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Author’s Preface to Second Edition
Everything has been said before, but since nobody listens we have to keep

going back and beginning all over again.

Andre Gide

Good science writers will always jump at the chance to write a second edition of an earlier

work. Nomatter howhard they try, that first editionwill contain inaccuracies andmislead-

ing remarks. Sentences that seemed brilliant when first conceived will, with the passage of

time, transform into examples of intellectual overreaching. Points too trivial to include in

the original manuscript may now seem like profundities that demand a full explanation.

A second edition provides rueful authors with an opportunity to correct the record.

When the first edition of Principles of Big Data was published in 2013 the field was very

young and therewere few scientists who knewwhat to dowith BigData. The data that kept

pouring in was stored, like wheat in silos, throughout the planet. It was obvious to data

managers that none of that stored data would have any scientific value unless it was prop-

erly annotated with metadata, identifiers, timestamps, and a set of basic descriptors.

Under these conditions, the first edition of the Principles of Big Data stressed the proper

and necessary methods for collecting, annotating, organizing, and curating Big Data. The

process of preparing Big Data comes with its own unique set of challenges, and the First

Edition was peppered with warnings and exhortations intended to steer readers clear of

disaster.

It is now five years since the first edition was published and there have since been hun-

dreds of books written on the subject of Big Data. As a scientist, it is disappointing to me

that the bulk of Big Data, today, is focused on issues of marketing and predictive analytics

(e.g., “Who is likely to buy product x, given that they bought product y two weeks previ-

ously?”); andmachine learning (e.g., driverless cars, computer vision, speech recognition).

Machine learning relies heavily on hyped up techniques such as neural networks and deep

learning; neither of which are leading to fundamental laws and principles that simplify

and broaden our understanding of the natural world and the physical universe. For the

most part, these techniques use data that is relatively new (i.e., freshly collected), poorly

annotated (i.e., provided with only the minimal information required for one particular

analytic process), and not deposited for public evaluation or for re-use. In short, Big Data

has followed the path of least resistance, avoiding most of the tough issues raised in the

first edition of this book; such as the importance of sharing data with the public, the value

of finding relationships (not similarities) among data objects, and the heavy, but inescap-

able, burden of creating robust, immortal, and well-annotated data.
xxi
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It was certainly my hope that the greatest advances from Big Data would come as

fundamental breakthroughs in the realms of medicine, biology, physics, engineering,

and chemistry. Why has the focus of Big Data shifted from basic science over to machine

learning? Itmay have something to dowith the fact that no book, including the first edition

of this book, has provided readers with the methods required to put the principles of Big

Data into practice. In retrospect, it was not sufficient to describe a set of principles and

then expect readers to invent their own methodologies.

Consequently, in this second edition, the publisher has changed the title of the book

from “The Principles of Big Data,” to “The Principles AND PRACTICE of Big Data.” Hence-

forth and herein, recommendations are accompanied by the methods by which those

recommendationscanbeimplemented.Thereaderwill findthatallof themethodsfor imple-

menting Big Data preparation and analysis are really quite simple. For the most part, com-

puter methods require some basic familiarity with a programming language, and, despite

misgivings, Python was chosen as the language of choice. The advantages of Python are:

– Python isano-cost, opensource,high-levelprogramming languagethat iseasytoacquire,

install, learn, and use, and is available for every popular computer operating system.

– Python is extremely popular, at the present time, and its popularity seems to be

increasing.

– Python distributions (such as Anaconda) come bundledwith hundreds of highly useful

modules (such as numpy, matplot, and scipy).

– Python has a large and active user group that has provided an extraordinary amount of

documentation for Python methods and modules.

– Python supports some object-oriented techniques that will be discussed in this new

edition

As everything in life, Python has its drawbacks:

– The most current versions of Python are not backwardly compatible with earlier

versions. The scripts and code snippets included in this book should work for most

versions of Python 3.x, but may not work with Python versions 2.x and earlier, unless

the reader is prepared to devote some time to tweaking the code. Of course, these short

scripts and snippets are intended as simplified demonstrations of concepts, and must

not be construed as application-ready code.

– The built-in Pythonmethods are sometimesmaximized for speed by utilizing Random

Access Memory (RAM) to hold data structures, including data structures built through

iterative loops. Iterations through Big Data may exhaust available RAM, leading to the

failure of Python scripts that functioned well with small data sets.

– Python’s implementation of object orientation allows multiclass inheritance (i.e., a

class can be the subclass of more than one parent class). We will describe why this is

problematic, and the compensatorymeasures that wemust take, whenever we use our

Python programming skills to understand large and complex sets of data objects.

The core of every algorithm described in the book can be implemented in a few lines of

code, using just about any popular programming language, under any operating system,
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on any modern computer. Numerous Python snippets are provided, along with descrip-

tions of free utilities that are widely available on every popular operating system. This

book stresses the point that most data analyses conducted on large, complex data sets

can be achieved with simple methods, bypassing specialized software systems (e.g., par-

allelization of computational processes) or hardware (e.g., supercomputers). Readers who

are completely unacquainted with Python may find that they can read and understand

Python code, if the snippets of code are brief, and accompanied by some explanation

in the text. In any case, readers who are primarily concerned withmastering the principles

of Big Data can skip the code snippets without losing the narrative thread of the book.

This second edition has been expanded to stress methodologies that have been over-

looked by the authors of other books in the field of Big Data analysis. These would include:

– Data preparation.

How to annotate data with metadata and how to create data objects composed of triples.

The concept of the triple, as the fundamental conveyor of meaning in the computational

sciences, is fully explained.

– Data structures of particular relevance to Big Data

Concepts such as triplestores, distributed ledgers, unique identifiers, timestamps, concor-

dances, indexes, dictionary objects, data persistence, and the roles of one-way hashes and

encryption protocols for data storage and distribution are covered.

– Classification of data objects

How to assign data objects to classes based on their shared relationships, and the com-

putational roles filled by classifications in the analysis of Big Data will be discussed at

length.

– Introspection

How to create data objects that are self-describing, permitting the data analyst to group

objects belonging to the same class and to apply methods to class objects that have been

inherited from their ancestral classes.

– Algorithms that have special utility in Big Data preparation and analysis

How to use one-way hashes, unique identifier generators, cryptographic techniques, tim-

ing methods, and time stamping protocols to create unique data objects that are immu-

table (never changing), immortal, and private; and to create data structures that facilitate a

host of useful functions that will be described (e.g., blockchains and distributed ledgers,

protocols for safely sharing confidential information, and methods for reconciling iden-

tifiers across data collections without violating privacy).

– Tips for Big Data analysis

How to overcome many of the analytic limitations imposed by scale and dimensionality,

using a range of simple techniques (e.g., approximations, so-called back-of-the-envelope
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tricks, repeated sampling using a random number generator, Monte Carlo simulations,

and data reduction methods).

– Data reanalysis, data repurposing, and data sharing

Why the first analysis of Big Data is almost always incorrect, misleading, or woefully

incomplete, and why data reanalysis has become a crucial skill that every serious Big Data

analystmust acquire. The process of data reanalysis often inspires repurposing of BigData

resources. Neither data reanalysis nor data repurposing can be achieved unless and until

the obstacles to data sharing are overcome. The topics of data reanalysis, data repurpos-

ing, and data sharing are explored at length.

Comprehensive texts, such as the second edition of the Principles and Practice of Big

Data, are never quite as comprehensive as theymight strive to be; there simply is noway to

fully describe every concept andmethod that is relevant to amulti-disciplinary field, such

as Big Data. To compensate for such deficiencies, there is an extensive Glossary section for

every chapter, that defines the terms introduced in the text, providing some explanation of

the relevance of the terms for Big Data scientists. In addition, when techniques and

methods are discussed, a list of references that the readermay find useful, for further read-

ing on the subject, is provided. Altogether, the second edition contains about 600 citations

to outside references, most of which are available as free downloads. There are over 300

glossary items, many of which contain short Python snippets that readersmay find useful.

As a final note, this second edition uses case studies to show readers how the principles

of Big Data are put into practice. Although case studies are drawn frommany fields of sci-

ence, including physics, economics, and astronomy, readers will notice an overabundance

of examples drawn from the biological sciences (particularly medicine and zoology). The

reason for this is that the taxonomy of all living terrestrial organisms is the oldest and best

Big Data classification in existence. All of the classic errors in data organization, and in

data analysis, have been committed in the field of biology. More importantly, these errors

have been documented in excruciating detail and most of the documented errors have

been corrected and published for public consumption. If you want to understand how

Big Data can be used as a tool for scientific advancement, then you must look at case

examples taken from the world of biology, a well-documented field where everything that

can happen has happened, is happening, and will happen. Every effort has been made to

limit Case Studies to the simplest examples of their type, and to provide as much back-

ground explanation as non-biologists may require.

Principles and Practice of Big Data, Second Edition, is devoted to the intellectual con-

viction that the primary purpose of Big Data analysis is to permit us to ask and answer a

wide range of questions that could not have been credibly approached with small sets of

data. There is every reason to hope that the readers of this bookwill soon achieve scientific

breakthroughs that were beyond the reach of prior generations of scientists. Good luck!



