like identifiers and introspection, that seem unimpor-
tant, until something goes terribly wrong. Then, in the midst of the problem, you realize
that your entire information system was designed incorrectly, and there really is nothing
you can do to cope.

Here is an example of a immutability problem. You are a pathologist working in a uni-
versity hospital that has just installed a new, $600 million information system. On Tuesday,
you released a report on a surgical biopsy, indicating that it contained cancer. On Friday
morning, you showed the same biopsy to your colleagues, who all agreed that the biopsy
was not malignant, and contained a benign condition that simulated malignancy (looked
a little like a cancer, but was not). Your original diagnosis was wrong, and now you must
rectify the error. You return to the computer, and access the prior report, changing the
wording of the diagnosis to indicate that the biopsy is benign. You can do this, because
pathologists are granted “edit” access for pathology reports. Now, everything seems to
have been set right. The report has been corrected, and the final report in the computer
is the official diagnosis.

Unknown to you, the patient’s doctor read the incorrect report on Wednesday, the day
after the incorrect report was issued, and two days before the correct report replaced the
incorrect report. Major surgery was scheduled for the following Wednesday (five days after
the corrected report was issued). Most of the patient’s liver was removed. No cancer was
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found in the excised liver. Eventually, the surgeon and patient learned that the original
report had been altered. The patient sued the surgeon, the pathologist, and the hospital.

You, the pathologist, argued in court that the computer held one report issued by the
pathologist (following the deletion of the earlier, incorrect report) and that report was cor-
rect and available to the surgeon prior to the surgery date. Therefore, you said, you made
no error. The patient’s lawyer had access to a medical chart in which paper versions of the
diagnosis had been kept. The lawyer produced, for the edification of the jury, two reports
from the same pathologist, on the same biopsy: one positive for cancer, the other negative
for cancer. The hospital, conceding that they had no credible defense, settled out of
court for a very large quantity of money. Meanwhile, back in the hospital, a fastidious
intern is deleting an erroneous diagnosis, and substituting her improved rendition.

One of the most important features of serious Big Data resources (such as the data col-
lected in hospital information systems) is immutability. The rule is simple. Data is immor-
tal and cannot change. You can add data to the system, but you can never alter data and
you can never erase data. Immutability is counterintuitive to most people, including most
data analysts. If a patient has a glucose level of 100 on Monday, and the same patient has a
glucose level of 115 on Tuesday, then it would seem obvious that his glucose level changed
between Monday and Tuesday. Not so. Monday’s glucose level remains at 100. For the end
of time, Monday’s glucose level will always be 100. On Tuesday, another glucose level was
added to the record for the patient. Nothing that existed prior to Tuesday was changed.
[Glossary Serious Big Data]

Section 8.2. Immutability and Identifiers

People change and forget to tell each other.
Lillian Hellman

Immutability applies to identifiers. In a serious Big Data resource, data objects never
change their identity (i.e., their identifier sequences). Individuals never change their
names. A person might add a married name, but the married name does not change
the maiden name. The addition of a married name might occur as follows:

18843056488 1is a patient
18843056488 has_a maiden name
18843056488 has_a married name
9937564783 is a maiden name
4401835284 is_a married name

18843056488 maiden name Karen Sally Smith
18843056488 married name Karen Sally Smythe

Here, we have a woman named Karen Sally Smith. She has a unique, immutable identifier,
“18843056488.” Her patient record has various metadata/data pairs associated with her
unique identifier. Karen is a patient, Karen has a maiden name, and Karen has a married
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name. The metadata tags that describe the data that is associated with Karen include
“maiden_name” and “married_name.” These metadata tags are themselves data objects.
Hence, they must be provided with unique, immutable identifiers. Though metadata tags
are themselves unique data objects, each metadata tag can be applied to many other data
objects. In the following example, the unique maiden_name and married_name tags are
associated with two different patients.