Author’s Preface to First Edition
We can’t solve problems by using the same kind of thinking we used when we

created them.

Albert Einstein

Data pours into millions of computers every moment of every day. It is estimated that the

total accumulated data stored on computers worldwide is about 300 exabytes (that’s 300

billion gigabytes). Data storage increases at about 28% per year. The data stored is peanuts

compared to data that is transmitted without storage. The annual transmission of data is

estimated at about 1.9 zettabytes or 1,900 billion gigabytes [1]. From this growing tangle of

digital information, the next generation of data resources will emerge.

As we broaden our data reach (i.e., the different kinds of data objects included in the

resource), and our data timeline (i.e., accruing data from the future and the deep past), we

need to find ways to fully describe each piece of data, so that we do not confuse one data

item with another, and so that we can search and retrieve data items when we need them.

Astute informaticians understand that if we fully describe everything in our universe, we

would need to have an ancillary universe to hold all the information, and the ancillary uni-

verse would need to be much larger than our physical universe.

In the rush to acquire and analyze data, it is easy to overlook the topic of data prepa-

ration. If the data in our Big Data resources are not well organized, comprehensive, and

fully described, then the resources will have no value. The primary purpose of this book is

to explain the principles upon which serious Big Data resources are built. All of the data

held in Big Data resources must have a form that supports search, retrieval, and analysis.

The analytic methods must be available for review, and the analytic results must be avail-

able for validation.

Perhaps the greatest potential benefit of Big Data is its ability to link seemingly dispa-

rate disciplines, to develop and test hypothesis that cannot be approached within a single

knowledge domain. Methods by which analysts can navigate through different Big Data

resources to create new, merged data sets, will be reviewed.

What exactly, is Big Data? Big Data is characterized by the three V’s: volume (large

amounts of data), variety (includes different types of data), and velocity (constantly accu-

mulating new data) [2]. Those of us who have worked on Big Data projects might suggest

throwing a few more v’s into the mix: vision (having a purpose and a plan), verification

(ensuring that the data conforms to a set of specifications), and validation (checking that

its purpose is fulfilled).
xxv
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Many of the fundamental principles of Big Data organization have been described in

the “metadata” literature. This literature deals with the formalisms of data description (i.e.,

how to describe data); the syntax of data description (e.g., markup languages such as

eXtensible Markup Language, XML); semantics (i.e., how to make computer-parsable

statements that convey meaning); the syntax of semantics (e.g., framework specifications

such as Resource Description Framework, RDF, and Web Ontology Language, OWL); the

creation of data objects that hold data values and self-descriptive information; and the

deployment of ontologies, hierarchical class systems whose members are data objects.

The field of metadata may seem like a complete waste of time to professionals who

have succeeded very well, in data-intensive fields, without resorting to metadata formal-

isms.Many computer scientists, statisticians, databasemanagers, and network specialists

have no trouble handling large amounts of data, and they may not see the need to create a

strange new data model for Big Data resources. They might feel that all they really need is

greater storage capacity, distributed over more powerful computers that work in parallel

with one another.With this kind of computational power, they can store, retrieve, and ana-

lyze larger and larger quantities of data. These fantasies only apply to systems that use

relatively simple data or data that can be represented in a uniform and standard format.

When data is highly complex and diverse, as found in Big Data resources, the importance

of metadata looms large. Metadata will be discussed, with a focus on those concepts that

must be incorporated into the organization of Big Data resources. The emphasis will be on

explaining the relevance and necessity of these concepts, without going into gritty details

that are well covered in the metadata literature.

When data originates from many different sources, arrives in many different forms,

grows in size, changes its values, and extends into the past and the future, the game shifts

from data computation to data management. I hope that this book will persuade readers

that faster, more powerful computers are nice to have, but these devices cannot compen-

sate for deficiencies in data preparation. For the foreseeable future, universities, federal

agencies, and corporations will pour money, time, and manpower into Big Data efforts.

If they ignore the fundamentals, their projects are likely to fail. On the other hand, if they

pay attention to Big Data fundamentals, they will discover that Big Data analyses can be

performed on standard computers. The simple lesson, that data trumps computation, will

be repeated throughout this book in examples drawn from well-documented events.

There are three crucial topics related to data preparation that are omitted from virtually

every other Big Data book: identifiers, immutability, and introspection.

A thoughtful identifier systemensures thatall of thedata related toaparticulardataobject

will be attached to the correct object, through its identifier, and to no other object. It seems

simple, and it is, butmany BigData resources assign identifiers promiscuously, with the end

result that information related to a unique object is scattered throughout the resource,

attached to other objects, and cannot be sensibly retrieved when needed. The concept of

object identification isof suchoverriding importance that aBigData resourcecanbeusefully

envisioned as a collection of unique identifiers to which complex data is attached.
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Immutability is the principle that data collected in a Big Data resource is permanent,

and can never bemodified. At first thought, it would seem that immutability is a ridiculous

and impossible constraint. In the real world,mistakes aremade, information changes, and

the methods for describing information changes. This is all true, but the astute Big Data

manager knows how to accrue information into data objects without changing the pre-

existing data. Methods for achieving this seemingly impossible trick will be described

in detail.

Introspection is a term borrowed from object-oriented programming, not often found

in the BigData literature. It refers to the ability of data objects to describe themselveswhen

interrogated. With introspection, users of a Big Data resource can quickly determine the

content of data objects and the hierarchical organization of data objects within the Big

Data resource. Introspection allows users to see the types of data relationships that can

be analyzed within the resource and clarifies how disparate resources can interact with

one another.

Another subject covered in this book, and often omitted from the literature on BigData,

is data indexing. Though there are many books written on the art of the science of so-

called back-of-the-book indexes, scant attention has been paid to the process of preparing

indexes for large and complex data resources. Consequently,most BigData resources have

nothing that could be called a serious index. They might have a Web page with a few links

to explanatory documents, or theymight have a short and crude "help" index, but it would

be rare to find a Big Data resource with a comprehensive index containing a thoughtful

and updated list of terms and links. Without a proper index, most Big Data resources have

limited utility for any but a few cognoscenti. It seems odd to me that organizations willing

to spend hundreds of millions of dollars on a Big Data resource will balk at investing a few

thousand dollars more for a proper index.

Aside from these four topics, which readers would be hard-pressed to find in the exist-

ing Big Data literature, this book covers the usual topics relevant to Big Data design, con-

struction, operation, and analysis. Some of these topics include data quality, providing

structure to unstructured data, data deidentification, data standards and interoperability

issues, legacy data, data reduction and transformation, data analysis, and software issues.

For these topics, discussions focus on the underlying principles; programming code and

mathematical equations are conspicuously inconspicuous. An extensive Glossary covers

the technical or specialized terms and topics that appear throughout the text. As each

Glossary term is "optional" reading, I took the liberty of expanding on technical or math-

ematical concepts that appeared in abbreviated form in the main text. The Glossary pro-

vides an explanation of the practical relevance of each term to Big Data, and some readers

may enjoy browsing the Glossary as a stand-alone text.

The final four chapters are non-technical; all dealing in one way or another with the

consequences of our exploitation of Big Data resources. These chapters will cover legal,

social, and ethical issues. The book ends with my personal predictions for the future of

Big Data, and its impending impact on our futures. When preparing this book, I debated

whether these four chaptersmight best appear in the front of the book, towhet the reader’s
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appetite for the more technical chapters. I eventually decided that some readers would be

unfamiliar with some of the technical language and concepts included in the final

chapters, necessitating their placement near the end.

Readers may notice that many of the case examples described in this book come from

the field of medical informatics. The healthcare informatics field is particularly ripe for

discussion because every reader is affected, on economic and personal levels, by the

Big Data policies and actions emanating from the field of medicine. Aside from that, there

is a rich literature on Big Data projects related to healthcare. As much of this literature is

controversial, I thought it important to select examples that I could document from

reliable sources. Consequently, the reference section is large, with over 200 articles from

journals, newspaper articles, and books. Most of these cited articles are available for free

Web download.

Who should read this book? This book is written for professionals whomanage BigData

resources and for students in the fields of computer science and informatics. Data

management professionals would include the leadershipwithin corporations and funding

agencies whomust commit resources to the project, the project directors whomust deter-

mine a feasible set of goals and who must assemble a team of individuals who, in

aggregate, hold the requisite skills for the task: network managers, data domain special-

ists, metadata specialists, software programmers, standards experts, interoperability

experts, statisticians, data analysts, and representatives from the intended user commu-

nity. Students of informatics, the computer sciences, and statistics will discover that the

special challenges attached to Big Data, seldom discussed in university classes, are often

surprising; sometimes shocking.

By mastering the fundamentals of Big Data design, maintenance, growth, and valida-

tion, readerswill learn how to simplify the endless tasks engendered by BigData resources.