9937564783 1is_a maiden name
4401835284 1is a married name
18843056488 is_a patient

18843056488 has_a maiden name
18843056488 has_a married name

18843056488 maiden name Karen Sally Smith
18843056488 married name Karen Sally Smythe

73994611839 is_a patient
73994611839 has_a maiden name
73994611839 has_a married name

73994611839 maiden name Barbara Hay Wire
73994611839 married name Barbara Haywire

The point here is that patients may acquire any number of names over the course of their
lives, but the Big Data resource must have a method for storing, and describing each of
those names and associating them with the same unique patient identifier. Everyone
who uses a Big Data resource must be confident that all the data objects in the resource
are unique, identified, and immutable.

By now, you should be comfortable with the problem confronted by the pathologist
who changed his mind. Rather than simply replacing one report with another, the pathol-
ogist might have issued a modification report, indicating that the new report supercedes
the earlier report. In this case, the information system does not destroy or replace the ear-
lier report, but creates a companion report. As a further precaution the information sys-
tem might flag the early report with a link to the ensuant entry. Alternately, the information
system might allow the pathologist to issue an addendum (i.e., add-on text) to the original
report. The addendum could have clarified that the original diagnosis is incorrect, stating
the final diagnosis is the diagnosis in the addendum. Another addendum might indicate
that the staff involved in the patient’s care was notified of the updated diagnosis. The parts
of the report (including any addenda) could be dated and authenticated with the elec-
tronic signature of the pathologist. Not one byte in the original report is ever changed.
Had these procedures been implemented, the unnecessary surgery, the harm inflicted
on the patient, the lawsuit, and the settlement, might have all been avoided. [Glossary Dig-
ital signature]

The problem of updating diagnoses may seem like a problem that is specific for the
healthcare industry. It is not. The content of Big Data resources is constantly changing;
the trick is to accommodate all changes by the addition of data, not by the deletion or
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modification of data. For example, suppose a resource uses an industry standard for cat-
alog order numbers assigned to parts of an automobile. These 7-digit numbers are used
whenever a part needs to be purchased. The resource may inventory millions of different
parts, each with an order number annotation. What happens when the standard suddenly
changes, and 12-digit numbers replace all of the existing 7-digit numbers? A well-
managed resource will preserve all of the currently held information, including the meta-
data tag that describe the 7-digit standard and the 7-digit order number for each part in
the resource inventory. The new standard, containing 12-digit numbers, will have a differ-
ent metadata tag from the prior standard, and the new metadata/data pair will be attached
to the internal identifier for the part. This operation will work if the resource maintains its
own unique identifiers for every data object held in the resource and if the data objects in
the resource are associated with metadata/data pairs. All of these actions involve adding
information to data objects, not deleting information.

In the days of small data, this was not much of a problem. The typical small data sce-
nario would involve creating a set of data, all at once, followed soon thereafter by a
sweeping analytic procedure applied against the set of data, culminating in a report that
summarized the conclusions. If there was some problem with the study, a correction
would be made, and everything would be repeated. A second analysis would be per-
formed in the new and improved data set. It was all so simple.

A procedure for replicative annotations to accommodate the introduction of new
standards and nomenclatures as well as new versions of old standards and nomen-
clatures is one of the more onerous jobs of the Big Data curator. Over the years,
dozens of new or additional annotations could be required. It should be stressed that
replicative annotations for nomenclatures and standards can be avoided if the data
objects in the resource are not tied to any specific standard. If the data objects are
well specified (i.e., providing adequate and uniform descriptions), queries can be
matched against any standard nomenclature on-the-fly (i.e., as needed, in response
to queries), as previously discussed in Section 2.5, “Autocoding” [1]. [Glossary
Curator]