Adept analysts can find relationships among data objects held in disparate Big Data

resources if the data is prepared properly. Readers will discover how integrating Big Data

resources can deliver benefits far beyond anything attained from stand-alone databases.
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Section 1.1. Definition of Big Data

It’s the data, stupid.
Jim Gray

Back in the mid 1960s, my high school held pep rallies before big games. At one of these

rallies, the head coach of the football team walked to the center of the stage carrying a

large box of printed computer paper; each large sheet was folded flip-flop style against

the next sheet and they were all held together by perforations. The coach announced that

the athletic abilities of every member of our team had been entered into the school’s com-

puter (we were lucky enough to have our own IBM-360 mainframe). Likewise, data on our

rival team had also been entered. The computer was instructed to digest all of this infor-

mation and to produce the name of the team that would win the annual Thanksgiving Day

showdown. The computer spewed forth the aforementioned box of computer paper; the

very last output sheet revealed that we were the pre-ordained winners. The next day, we

sallied forth to yet another ignominious defeat at the hands of our long-time rivals.

Fast-forward about 50 years to a conference room at the National Institutes of Health

(NIH), in Bethesda,Maryland. A top-level science administrator is briefingme. She explains

that disease research has grown in scale over the past decade. The very best research initia-

tives are now multi-institutional and data-intensive. Funded investigators are using high-

throughput molecular methods that produce mountains of data for every tissue sample

in a matter of minutes. There is only one solution; we must acquire supercomputers and

a staff of talented programmers who can analyze all our data and tell us what it all means!

TheNIH leadership believed,much asmy high school coach believed, that if you have a

really big computer and you feed it a huge amount of information, then you can answer

almost any question.
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00001-7
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2 PRINCIPLES AND PRACTICE OF BIG DATA
That day, in the conference room at the NIH, circa 2003, I voiced my concerns, indi-

cating that you cannot just throw data into a computer and expect answers to pop out.

I pointed out that, historically, science has been a reductive process, moving from com-

plex, descriptive data sets to simplified generalizations. The idea of developing an expen-

sive supercomputer facility to work with increasing quantities of biological data, at higher

and higher levels of complexity, seemed impractical and unnecessary. On that day, my

concerns were not well received. High performance supercomputing was a very popular

topic, and still is. [Glossary Science, Supercomputer]

Fifteen years have passed since the day that supercomputer-based cancer diagnosis

was envisioned. The diagnostic supercomputer facility was never built. The primary diag-

nostic tool used in hospital laboratories is still the microscope, a tool invented circa 1590.

Today, we augmentmicroscopic findings with genetic tests for specific, keymutations; but

we do not try to understand all of the complexities of human genetic variations. We know

that it is hopeless to try. You can find a lot of computers in hospitals and medical offices,

but the computers do not calculate your diagnosis. Computers in the medical workplace

are relegated to the prosaic tasks of collecting, storing, retrieving, and delivering medical

records. When those tasks are finished, the computer sends you the bill for services

rendered.

Before we can take advantage of large and complex data sources, we need to think

deeply about the meaning and destiny of Big Data.

Big Data is defined by the three V’s:

1. Volume—large amounts of data;.

2. Variety—the data comes in different forms, including traditional databases,

images, documents, and complex records;.

3. Velocity—the content of the data is constantly changing through the

absorption of complementary data collections, the introduction of previously

archived data or legacy collections, and from streamed data arriving from

multiple sources.

It is important to distinguish Big Data from “lotsa data” or “massive data.” In a Big Data

Resource, all three V’s must apply. It is the size, complexity, and restlessness of Big Data

resources that account for the methods by which these resources are designed, operated,

and analyzed. [Glossary Big Data resource, Data resource]

The term “lotsa data” is often applied to enormous collections of simple-format

records. For example: every observed star, its magnitude and its location; the name and

cell phone number of every person living in the United States; and the contents of the

Web. These very large data sets are sometimes just glorified lists. Some “lotsa data” col-

lections are spreadsheets (2-dimensional tables of columns and rows), so large that we

may never see where they end.

Big Data resources are not equivalent to large spreadsheets, and a Big Data resource is

never analyzed in its totality. Big Data analysis is a multi-step process whereby data is

extracted, filtered, and transformed, with analysis often proceeding in a piecemeal, some-

times recursive, fashion. As you read this book, you will find that the gulf between “lotsa

data” and Big Data is profound; the two subjects can seldom be discussed productively

within the same venue.
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Section 1.2. Big Data Versus Small Data

Actually, the main function of Big Science is to generate massive amounts of reliable

and easily accessible data.... Insight, understanding, and scientific progress are gen-

erally achieved by ‘small science.’
Dan Graur, Yichen Zheng, Nicholas Price, Ricardo Azevedo, Rebecca Zufall, and Eran Elhaik [1].

BigData is not small data that has become bloated to the point that it can no longer fit on a

spreadsheet, nor is it a database that happens to be very large. Nonetheless, some profes-

sionals who customarily work with relatively small data sets, harbor the false impression

that they can apply their spreadsheet and database know-how directly to Big Data

resources without attaining new skills or adjusting to new analytic paradigms. As they

see things, when the data gets bigger, only the computer must adjust (by getting faster,

acquiring more volatile memory, and increasing its storage capabilities); Big Data poses

no special problems that a supercomputer could not solve. [Glossary Database]

This attitude, which seems to be prevalent among database managers, programmers,

and statisticians, is highly counterproductive. It will lead to slow and ineffective software,

huge investment losses, bad analyses, and the production of useless and irreversibly

defective Big Data resources.

Let us look at a few of the general differences that can help distinguish Big Data and

small data.

– Goals

small data—Usually designed to answer a specific question or serve a particular goal.

Big Data—Usually designed with a goal in mind, but the goal is flexible and the ques-

tions posed are protean. Here is a short, imaginary funding announcement for Big Data

grants designed “to combine high quality data from fisheries, coast guard, commercial

shipping, and coastal management agencies for a growing data collection that can be used

to support a variety of governmental and commercial management studies in the Lower

Peninsula.” In this fictitious case, there is a vague goal, but it is obvious that there really is

no way to completely specify what the Big Data resource will contain, how the various

types of data held in the resource will be organized, connected to other data resources,

or usefully analyzed. Nobody can specify, with any degree of confidence, the ultimate

destiny of any Big Data project; it usually comes as a surprise.

– Location

small data—Typically, contained within one institution, often on one computer, some-

times in one file.

Big Data—Spread throughout electronic space and typically parceled onto multiple

Internet servers, located anywhere on earth.

– Data structure and content

small data—Ordinarily contains highly structured data. The data domain is restricted

to a single discipline or sub-discipline. The data often comes in the form of uniform

records in an ordered spreadsheet.
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Big Data—Must be capable of absorbing unstructured data (e.g., such as free-text doc-

uments, images, motion pictures, sound recordings, physical objects). The subject matter

of the resource may cross multiple disciplines, and the individual data objects in the

resource may link to data contained in other, seemingly unrelated, Big Data resources.

[Glossary Data object]

– Data preparation

small data—Inmany cases, the data user prepares her own data, for her own purposes.

Big Data—The data comes frommany diverse sources, and it is prepared bymany peo-

ple. The people who use the data are seldom the people who have prepared the data.

– Longevity

small data—When the data project ends, the data is kept for a limited time (seldom

longer than 7 years, the traditional academic life-span for research data); and then

discarded.

Big Data—Big Data projects typically contain data that must be stored in perpetuity.

Ideally, the data stored in a Big Data resource will be absorbed into other data resources.

Many Big Data projects extend into the future and the past (e.g., legacy data), accruing

data prospectively and retrospectively. [Glossary Legacy data]

– Measurements

small data—Typically, the data is measured using one experimental protocol, and the

data can be represented using one set of standard units. [Glossary Protocol]

Big Data—Many different types of data are delivered in many different electronic for-

mats. Measurements, when present, may be obtained by many different protocols. Veri-

fying the quality of Big Data is one of the most difficult tasks for data managers. [Glossary

Data Quality Act]

– Reproducibility

small data—Projects are typically reproducible. If there is some question about the

quality of the data, the reproducibility of the data, or the validity of the conclusions drawn

from the data, the entire project can be repeated, yielding a new data set. [Glossary

Conclusions]

Big Data—Replication of a Big Data project is seldom feasible. In general, themost that

anyone can hope for is that bad data in a Big Data resource will be found and flagged

as such.

– Stakes

small data—Project costs are limited. Laboratories and institutions can usually recover

from the occasional small data failure.

Big Data—Big Data projects can be obscenely expensive [2,3]. A failed Big Data effort

can lead to bankruptcy, institutional collapse, mass firings, and the sudden disintegration
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of all the data held in the resource. As an example, a United States National Institutes of

Health Big Data project known as the “NCI cancer biomedical informatics grid” cost at

least $350 million for fiscal years 2004–10. An ad hoc committee reviewing the resource

found that despite the intense efforts of hundreds of cancer researchers and information

specialists, it had accomplished so little and at so great an expense that a project mora-

torium was called [4]. Soon thereafter, the resource was terminated [5]. Though the costs

of failure can be high, in terms ofmoney, time, and labor, Big Data failuresmay have some

redeeming value. Each failed effort lives on as intellectual remnants consumed by the next

Big Data effort. [Glossary Grid]

– Introspection

small data—Individual data points are identified by their row and column location

within a spreadsheet or database table. If you know the row and column headers, you

can find and specify all of the data points contained within. [Glossary Data point]

Big Data—Unless the Big Data resource is exceptionally well designed, the contents

and organization of the resource can be inscrutable, even to the data managers. Complete

access to data, information about the data values, and information about the organization

of the data is achieved through a technique herein referred to as introspection. Introspec-

tion will be discussed at length in Chapter 6. [Glossary Data manager, Introspection]

– Analysis

small data—Inmost instances, all of the data contained in the data project can be ana-

lyzed together, and all at once.

BigData—With few exceptions, such as those conducted on supercomputers or in parallel

onmultiple computers, Big Data is ordinarily analyzed in incremental steps. The data are ex-

tracted, reviewed, reduced, normalized, transformed, visualized, interpreted, and re-analyzed

using a collection of specialized methods. [Glossary Parallel computing, MapReduce]
Section 1.3. Whence Comest Big Data?

All I ever wanted to do was to paint sunlight on the side of a house.
Edward Hopper

Often, the impetus for Big Data is entirely ad hoc. Companies and agencies are forced to

store and retrieve huge amounts of collected data (whether they want to or not). Generally,

Big Data come into existence through any of several different mechanisms:

– An entity has collected a lot of data in the course of its normal activities and seeks to

organize the data so that materials can be retrieved, as needed.

The BigData effort is intended to streamline the regular activities of the entity. In this case,

the data is just waiting to be used. The entity is not looking to discover anything or to do

anything new. It simply wants to use the data to accomplishwhat it has always been doing;
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only better. The typical medical center is a good example of an “accidental” Big Data

resource. The day-to-day activities of caring for patients and recording data into hospital

information systems results in terabytes of collected data, in forms such as laboratory

reports, pharmacy orders, clinical encounters, and billing data. Most of this information

is generated for a one-time specific use (e.g., supporting a clinical decision, collecting pay-

ment for a procedure). It occurs to the administrative staff that the collected data can be

used, in its totality, to achieve mandated goals: improving quality of service, increasing

staff efficiency, and reducing operational costs. [Glossary Binary units for Big Data, Binary

atom count of universe]

– An entity has collected a lot of data in the course of its normal activities and decides

that there are many new activities that could be supported by their data.

Consider modern corporations; these entities do not restrict themselves to one

manufacturing process or one target audience. They are constantly looking for new oppor-

tunities. Their collected datamay enable them to develop new products based on the pref-

erencesof their loyal customers, to reachnewmarkets, or tomarket anddistribute itemsvia

the Web. These entities will become hybrid Big Data/manufacturing enterprises.

– An entity plans a business model based on a Big Data resource.

Unlike the previous examples, this entity starts with Big Data and adds a physical compo-

nent secondarily. Amazon and FedEx may fall into this category, as they began with a plan

for providing a data-intense service (e.g., the AmazonWeb catalog and the FedEx package

tracking system). The traditional tasks of warehousing, inventory, pick-up, and delivery,

had been available all along, but lacked the novelty and efficiency afforded by Big Data.

– An entity is part of a group of entities that have large data resources, all of whom

understand that it would be to their mutual advantage to federate their data

resources [6].

An example of a federated Big Data resource would be hospital databases that share elec-

tronic medical health records [7].

– An entity with skills and vision develops a project wherein large amounts of data are

collected and organized, to the benefit of themselves and their user-clients.

An example would be amassive online library service, such as the U.S. National Library of

Medicine’s PubMed catalog, or the Google Books collection.

– An entity has no data and has no particular expertise in Big Data technologies, but it

has money and vision.

The entity seeks to fund and coordinate a group of data creators and data holders, whowill

build a Big Data resource that can be used by others. Government agencies have been the

major benefactors. These Big Data projects are justified if they lead to important discov-

eries that could not be attained at a lesser cost with smaller data resources.
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Section 1.4. The Most Common Purpose of Big Data Is to
Produce Small Data

If I had known what it would be like to have it all, I might have been willing to settle

for less.
Lily Tomlin

Imagine using a restaurant locater on your smartphone. With a few taps, it lists the Italian

restaurants located within a 10-block radius of your current location. The database being

queried is big and complex (amap database, a collection of all the restaurants in theworld,

their longitudes and latitudes, their street addresses, and a set of ratings provided by

patrons, updated continuously), but the data that it yields is small (e.g., five restaurants,

marked on a street map, with pop-ups indicating their exact address, telephone number,

and ratings). Your task comes down to selecting one restaurant from among the five, and

dining thereat.

In this example, your data selection was drawn from a large data set, but your ultimate

analysis was confined to a small data set (i.e., five restaurants meeting your search cri-

teria). The purpose of the Big Data resource was to proffer the small data set. No analytic

work was performed on the Big Data resource; just search and retrieval. The real labor of

the Big Data resource involved collecting and organizing complex data, so that the

resource would be ready for your query. Along the way, the data creators had many deci-

sions to make (e.g., Should bars be counted as restaurants? What about take-away only

shops? What data should be collected? How should missing data be handled? How will

data be kept current? [Glossary Query, Missing data]

Big Data is seldom, if ever, analyzed in toto. There is almost always a drastic filtering

process that reduces Big Data into smaller data. This rule applies to scientific analyses.

The Australian Square Kilometre Array of radio telescopes [8], WorldWide Telescope,

CERN’s Large Hadron Collider and the Pan-STARRS (Panoramic Survey Telescope

and Rapid Response System) array of telescopes produce petabytes of data every

day. Researchers use these raw data sources to produce much smaller data sets for

analysis [9]. [Glossary Raw data, Square Kilometer Array, Large Hadron Collider, World-

Wide Telescope]

Here is an example showing how workable subsets of data are prepared from Big Data

resources. Blazars are rare super-massive black holes that release jets of energy that move

at near-light speeds. Cosmologists want to know as much as they can about these strange

objects. A first step to studying blazars is to locate as many of these objects as possible.

Afterwards, various measurements on all of the collected blazars can be compared, and

their general characteristics can be determined. Blazars seem to have a gamma ray signa-

ture that is not present in other celestial objects. The WISE survey collected infrared data

on the entire observable universe. Researchers extracted from theWise data every celestial

body associated with an infrared signature in the gamma ray range that was suggestive of

blazars; about 300 objects. Further research on these 300 objects led the researchers to
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believe that about half were blazars [10]. This is how Big Data research often works; by

constructing small data sets that can be productively analyzed.

Because a common role of Big Data is to produce small data, a question that dataman-

agers must ask themselves is: “Have I prepared my Big Data resource in a manner that

helps it become a useful source of small data?”
Section 1.5. Big Data Sits at the Center of the Research
Universe

Physics is the universe’s operating system.
Steven R Garman

In the past, scientists followed a well-trodden path toward truth: hypothesis, then exper-

iment, then data, then analysis, then publication. The manner in which a scientist ana-

lyzed his or her data was crucial because other scientists would not have access to the

same data and could not re-analyze the data for themselves. Basically, the results and con-

clusions described in the manuscript was the scientific product. The primary data upon

which the results and conclusion were based (other than one or two summarizing tables)

were not made available for review. Scientific knowledge was built on trust. Customarily,

the data would be held for 7 years, and then discarded. [Glossary Results]

In the Big data paradigm the concept of a final manuscript has little meaning. Big Data

resources are permanent, and the data within the resource is immutable (See Chapter 6).

Any scientist’s analysis of the data does not need to be the final word; another scientist can

access and re-analyze the same data over and over again. Original conclusions can be val-

idated or discredited. New conclusions can be developed. The centerpiece of science has

moved from the manuscript, whose conclusions are tentative until validated, to the Big

Data resource, whose data will be tapped repeatedly to validate old manuscripts and

spawn new manuscripts. [Glossary Immutability, Mutability]

Today, hundreds or thousands of individuals might contribute to a Big Data resource.

The data in the resource might inspire dozens of major scientific projects, hundreds of

manuscripts, thousands of analytic efforts, and millions or billions of search and retrieval

operations. The Big Data resource has become the central, massive object around which

universities, research laboratories, corporations, and federal agencies orbit. These orbit-

ing objects draw information from the Big Data resource, and they use the information to

support analytic studies and to publish manuscripts. Because Big Data resources are per-

manent, any analysis can be critically examined using the same set of data, or re-analyzed

anytime in the future. Because Big Data resources are constantly growing forward in time

(i.e., accruing new information) and backward in time (i.e., absorbing legacy data sets), the

value of the data is constantly increasing.

Big Data resources are the stars of the modern information universe. All matter in the

physical universe comes from heavy elements created inside stars, from lighter elements.

All data in the informational universe is complex data built from simple data. Just as stars
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can exhaust themselves, explode, or even collapse under their own weight to become

black holes; Big Data resources can lose funding and die, release their contents and burst

into nothingness, or collapse under their own weight, sucking everything around them

into a dark void. It is an interesting metaphor. In the following chapters, we will see

how a Big Data resource can be designed and operated to ensure stability, utility, growth,

and permanence; features youmight expect to find in amassive object located in the cen-

ter of the information universe.