Why is it always bad to change the data objects held in a Big Data resource? Though
there are many possible negative repercussions to deleting and modifying data, most of
the problems come down to data verification, and time stamping. All Big Data resources
must be able to verify that the data held in the resource conforms to a set of protocols for
preparing data objects and measuring data values. When you change pre-existing data,
all of your efforts at resource verification are wasted, because the resource that you once
verified no longer exists. The resource has become something else. Aside from producing
an unverifiable resource, you put the resource user into the untenable position of decid-
ing which data to believe; the old data or the new data. Time stamping is another com-
ponent of data objects. Events (e.g., a part purchased, a report issued, a file opened) have
no meaning unless you know when they occurred. Timestamps applied to data objects
must be unique and immutable. A single event cannot occur at two different times.
[Glossary Time stamp, Verification and validation]
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— Immortal Data Objects

In Section 6.2, we defined the term “data object.” To review, a data object is a collection of
triples that have the same identifier. A respectable data object should always encapsulate
two very specific triples: one that tells us the class to which the data object holds mem-
bership, and another that tells us the name of the parent class from which the data object
descends. When these two triples are included in the data object, we can apply the logic
and the methods of object-oriented programming to Big Data objects.

In addition, we should note that if the identifier and the associated metadata/data pairs
held by the data object are immutable (as they must be, vida supra), and if all the data held
in the Big Data resource is preserved indefinitely (as it should be), then the data objects
achieve immortality. If every data object has metadata/data pairs specifying its class and
parent class, then all of the relationships among every data object in the Big Data resource
will apply forever. In addition, all the class-specific methods can be applied to objects
belonging to its class and its subclass descendants, can always be applied; and all of
the encapsulated data can always be reconstructed. This would hold true, even if the data
objects were reduced to their individual triples, scattered across the planet, and deposited
into countless data clouds. The triples could, in theory, reassemble into data objects under
their immortal identifier.

Big Data should be designed to last forever. Hence, Big Data managers must do what
seems to be impossible; they must learn how to modify data without altering the original
content. The rewards are great.

Section 8.3. Coping With the Data That Data Creates

The chief problem in historical honesty isn't outright lying. It is omission or

de-emphasis of important data.
Howard Zinn

Imagine this scenario. A data analyst extracts a large set of data from a Big Data resource.
After subjecting the data to several cycles of the usual operations (data cleaning, data
reduction, data filtering, data transformation, and the creation of customized data met-
rics), the data analyst is left with a new set of data, derived from the original set. The data
analyst has imbued this new set of data with some added value, not apparent in the orig-
inal set of data.

The question becomes, “How does the data analyst insert her new set of derived
data back into the original Big Data resource, without violating immutability?” The
answer is simple but disappointing; re-inserting the derived data is impossible,
and should not be attempted. The transformed data set is not a collection of original
measurements; the data manager of the Big Data Resource can seldom verify it. Data
derived from other data (e.g., age-adjustments, normalized data, averaged data
values, and filtered data) will not sensibly fit into the data object model upon which
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the resource was created. There simply is no substitute for the original and
primary data.

The data analyst should make her methods and her transformed data available for
review by others. Every step involved in creating the new data set needs to be carefully
recorded and explained, but the transformed set of data should not be absorbed back into
the resource. The Big Data resource may provide a link to sources that hold the modified
data sets. Doing so provides the public with an information trail leading from the original
data to the transformed data prepared by the data analyst. [Glossary Raw data]

Section 8.4. Reconciling Identifiers Across Institutions

Mathematics is the art of giving the same name to different things.
Henri Poincare

“,» [

In math, we are taught that variables are named “x” or “y,” or sometimes “n,” (if you are
sure the variable is an integer). Using other variable names, such as “h” or “s,” is just asking
for trouble. Computer scientists have enlarged their list of familiar variables to include
“foo” and “bar.” A long program with hundreds of different local variables, all named
“foo” is unreadable, even to the person who wrote the code. The sloppiness with which
mathematicians and programmers assign names has carried over into the realm of Big
Data. Sometimes, it seems that data professionals just don’t care much about how we
name our data records, just so long as we have lots of them to play with. Consequently,
we must deal with the annoying problem that arises when multiple data records, for
one unique object, are assigned different identifiers (e.g., when identifier x and identifier
y and identifier foo all refer to the same unique data object). The process of resolving iden-
tifier replications is known as reconciliation. [Glossary Metasyntactic variable]

In many cases, the biggest obstacle to achieving Big Data immutability is data record
reconciliation [2]. When different institutions merge their data systems, it is crucial that no
data is lost, and all identifiers are sensibly preserved. Cross-institutional identifier recon-
ciliation is the process whereby institutions determine which data objects, held in differ-
ent resources, are identical (i.e., the same data object). The data held in reconciled
identical data objects can be combined in search results, and the identical data objects
themselves can be merged (i.e., all of the encapsulated data can be combined into one
data object), when Big Data resources are integrated, or when legacy data is absorbed into
a Big data resource.