Glossary
Big Data resource A Big Data collection that is accessible for analysis. Readers should understand that

there are collections of Big Data (i.e., data sources that are large, complex, and actively growing) that

are not designed to support analysis; hence, not Big Data resources. Such Big Data collections might

include some of the older hospital information systems, which were designed to deliver individual

patient records upon request; but could not support projects wherein all of the data contained in

all of the records were opened for selection and analysis. Aside from privacy and security issues, open-

ing a hospital information system to these kinds of analyses would place enormous computational

stress on the systems (i.e., produce system crashes). In the late 1990s and the early 2000s data ware-

housing was popular. Large organizations would collect all of the digital information created within

their institutions, and these data were stored as Big Data collections, called data warehouses. If an

authorized person within the institution needed some specific set of information (e.g., emails sent

or received in February, 2003; all of the bills paid in November, 1999), it could be found somewhere

within the warehouse. For the most part, these data warehouses were not true Big Data resources

because they were not organized to support a full analysis of all of the contained data. Another type

of Big Data collection that may or may not be considered a Big Data resource are compilations of sci-

entific data that are accessible for analysis by private concerns, but closed for analysis by the public. In

this case a scientistmaymake a discovery based on her analysis of a private Big Data collection, but the

research data is not open for critical review. In the opinion of some scientists, including myself, if the

results of a data analysis are not available for review, then the analysis is illegitimate. Of course, this

opinion is not universally shared, and Big Data professionals hold various definitions for a Big Data

resource.

Binary atom count of universe There are estimated to be about 10 8̂0 atoms in the universe. Log2(10) is

3.32192809, so the number of atoms in the universe is 2 8̂0*3.32192809 or 2 2̂66 atoms.

Binary units for Big Data Binary sizes are named in 1000-fold intervals: 1 bit ¼ binary digit (0 or 1);

1 byte ¼ 8 bits (the number of bits required to express an ascii character); 1000 bytes ¼ 1 kilobyte;

1000 kilobytes ¼ 1 megabyte; 1000 megabytes ¼ 1 gigabyte; 1000 gigabytes ¼ 1 terabyte; 1000

terabytes ¼ 1 petabyte; 1000 petabytes ¼ 1 exabyte; 1000 exabytes ¼ 1 zettabyte; 1000 zettabytes ¼
1 yottabyte.

Conclusions Conclusions are the interpretationsmade by studying the results of an experiment or a set of

observations. The term “results” should never be used interchangeably with the term “conclusions.”

Remember, results are verified. Conclusions are validated [11].

Data Quality Act In the United States the data upon which public policy is based must have quality and

must be available for review by the public. Simply put, public policy must be based on verifiable data.

The Data Quality Act of 2002 requires the Office of Management and Budget to develop government-

wide standards for data quality [12].

Data manager This book uses “data manager” as a catchall term, without attaching any specific

meaning to the name. Depending on the institutional and cultural milieu, synonyms and plesionyms

(i.e., near-synonyms) for data manager would include: technical lead, team liaison, data quality

manager, chief curator, chief of operations, project manager, group supervisor, and so on.
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Data object As used in this book, a data object consists of a unique object identifier along with all of the

data/metadata pairs that rightly belong to the object identifier, and that includes one data/metadata

pair that tells us the object’s class.

75898039563441
name G. Willikers
gender male
age 35
is_a_class_member cowboy

In this example, the object identifier, 75898039563441, is followed by its data/metadata pairs, includ-

ing the one pair that tells us that the object (a 35-year-oldman named G.Willikers) belongs to the class

of individuals known as “cowboy.”

The utility of data objects, in the field of Big Data, is discussed in Section 6.2.

Data point The singular form of data is datum. Strictly speaking, the term should be datum point or

datumpoint. Most information scientists, myself included, have abandoned consistent usage rules

for the word “data.” In this book, the term “data” always refers collectively to information, numeric

or textual, structured or unstructured, in any quantity.

Data resource A collection of data made available for data retrieval. The data can be distributed over

servers located anywhere on earth or in space. The resource can be static (i.e., having a fixed set of

data), or in flux. Plesionyms for data resource are: data warehouse, data repository, data archive,

and data store.

Database A software application designed specifically to create and retrieve large numbers of data

records (e.g., millions or billions). The data records of a database are persistent, meaning that the

application can be turned off, then on, and all the collected data will be available to the user.

Grid A collection of computers and computer resources (typically networked servers) that is coordinated

to provide a desired functionality. In the most advanced Grid computing architecture, requests can be

broken into computational tasks that are processed in parallel on multiple computers and transpar-

ently (from the client’s perspective) assembled and returned. TheGrid is the intellectual predecessor of

Cloud computing. Cloud computing is less physically and administratively restricted than Grid

computing.

Immutability Immutability is the principle that data collected in a Big Data resource is permanent and

can never bemodified. At first thought, it would seem that immutability is a ridiculous and impossible

constraint. In the real world, mistakes aremade, information changes, and themethods for describing

information changes. This is all true, but the astute Big Data manager knows how to accrue informa-

tion into data objects without changing the pre-existing data. Methods for achieving this seemingly

impossible trick are described in Chapter 8.

Introspection Well-designed Big Data resources support introspection, a method whereby data objects

within the resource can be interrogated to yield their properties, values, and class membership.

Through introspection the relationships among the data objects in the Big Data resource can be exam-

ined and the structure of the resource can be determined. Introspection is themethod by which a data

user can find everything there is to know about a Big Data resource without downloading the complete

resource.

Large Hadron Collider The Large Hadron Collider is the world’s largest andmost powerful particle accel-

erator and is expected to produce about 15 petabytes (15 million gigabytes) of data annually [13].

Legacy data Data collected by an information system that has been replaced by a newer system, and

which cannot be immediately integrated into the newer system’s database. For example, hospitals reg-

ularly replace their hospital information systems with new systems that promise greater efficiencies,

expanded services, or improved interoperability with other information systems. In many cases, the

new system cannot readily integrate the data collected from the older system. The previously collected
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data becomes a legacy to the new system. In such cases, legacy data is simply “stored” for some arbi-

trary period of time in case someone actually needs to retrieve any of the legacy data. After a decade or

so the hospital may find itself without any staff members who are capable of locating the storage site of

the legacy data, or moving the data into a modern operating system, or interpreting the stored data, or

retrieving appropriate data records, or producing a usable query output.

MapReduce Amethod by which computationally intensive problems can be processed onmultiple com-

puters, in parallel. Themethod can be divided into amapping step and a reducing step. In themapping

step a master computer divides a problem into smaller problems that are distributed to other com-

puters. In the reducing step the master computer collects the output from the other computers.

AlthoughMapReduce is intended for BigData resources, and can hold petabytes of data, most BigData

problems do not require MapReduce.

Missing data Most complex data sets have missing data values. Somewhere along the line data elements

were not entered, records were lost, or some systemic error produced empty data fields. Big Data,

being large, complex, and composed of data objects collected from diverse sources, is almost certain

to have missing data. Various mathematical approaches to missing data have been developed; com-

monly involving assigning values on a statistical basis; so-called imputation methods. The underlying

assumption for such methods is that missing data arises at random. When missing data arises non-

randomly, there is no satisfactory statistical fix. The Big Data curator must track down the source

of the errors and somehow rectify the situation. In either case the issue of missing data introduces

a potential bias and it is crucial to fully document the method by which missing data is handled. In

the realm of clinical trials, only a minority of data analyses bothers to describe their chosen method

for handling missing data [14].

Mutability Mutability refers to the ability to alter the data held in a data object or to change the identity of

a data object. Serious Big Data is notmutable. Data can be added, but data cannot be erased or altered.

Big Data resources that are mutable cannot establish a sensible data identification system, and cannot

support verification and validation activities. The legitimate ways in which we can record the changes

that occur in unique data objects (e.g., humans) over time, without ever changing the key/value data

attached to the unique object, is discussed in Section 8.2.

For programmers, it is important to distinguish data mutability from object mutability, as it applies in

Python and other object-oriented programming languages. Python has two immutable objects: strings

and tuples. Intuitively, wewould probably guess that the contents of a string object cannot be changed,

and the contents of a tuple object cannot be changed. This is not the case. Immutability, for program-

mers, means that there are no methods available to the object by which the contents of the object can

be altered. Specifically, a Python tuple object would have no methods it could call to change its own

contents. However, a tuple may contain a list, and lists are mutable. For example, a list may have an

appendmethod that will add an item to the list object. You can change the contents of a list contained

in a tuple object without violating the tuple’s immutability.

Parallel computing Some computational tasks can be broken down and distributed to other computers,

to be calculated “in parallel.” Themethod of parallel programming allows a collection of desktop com-

puters to complete intensive calculations of the sort that would ordinarily require the aid of a super-

computer. Parallel programming has been studied as a practical way to deal with the higher

computational demands brought by Big Data. Although there are many important problems that

require parallel computing, the vast majority of Big Data analyses can be easily accomplished with

a single, off-the-shelf personal computer.

Protocol A set of instructions, policies, or fully described procedures for accomplishing a service, oper-

ation, or task. Protocols are fundamental to BigData. Data is generated and collected according to pro-

tocols. There are protocols for conducting experiments, and there are protocols for measuring the

results. There are protocols for choosing the human subjects included in a clinical trial, and there

are protocols for interacting with the human subjects during the course of the trial. All network
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communications are conducted via protocols; the Internet operates under a protocol (TCP-IP, Trans-

mission Control Protocol-Internet Protocol).

Query The term “query” usually refers to a request, sent to a database, for information (e.g., Web pages,

documents, lines of text, images) that matches a provided word or phrase (i.e., the query term). More

generally a query is a parameter or set of parameters that are submitted as input to a computer pro-

gram that searches a data collection for items that match or bear some relationship to the query

parameters. In the context of Big Data the user may need to find classes of objects that have properties

relevant to a particular area of interest. In this case, the query is basically introspective, and the output

may yield metadata describing individual objects, classes of objects, or the relationships among

objects that share particular properties. For example, “weight” may be a property, and this property

may fall into the domain of several different classes of data objects. The user might want to know

the names of the classes of objects that have the “weight” property and the numbers of object instances

in each class. Eventually the user might want to select several of these classes (e.g., including dogs and

cats, but excluding microwave ovens) along with the data object instances whose weights fall within a

specified range (e.g., 20–30 pound). This approach to querying could work with any data set that has

been well specified with metadata, but it is particularly important when using Big Data resources.

Raw data Raw data is the unprocessed, original data measurement, coming straight from the instrument

to the database with no intervening interference or modification. In reality, scientists seldom, if ever,

work with raw data. When an instrument registers the amount of fluorescence emitted by a hybridi-

zation spot on a gene array, or the concentration of sodium in the blood, or virtually any of the mea-

surements that we receive as numeric quantities, the output is produced by an algorithm executed by

the measurement instrument. Pre-processing of data is commonplace in the universe of Big Data, and

data managers should not labor under the false impression that the data received is “raw,” simply

because the data has not been modified by the person who submits the data.

Results The term “results” is often confused with the term “conclusions.” Interchanging the two concepts

is a source of confusion among data scientists. In the strictest sense, “results” consist of the full set of

experimental data collected by measurements. In practice, “results” are provided as a small subset of

data distilled from the raw, original data. In a typical journal article, selected data subsets are packaged

as a chart or graph that emphasizes some point of interest. Hence, the term “results” may refer, erro-

neously, to subsets of the original data, or to visual graphics intended to summarize the original data.

Conclusions are the inferences drawn from the results. Results are verified; conclusions are validated.

Science Of course, there are many different definitions of science, and inquisitive students should be

encouraged to find a conceptualization of science that suits their own intellectual development.

For me, science is all about finding general relationships among objects. In the so-called physical sci-

ences themost important relationships are expressed asmathematical equations (e.g., the relationship

between force,mass and acceleration; the relationship between voltage, current and resistance). In the

so-called natural sciences, relationships are often expressed through classifications (e.g., the classifi-

cation of living organisms). Scientific advancement is the discovery of new relationships or the discov-

ery of a generalization that applies to objects hitherto confined within disparate scientific realms (e.g.,

evolutionary theory arising fromobservations of organisms and geologic strata). Engineering would be

the area of science wherein scientific relationships are exploited to build new technology.

Square Kilometer Array The Square Kilometer Array is designed to collect data from millions of con-

nected radio telescopes and is expected to produce more than one exabyte (1 billion gigabytes) every

day [8].

Supercomputer Computers that can perform many times faster than a desktop personal computer. In

2015 the top supercomputers operate at about 30 petaflops. A petaflop is 10 to the 15 power floating

point operations per second. By my calculations a 1 petaflop computer performs about 250,000 oper-

ations in the time required for my laptop to finish one operation.
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WorldWide Telescope A Big Data effort from the Microsoft Corporation bringing astronomical maps,

imagery, data, analytic methods, and visualization technology to standard Web browsers. More infor-

mation is available at: http://www.worldwidetelescope.org/Home.aspx
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Section 2.1. Nearly All Data Is Unstructured and Unusable
in Its Raw Form

I was working on the proof of one of my poems all the morning, and took out a

comma. In the afternoon I put it back again.
Oscar Wilde

In the early days of computing, data was always highly structured. All data was divided into

fields, the fields had a fixed length, and the data entered into each field was constrained to a

pre-determined set of allowed values. Data was entered into punch cards with pre-

configured rows and columns. Depending on the intended use of the cards, various entry

and read-out methods were chosen to express binary data, numeric data, fixed-size text, or

programming instructions. Key-punch operators produced mountains of punch cards. For

many analytic purposes, card-encoded data sets were analyzed without the assistance of a

computer; all that was needed was a punch card sorter. If you wanted the data card on all

males, over the age of 18, who had graduated high school, and had passed their physical

exam, then the sorter would need tomake 4 passes. The sorter would pull every card listing

amale, then from themale cards it would pull all the cards of people over the age of 18, and

from this double-sorted sub-stack, it would pull cards thatmet the next criterion, and so on.
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00002-9
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As a high school student in the 1960s, I loved playing with the card sorters. Back then, all

data was structured data, and it seemed to me, at the time, that a punch-card sorter was

all that anyone would ever need to analyze large sets of data. [Glossary Binary data]

How wrong I was! Today, most data entered by humans is unstructured in the form of

free-text. The free-text comes in email messages, tweets, and documents. Structured data

has not disappeared, but it sits in the shadows cast by mountains of unstructured text.

Free-textmay bemore interesting to read than punch cards, but the venerable punch card,

in its heyday, wasmuch easier to analyze than its free-text descendant. To get much infor-

mational value from free-text, it is necessary to impose some structure. This may involve

translating the text to a preferred language; parsing the text into sentences; extracting and

normalizing the conceptual terms contained in the sentences; mapping terms to a stan-

dard nomenclature; annotating the terms with codes from one or more standard nomen-

clatures; extracting and standardizing data values from the text; assigning data values to

specific classes of data belonging to a classification system; assigning the classified data to

a storage and retrieval system (e.g., a database); and indexing the data in the system. All of

these activities are difficult to do on a small scale and virtually impossible to do on a large

scale. Nonetheless, every Big Data project that uses unstructured data must deal with

these tasks to yield the best possible results with the resources available. [Glossary Parsing,

Nomenclature, Nomenclature mapping, Thesaurus, Indexes, Plain-text]
Section 2.2. Concordances

The limits of my language are the limits of my mind. All I know is what I have words

for. (Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.)
Ludwig Wittgenstein

A concordance is a list of all the differentwords contained in a text with the locations in the

text where each word appears. Concordances have been around for a very long time,

painstakingly constructed from holy scriptures thought to be of such immense value that

every word deserved special attention. Creating a concordance has always been a straight-

forward operation. You take the first word in the text and you note its location (i.e., word 1,

page 1); then onto the second word (word 2 page 1), and so on. When you come to a

word that has been included in the nascent concordance, you add its location to the exist-

ing entry for the word. Continuing thusly, for a few months or so, you end up with a con-

cordance that you can be proud of. Today a concordance for the Bible can be constructed

in a small fraction of a second. [Glossary Concordance]

Without the benefit of any special analyses, skimming through a book’s concordance

provides a fairly good idea of the following:

– The topic of the text based on the words appearing in the concordance. For example, a

concordance listing multiple locations for “begat” and “anointed” and “thy” is most

likely to be the Old Testament.
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– The complexity of the language. A complex or scholarly text will have a larger

vocabulary than a romance novel.

– Aprecise idea of the length of the text, achieved by adding all of the occurrences of each

of the words in the concordance. Knowing the number of items in the concordance,

multiplied by the average number of locations of concordance items, provides a rough

estimate of the total number of words in the text.

– The carewith which the text was prepared, achieved by counting themisspelled words.

Here, in a short Python script, concord_gettysbu.py, that builds a concordance for the Get-

tysburg address, located in the external file “gettysbu.txt”: [Glossary Script]

import re, string

word_list=[];word_dict={};key_list=[]
count=0; word=""

in_text_string = open('gettysbu.txt', "r").read().lower()
word_list = re.split(r'[ â-zA-z\_\-]+',in_text_string)

for word in word_list:
count = count + 1

if word in word_dict:
word_dict[word] = word_dict[word] + ',' + str(count)

else:

word_dict[word] = str(count)
key_list = list(word_dict)

key_list.sort()
for key in key_list:

print(key + " " + word_dict[key])

The first few lines of output are shown:

a 14,36,59,70,76,104,243

above 131
add 136
advanced 185

ago 6
all 26

altogether 93
and 3,20,49,95,122,248

any 45
are 28,33,56

as 75
battlefield 61
be 168,192

before 200
birth 245
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brave 119
brought 9

but 102,151
by 254

can 52,153
cannot 108,111,114

The numbers that follow each item in the concordance correspond to the locations

(expressed as the nth words of the Gettysburg address) of each word in the text.

At this point, building a concordance may appear to an easy, but somewhat pointless

exercise. Does the concordance provide any functionality beyond that provided by the

ubiquitous “search” box. There are five very useful properties of concordances that you

might not have anticipated.

– You can use a concordance to rapidly search and retrieve the locations where single-

word terms appear.

– You can always reconstruct the original text from the concordance. Hence, after you’ve

built your concordance, you can discard the original text.

– You can merge concordances without forfeiting your ability to reconstruct the

original texts, provided that you tag locations with some character sequence that

identifies the text of origin.

– With a little effort a dictionary can be transformed into a universal concordance (i.e., a

merged dictionary/concordance of every book in existence) by attaching the book

identifier and its concordance entries to the corresponding dictionary terms.