In the absence of successful reconciliation, there is no way to determine the unique
identity of records (i.e., duplicate data objects may exist across institutions and data
users will be unable to rationally analyze data that relates to or is dependent upon
the distinctions among objects in a data set). For all practical purposes, without data
object reconciliation, there is no way to understand data received from multiple sources.
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Reconciliation is particularly important for healthcare agencies. Some countries
provide citizens with a personal medical identifier that is used in every medical facility
in the nation. Hospital A can send a query to Hospital B for medical records pertaining
to a patient sitting Hospital A’'s emergency room. The national patient identifier insures
that the cross-institutional query will yield all of Hospital B’s data on the patient, and will
not include data on other patients. [Glossary National Patient Identifier]

Consider the common problem of two institutions trying to reconcile personal
records (e.g., banking records, medical charts, dating service records, credit card infor-
mation). When both institutions are using the same identifiers for individuals in their
resources, then reconciliation is effortless. Searches on an identifier will retrieve all
the information attached to the identifier, if the search query is granted access to
the information systems in both institutions. However, universal identifier systems
are rare. If any of the institutions lack an adequate identifier system, the data from
the systems cannot be sensibly reconciled. Data pertaining to a single individual may
be unattached to any identifier, attached to one or more of several different identifiers,
or mixed into the records of other individuals. The merging process would fail, at
this point.

Assuming both institutions have adequate identifiers, then the two institutions must
devise a method whereby a new identifier is created, for each record, that will be identical
to the new identifier created for the same individual’s record, in the other institution. For
example, suppose each institution happens to store biometric data (e.g., retinal scan, DNA
sequences, fingerprints), then the institutions might agree on a way to create a new identifier
validated against these unique markers. With some testing, they could determine whether the
new identifier works as specified (i.e., either institution will always create the same identifier
for the same individual, and the identifier will never apply to any other individual). Once test-
ing is finished, the new identifiers can be used for cross-institutional searches.

Lacking a unique biometric for individuals, reconciliation between institutions is
feasible, but difficult. Some combination of identifiers (e.g., date of birth, social secu-
rity number, name) might be developed. Producing an identifier from a combination of
imperfect attributes has its limitations (as discussed in detail in Section 3.4, “Really
Bad Identifier Methods”), but it has the advantage that if all the pre-conditions of
the identifier are met, errors in reconciliation will be uncommon. In this case, both
institutions will need to decide how they will handle the set of records for which there
is no identifier match in the other institution. They may assume that some individuals
will have records in both institutions, but their records were not successfully
reconciled by the new identifier. They may also assume that unmatched group
contains individuals that actually have no records in the other institution. Dealing with
unreconciled records is a nasty problem. In most cases, it requires a curator to slog
through individual records, using additional data from records or new data supplied
by individuals, to make adjustments, as needed. This issue will be explored further,
in Section 18.5, “Case Study: Personal Identifiers.”
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Section 8.5. Case Study: The Trusted Timestamp

Time is what keeps everything from happening at once.
Ray Cummings in his 1922 novel, “The Girl in the Golden Atom”

Time stamps are not tamper-proof. In many instances, changing a recorded time resid-
ing in a file or data set requires nothing more than viewing the data on your computer
screen and substituting one date and time for another. Dates that are automatically
recorded, by your computer system, can also be altered. Operating systems permit users
to reset the system date and time. Because the timing of events can be altered, scrupu-
lous data managers employ a trusted timestamp protocol by which a timestamp can be
verified.