– You can easily find the co-locations among words (i.e., which words often precede or

follow one another).

– You can use the concordance to retrieve the sentences and paragraphs in which a

search word or a search term appears, without having access to the original text. The

concordance alone can reconstruct and retrieve the appropriate segments of text,

on-the-fly, thus bypassing the need to search the original text.

– A concordance provides a profile of the book and can be used to compute a similarity

score among different books.

There is insufficient room to explore all of the useful properties of concordances, but let us

examine a script, concord_reverse.py, that reconstructs the original text, in lowercase,

from the concordance. In this case, we have pasted the output from the concord_get-

tysbu.py script (vida supra) into the external file, “concordance.txt”.

import re, string

concordance_hash = {} ; location_array = []
in_text = open('concordance.txt', "r")
for line in in_text:

line = line.replace("\n","")
location_word, separator, location_positions = line.partition(" ")

location_array = location_positions.split(",")
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location_array = [int(x) for x in location_array]
for location in location_array:

concordance_hash[location] = location_word
for n in range(300):

if n in concordance_hash:
print((concordance_hash[n]), end = " ")

Here is the familiar output:

four score and seven years ago our fathers brought forth on this continent a new

nation conceived in liberty and dedicated to the proposition that all men are created

equal now we are engaged in a great civil war testing whether that nation or any

nation so conceived and so dedicated can long endure we are met on a great bat-

tlefield of that war we have come to dedicate a portion of that field as a final

resting-place for those who here gave their lives that that nation might live it is alto-

gether fitting and proper that we should do this but in a larger sense we cannot ded-

icate we cannot consecrate we cannot hallow this ground the brave men living and

dead who struggled here have consecrated it far above our poor power to add or

detract the world will little note nor long remember what we say here but it can

never forget what they did here it is for us the living rather to be dedicated here

to the unfinished work which they who fought here have thus far so nobly advanced

it is rather for us to be here dedicated to the great task remaining before us–that
from these honored dead we take increased devotion to that cause for which they

gave the last full measure of devotion–that we here highly resolve that these dead

shall not have died in vain that this nation under god shall have a new birth of

freedom and that government of the people by the people for the people shall not

perish from the earth

Had we wanted to write a script that produces a merged concordance, for multiple doc-

uments, we could have simply written a loop that repeated the concordance-building pro-

cess for each text. Within the loop, we would have tagged each word location with a short

notation indicating the particular source book. For example, locations from the Gettys-

burg address could have been prepended with “G:” and locations from the Bible might

have been prepended with a “B:”.

We have not finished with the topic of concordances. Later in this chapter (Section 2.8),

we will show how concordances can be transformed to speed-up search and retrieval

operations on large bodies of text.
Section 2.3. Term Extraction

There’s a big difference between knowing the name of something and knowing

something.
Richard Feynman
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One of my favorite movies is the parody version of “Hound of the Baskervilles,” starring

Peter Cooke as Sherlock Holmes and Dudley Moore as his faithful hagiographer, Dr. Wat-

son. Sherlock, preoccupied with his own ridiculous pursuits, dispatches Watson to the

Baskerville family manse, in Dartmoor, to undertake urgent sleuth-related activities.

The hapless Watson, standing in the great Baskerville Hall, has no idea how to proceed

with the investigation. After a moment of hesitation, he turns to the incurious maid

and commands, “Take me to the clues!”

Building an index is a lot like solving a fiendish crime; you need to know how to find the

clues. For informaticians, the terms in the text are the clues upon which the index is built.

Terms in a text file do not jump into your index file; you need to find them. There are sev-

eral available methods for finding and extracting index terms from a corpus of text [1], but

no method is as simple, fast, and scalable as the “stop word” method [2]. [Glossary Term

extraction algorithm, Scalable]

The “stop word” method presumes that text is composed of terms that are somehow

connected into sequences known as sentences. [Glossary Sentence]

Consider the following:

The diagnosis is chronic viral hepatitis.

This sentence contains two very specific medical concepts: “diagnosis” and “chronic viral

hepatitis.” These two concepts are connected to form a sentence, using grammatical bric-

a-brac such as “the” and “is”, and the sentence delimiter, “.”. These grammatical bric-a-

brac are found liberally sprinkled in every paragraph you are likely to read.

A term can be defined as a sequence of one or more uncommon words that are demar-

cated (i.e., bounded on one side or another) by the occurrence of one or more very com-

mon words (e.g., “and”, “the”, “a”, “of”) and phrase delimiters (e.g., “.”, “,”, and “;”)

Consider the following:

An epidural hemorrhage can occur after a lucid interval.

The medical concepts “epidural hemorrhage” and “lucid interval” are composed of

uncommon words. These uncommon word sequences are bounded by common words

(i.e., “the”, “an”, “can”, “a”) or a sentence delimiter (i.e., “.”).

If we had a list of all thewords that were considered common,we couldwrite a program

that extracts the all the concepts found in any text of any length. The concept terms would

consist of all sequences of uncommon words that are uninterrupted by common words.

Here is an algorithm for extracting terms from a sentence:

1. Read the first word of the sentence. If it is a common word, delete it. If it is an

uncommon word, save it.

2. Read the next word. If it is a common word, delete it, and place the saved word (from

the prior step, if the prior step saved a word) into our list of terms found in the text. If it
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is an uncommon word, concatenate it with the word we saved in step one, and save

the 2-word term. If it is a sentence delimiter, place any saved term into our list of

terms, and stop the program.

3. Repeat step two.

This simple algorithm, or something much like it, is a fast and efficient method to build a

collection of index terms. The following list of common words might be useful: “about,

again, all, almost, also, although, always, among, an, and, another, any, are, as, at, be,

because, been, before, being, between, both, but, by, can, could, did, do, does, done, due,

during, each, either, enough, especially, etc, for, found, from, further, had, has, have,having,

here, how, however, i, if, in, into, is, it, its, itself, just, kg, km, made, mainly, make,may, mg,

might, ml, mm, most, mostly, must, nearly, neither, no, nor, obtained, of, often, on, our,

overall, perhaps, pmid, quite, rather, really, regarding, seem, seen, several, should, show,

showed, shown, shows, significantly, since, so, some, such, than, that, the, their, theirs,

them, then, there, therefore, these, they, this, those, through, thus, to,upon,use,used,using,

various, very, was, we, were, what, when, which, while, with, within, without, would.”

Such lists of common words are sometimes referred to as “stop word” lists or “barrier

word” lists, as they demarcate the beginnings and endings of extraction terms. Let us look

at a short Python script (terms.py) that uses our list of stop words (contained in the file

stop.txt) and extracts the terms from the sentence: “Once you have amethod for extracting

terms from sentences the task of creating an index associating a list of locations with each

term is child’s play for programmers”

import re, string
stopfile = open("stop.txt",'r')

stop_list = stopfile.readlines()
stopfile.close()

item_list = []
line = "Once you have a method for extracting terms from \

sentences the task of creating an index associating a list \
of locations with each term is child's play for programmers"
for stopword in stop_list:

stopword = re.sub(r'\n', '', stopword)
line = re.sub(r' *\b' + stopword + r'\b *', '\n', line)

item_list.extend(line.split("\n"))
item_list = sorted(set(item_list))

for item in item_list:
print(item)

Here is the output:

Once

child's play
creating
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extracting terms
index associating

list
locations

method
programmers

sentences
task

term

Extracting terms is the first step in building a very crude index. Indexes built directly from

term extraction algorithms always contain lots of unnecessary terms having little or no

informational value. For serious indexers, the collection of terms extracted from a corpus,

along with their locations in the text, is just the beginning of an intellectual process that

will eventually lead to a valuable index.
Section 2.4. Indexing

Knowledge can be public, yet undiscovered, if independently created fragments are

logically related but never retrieved, brought together, and interpreted.
Donald R. Swanson [3]

Individuals accustomed to electronic media tend to think of the Index as an inefficient

or obsolete method for finding and retrieving information. Most currently available

e-books have no index. It is far easier to pull up the “Find” dialog box and enter a word

or phrase. The e-reader can find all matches quickly, providing the total number of

matches, and bringing the reader to any or all of the pages containing the selection. As

more and more books are published electronically, the book Index, as we have come to

know it, may cease to be.

It would be a pity if indexes were to be abandoned by computer scientists. A well-

designed book index is a creative, literary work that captures the content and intent of

the book and transforms it into a listing wherein related concepts are collected under

common terms, and keyed to their locations. It saddens me that many people ignore

the book index until theywant something from it. Open a favorite book and read the index,

fromA to Z, as if youwere reading the body of the text. Youwill find that the index refreshes

your understanding of the concepts discussed in the book. The range of page numbers

after each term indicates that a concept has extended its relevance across many different

chapters.When you browse the different entries related to a single term, you learn how the

concept represented by the term applies itself to many different topics. You begin to

understand, in ways that were not apparent when you read the book as a linear text,

the versatility of the ideas contained in the book. When you have finished reading the

index, you will notice that the indexer exercised great restraint when selecting terms.
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Most indexes are under 20 pages. The goal of the indexer is not to create a concordance

(i.e., a listing of every word in a book, with its locations), but to create a keyed encapsu-

lation of concepts, sub-concepts and term relationships.