Here is a description of how a trusted time stamp protocol might work. You have
just created a message, and you need to document that the message existed on the
current date. You create a one-way hash on the message (a fixed-length sequence of
seemingly random alphanumeric characters). You send the one-way hash sequence
to your city’s newspaper, with instructions to publish the sequence in the classified
section of that day’s late edition. You are done. Anyone questioning whether the mes-
sage really existed on that particular date can perform their own one-way hash on the
message and compare the sequence with the sequence that was published in the city
newspaper on that date. The sequences will be identical to each other. [Glossary One-
way hash]

Today, newspapers are seldom used in trusted time stamp protocols. A time authority
typically receives the one-way hash value on the document, appends a time, and encrypts
a message containing the one-way hash value and the appended time, using a private key.
Anyone receiving this encrypted message can decrypt it using the time authority’s public
key. The only messages that can be decrypted with the time authority’s public key are mes-
sages that were encrypted using the time authority’s private key; hence establishing that
the message had been sent by the time authority. The decrypted message will contain the
one-way hash (specific for the document) and the time that the authority received the
document. This time stamp protocol does not tell you when the message was created;
it tells you when the message was stamped.

Section 8.6. Case Study: Blockchains and Distributed Ledgers

It’s worse than tulip bulbs.
JP Morgan CEO Jamie Dimon, referring to Bitcoin, a currency exchange system based on
blockchains

Today, no book on the subject of Big Data would be complete without some mention of
blockchains, which are likely to play an important role in the documentation and
management of data transactions for at least the next decade, or until something better
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comes along. Fortunately, blockchains are built with two data structures that we have
already introduced: one-way hashes and triples. All else is mere detail, determined by
the user’s choice of implementation.

At its simplest, a blockchain is a collection of short data records, with each record con-
sisting of some variation on the following:

<head>-<message>-<tails>
Here are the conditions that the blockchain must accommodate:

1. The head (i.e., first field) in each blockchain record consists of the tail of the preceding
data record.

2. The tail of each data record consists of a one-way hash of the head of the record
concatenated with the record message.

3. Live copies of the blockchain (i.e., a copy that grows as additional blocks are added) are
maintained on multiple servers.

4. A mechanism is put in place to ensure that every copy of the blockchain is
equivalent to one another, and that when a blockchain record is added, itis added to
every copy of the blockchain, in the same sequential order, and with the same
record contents.

We will soon see that conditions 1 through 3 are easy to achieve. Condition 4 can be prob-
lematic, and numerous protocols have been devised, with varying degrees of success, to
ensure that the blockchain is updated identically, at every site. Most malicious attacks on
blockchains are targeted against condition 4, which is considered to be the most vulner-
able point in every blockchain enterprise.

By convention, records are real-time transactions, acquired sequentially, so that we can
usually assume that the nth record was created at a moment in time prior to the creation of
the n+ 1th record.

Let us assume that the string that lies between the head and the tail of each record is a
triple. This assumption is justified because all meaningful information can be represented
as a triple or as a collection of triples.

Here is our list of triples that we will be blockchaining.

alce8ec6object name  Homo

alce8ec6 subclass of "Hominidae

alce8ec6 'property "glucose at time

al648579 object name Homo sapiens

al648579 subclass of "Homo

98495efc " object name”Andy Muzeack
98495efc™"instance of " Homo sapiens
98495efc™"dob™1 January, 2001
98495efc™"glucose _at time™"87, 02-12-2014 17:33:09

Let us create our own blockchain using these nine triples as our messages.
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Each blockchain record will be of the form:

<tail of prior blockchain link—the current record's triple—md5 hash
of the current triple concatenated with the header>

For example, to compute the tail of the second link, we would perform an md5 hash on:
ufxOaEaKfw7QBrgsmDYt Iw—alce8ec6 subclass of "Hominidae

Which yields:
=> PhjBvwGf6dk90oUK/ +yxrCA

The resulting blockchain is shown here.

alOce8ec6 object name Homo—ufxOaEaKfw7QBrgsmDYt Iw
ufxOaEaKfw7QBrgsmDYt Iw—alce8ec6 subclass of "Hominidae—
PhjBvwGf6dk90UK/+yxrCA
PhjBvwGE6dk9oUK/+yxrCA—alce8ec6 property glucose at time—
P40p5GHp4hEl1gsstKbrFPQ
P40p5GHp4hEl1gsstKbrFPQ—al648579 object name Homo sapiens—
2wWwAF1kWPFi135f6jnGOecYw
2wAF1kWPFi35f6jnGOecYw—al648579 subclass_ of "Homo—
N2y3fZgiOgRcgfx86rcpwg
N2y3£fZgiOgRcgfx86rcpwg—98495efc object name Andy Muzeack—
UXSrchXFR457g4JreErKiA
UXSrchXFR457g4JreErKiA—98495efc instance of "Homo sapiens—
5wDUJUTLWBJjQIuOAviguw
S5wDuJUTLWBJjQIuOAvlguw—98495efc™"glucose at time™"87, 02-12-2014
17:33:09—Y1jCYB7YyRBVIhm4 PUUbaA

Whether you begin with a list of triples that you would like to convert into a blockchain
data structure, or whether you are creating a blockchain one record at a time, through
transactions that occur over time, it is easy to write a short script that will generate the
one-way hashes and attach them to the end of the nth triple and the beginning of the
n+ 1th triple, as needed.

Looking back at our blockchain, we can instantly spot an anomaly, in the header of the
very first record. The header to the record is missing. Whenever we begin to construct a
new blockchain, the first record will have no antecedent record from which a header can
be extracted. This poses another computational bootstrap paradox. In this instance, we
cannot begin until there is a beginning. The bootstrap paradox is typically resolved with
the construction of a root record (record 0). The root record is permitted to break the rules.

Now that we have a small blockchain, what have we achieved? Here are the properties
of a blockchain

Every blockchain header is built from the values in the entire succession of preceding
blockchain links
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— The blockchain is immutable. Changing any of the messages contained in any of the
blockchain links, would produce a totally different blockchain. Dropping any of the
links of the blockchain or inserting any new links (anywhere other than as an
attachment to the last validated link) will produce an invalid blockchain.

— The blockchain is recomputable. Given the same message content, the entire
blockchain, with all its headers and tails, can be rebuilt. If it cannot recompute, then
the blockchain is invalid.

— The blockchain, in its simplest form, is a trusted “relative time” stamp. Our blockchain
does not tell us the exact time that a record was created, but it gives its relative time of
creation compared with the preceding and succeeding records.

With a little imagination, we can see that a blockchain can be used as a true time stamp
authority, if the exact time were appended to each of the records in the container at the
moment when the record was added to the blockchain. The messages contained in block-
chain records could be authenticated by including data encrypted with a private key. Tam-
pering of the blockchain data records could be prevented by having multiple copies of the
blockchain at multiple sites, and routinely checking for discrepancies among the different
copies of the data.

We might also see that the blockchain could be used as a trusted record of documents,
legal transactions (e.g., property deals), monetary exchanges (e.g., Bitcoin). Blockchains
may also be used for authenticating voters, casting votes, and verifying the count. The
potential value of blockchains in the era of Big Data is enormous, but the devil hides in
the details. Every implementation of a blockchain comes with its own vulnerabilities
and much has been written on this subject [3,4].

Section 8.7. Case Study (Advanced): Zero-Knowledge
Reconciliation

Experience is what you have after you've forgotten her name.
Milton Berle

Though record reconciliation across institutions is always difficult, the task becomes truly
Herculean when it must be done blindly, without directly comparing records. This awk-
ward situation occurs quite commonly whenever confidential data records from different
institutions must be checked to see if they belong to the same person. In this case, neither
institution is permitted to learn anything about the contents of records in the other insti-
tutions. Reconciliation, if it is to occur, must implement a zero-knowledge protocol; a pro-
tocol that does not reveal any information concerning the reconciled records [5].

We will be describing a protocol for reconciling identifiers without exchanging infor-
mation about the contents of data records. Because the protocol is somewhat abstract and
unintuitive, a physical analogy may clarify the methodology. Imagine two people each
holding a box containing an item. Neither person knows the contents of the box that they
are holding or of the box that the other person is holding. They want to determine whether
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they are holding identical items, but they don’t want to know anything about the items.
They work together to create two identical imprint stamps, each covered by a complex
random collection of raised ridges. With eyes closed, each one pushes his imprint stamp
against his item. By doing so, the randomly placed ridges in the stamp are compressed in a
manner characteristic of the object’s surface. The stamps are next examined to determine
if the compression marks on the ridges are distributed identically in both stamps. If so, the
items in the two boxes, whatever they may be, are considered to be identical. Not all of the
random ridges need to be examined-just enough of them to reach a high level of certainty.
It is theoretically possible for two different items to produce the same pattern of compres-
sion marks, but it is highly unlikely. After the comparison is made, the stamps are
discarded.

The physical analogy demonstrates the power of a zero-knowledge protocol. Neither
party knows the identity of his own item. Neither party learns anything about his item
or the other party’s item during the transaction. Yet, somehow, the parties can determine
whether the two items are identical.

Here is how the zero-knowledge protocol to reconcile confidential records across insti-
tutions [5]:

1. Both institutions generate a random number of a pre-determined length and each
institution sends the random number to the other institution.

2. Each institution sums their own random number with the random number provided
by the other institution. We will refer to this number as Random_A. In this way, both
institutions have the same final random number and neither institution has actually
transmitted this final random number. The splitting of the random number was
arranged as a security precaution.

3. Both institutions agree to create a composite representation of information contained
in the record that could establish the human subject of the record. The composite
might be a concatenation of the social security number, the date of birth, the first initial
of the surname.

4. Both institutions create a program that automatically creates the composite numeric
representation of the record (which we will refer to as the record signature) and
immediately sums the signature with Random_A, the random number that was
negotiated between the two institutions (steps 1 and 2). The sum of the composite
representation of the record plus Random_A is a random number that we will call
Random_B.

5. If the two records being compared across institutions belong to the same human
subject, then Random_B will the identical in both institutions. At this point, the two
institutions must compare their respective versions of Random_B in such a way that
they do not actually transmit Random_B to the other institution. If they were to
transmit Random_B to the other institution, then the receiving institution could
subtract Random_A from Random B and produce the signature string for a confidential
record contained in the other institution. This would be a violation of the requirement
to share zero knowledge during the transaction.
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6. The institutions take turns sending consecutive characters of their versions of
Random_B. For example, the first institution sends the first character to the second
institution. The second institution sends the second character to the first institution.
The first institution sends the third character to the second institution. The exchange of
characters proceeds until the first discrepancy occurs, or until the first 8 characters of
the string match successfully. If any of the characters do not match, both institutions
can assume that the records belong to different human subjects (i.e., reconciliation
failed). If the first 8 characters match, then it is assumed that both institutions are
holding the same Random_B string, and that the records are reconciled.

At the end, both institutions learn whether their respective records belong to the same
individual; but neither institution has learned anything about the records held in the other
institution. Anyone eavesdropping on the exchange would be treated to a succession of
meaningless random numbers.

Glossary

Curator The word “curator” derives from the Latin, “curatus,” and the same root for “curative,” indicating
that curators “take care of” things. A data curator collects, annotates, indexes, updates, archives,
searches, retrieves and distributes data. Curator is another of those somewhat arcane terms (e.g.,
indexer, data archivist, lexicographer) that are being rejuvenated in the new millennium. It seems that
if we want to enjoy the benefits of a data-centric world, we will need the assistance of curators, trained
in data organization.

Digital signature As it is used in the field of data privacy a digital signature is an alphanumeric sequence
that could only have been produced by a private key owned by one p