The indexes we find in today’s books are generally alphabetized terms. In prior decades

and prior centuries, authors and editors put enormous effort into building indexes, some-

times producing multiple indexes for a single book. For example, a biography might con-

tain a traditional alphabetized term index, followed by an alphabetized index of the names

of the people included in the text. A zoology book might include an index specifically for

animal names, with animals categorized according to their taxonomic order. A geography

index might list the names of localities sub-indexed by country, with countries sub-

indexed by continent. A single book might have 5 or more indexes. In nineteenth century

books, it was not unusual to publish indexes as stand-alone volumes. [Glossary Taxonomy,

Systematics, Taxa, Taxon]

You may be thinking that all this fuss over indexes is quaint, but it cannot apply to Big

Data resources. Actually, Big Data resources that lack a proper index cannot be utilized to

their full potential. Without an index, you never know what your queries are missing.

Remember, in aBigData resource, it is the relationship amongdataobjects that are the keys

to knowledge. Data by itself, even in large quantities, tells only part of a story. The most

useful Big Data resources have electronic indexes that map concepts, classes, and terms

to specific locations in the resource where data items are stored. An index imposes order

and simplicity on the Big Data resource. Without an index, Big Data resources can easily

devolve into vast collections of disorganized information. [Glossary Class]

The best indexes comply with international standards (ISO 999) and require creativity

and professionalism [4]. Indexes should be accepted as another device for driving down

the complexity of Big Data resources. Here are a few of the specific strengths of an index

that cannot be duplicated by “find” operations on terms entered into a query box:

– An index can be read, like a book, to acquire a quick understanding of the contents and

general organization of the data resource.

– Index lookups (i.e., searches and retrievals) are virtually instantaneous, even for very

large indexes (see Section 2.6 of this chapter, for explanation).

– Indexes can be tied to a classification. This permits the analyst to know the

relationships among different topics within the index, and within the text. [Glossary

Classification]

– Many indexes are cross-indexed, providing relationships among index terms that

might be extremely helpful to the data analyst.

– Indexes frommultiple Big Data resources can bemerged.When the location entries for

index terms are annotated with the name of the resource, then merging indexes is

trivial, and index searches will yield unambiguously identified locators in any of the Big

Data resources included in the merge.

– Indexes can be created to satisfy a particular goal; and the process of creating a made-

to-order index can be repeated again and again. For example, if you have a Big Data
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resource devoted to ornithology, and you have an interest in the geographic location of

species, youmight want to create an index specifically keyed to localities, or youmight

want to add a locality sub-entry for every indexed bird name in your original index.

Such indexes can be constructed as add-ons, as needed. [Glossary Ngrams]

– Indexes can be updated. If terminology or classifications change, there is nothing

stopping you from re-building the index with an updated specification. In the specific

context of Big Data, you can update the index without modifying your data.

[Glossary Specification]

– Indexes are created after the database has been created. In some cases, the data

manager does not envision the full potential of the Big Data resource until after it is

created. The index can be designed to facilitate the use of the resource in line with the

observed practices of users.

– Indexes can serve as surrogates for the Big Data resource. In some cases, all the data

user really needs is the index. A telephone book is an example of an index that serves its

purpose without being attached to a related data source (e.g., caller logs, switching

diagrams).
Section 2.5. Autocoding

The beginning of wisdom is to call things by their right names.
Chinese proverb

Coding, as used in the context of unstructured textual data, is the process of tagging terms

with an identifier code that corresponds to a synonymous term listed in a standard

nomenclature. For example, a medical nomenclature might contain the term renal cell

carcinoma, a type of kidney cancer, attaching a unique identifier code for the term, such

as “C9385000.” There are about 50 recognized synonyms for “renal cell carcinoma.” A few

of these synonyms and near-synonyms are listed here to show that a single concept can be

expressed many different ways, including: adenocarcinoma arising from kidney, adeno-

carcinoma involving kidney, cancer arising from kidney, carcinoma of kidney, Grawitz

tumor, Grawitz tumour, hypernephroid tumor, hypernephroma, kidney adenocarcinoma,

renal adenocarcinoma, and renal cell carcinoma. All of these terms could be assigned the

same identifier code, “C9385000”. [Glossary Coding, Identifier]

The process of coding a text document involves finding all the terms that belong to a

specific nomenclature, and tagging each term with the corresponding identifier code.

A nomenclature is a specialized vocabulary, usually containing terms that comprehen-

sively cover a knowledge domain. For example, there may be a nomenclature of diseases,

of celestial bodies, or of makes and models of automobiles. Some nomenclatures are

ordered alphabetically. Others are ordered by synonymy, wherein all synonyms and ple-

sionyms (near-synonyms) are collected under a canonical (i.e., best or preferred) term.

Synonym indexes are always corrupted by the inclusion of polysemous terms (i.e., terms

withmultiplemeanings). Inmany nomenclatures, grouped synonyms are collected under
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a so-called code (i.e., a unique alphanumeric string) assigned to all of the terms in

the group.

Nomenclatures have many purposes: to enhance interoperability and integration, to

allow synonymous terms to be retrieved regardless of which specific synonym is entered

as a query, to support comprehensive analyses of textual data, to express detail, to tag

information in textual documents, and to drive down the complexity of documents by

uniting synonymous terms under a common code. Sets of documents held in more than

one Big Data resource can be harmonized under a nomenclature by substituting or

appending a nomenclature code to every nomenclature term that appears in any of the

documents. [Glossary Interoperability, Data integration, Plesionymy, Polysemy, Vocabu-

lary, Uniqueness, String]

In the case of “renal cell carcinoma,” if all of the 50+ synonymous terms, appearing

anywhere in a medical text, were tagged with the code “C938500,” then a search engine

could retrieve documents containing this code, regardless of which specific synonym

was queried (e.g., a query on Grawitz tumor would retrieve documents containing the

word “hypernephroid tumor”). To do so the search engine would simply translate the

query word, “Grawitz tumor” into its nomenclature code “C938500” and would pull every

record that had been tagged by the code.

Traditionally, nomenclature coding, much like language translation, has been consid-

ered a specialized and highly detailed task that is best accomplished by humanbeings. Just

as there are highly trained translators who will prepare foreign language versions of pop-

ular texts, there are highly trained coders, intimately familiar with specific nomenclatures,

who create tagged versions of documents. Tagging documents with nomenclature codes is

serious business. If the coding is flawed the consequences can be dire. In 2009 the Depart-

ment of Veterans Affairs sent out hundreds of letters to veterans with the devastating news

that they had contracted Amyotrophic Lateral Sclerosis, also known as Lou Gehrig’s dis-

ease, a fatal degenerative neurologic condition. About 600 of the recipients did not, in fact,

have the disease. The VA retracted these letters, attributing the confusion to a coding error

[5]. Coding text is difficult. Human coders are inconsistent, idiosyncratic, and prone to

error. Coding accuracy for humans seems to fall in the range of 85%–90% [6]. [Glossary

Accuracy versus precision]

When dealing with text in gigabyte and greater quantities, human coding is simply out

of the question. There is not enough time or money or talent to manually code the textual

data contained in Big Data resources. Computerized coding (i.e., autocoding) is the only

practical solution.

Autocoding is a specialized form of machine translation, the field of computer science

wherein meaning is drawn from narrative text. Not surprisingly, autocoding algorithms

have been adopted directly from the field of machine translation, particularly algorithms

for natural language processing. A popular approach to autocoding involves using the nat-

ural rules of language to findwords or phrases found in text andmatching them to nomen-

clature terms. Ideally the terms found in text are correctly matched to their equivalent

nomenclature terms, regardless of the way that the terms were expressed in the text.
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For instance, the term “adenocarcinoma of lung” has much in common with alternate

terms that have minor variations in word order, plurality, inclusion of articles, terms split

by a word inserted for informational enrichment, and so on. Alternate forms would be

“adenocarcinoma of the lung,” “adenocarcinoma of the lungs,” “lung adenocarcinoma,”

and “adenocarcinoma found in the lung.” A natural language algorithm takes into account

grammatical variants, allowable alternate term constructions, word roots (i.e., stemming),

and syntax variation. Clever improvements on natural language methods might include

string similarity scores, intended to find term equivalences in cases where grammatical

methods come up short. [Glossary Algorithm, Syntax, Machine translation, Natural

language processing]

A limitation of the natural language approach to autocoding is encountered when syn-

onymous terms lack etymologic commonality. Consider the term “renal cell carcinoma.”

Synonyms include terms that have no grammatical relationship with one another. For

example, hypernephroma, and Grawitz tumor are synonyms for renal cell carcinoma. It

is impossible to compute the equivalents among these terms through the implementation

of natural language rules or word similarity algorithms. The only way of obtaining ade-

quate synonymy is through the use of a comprehensive nomenclature that lists every syn-

onym for every canonical term in the knowledge domain.

Setting aside the inability to construct equivalents for synonymous terms that share no

grammatical roots, the best natural language autocoders are pitifully slow. The reason for

the slowness relates to their algorithm, which requires the following steps, at a minimum:

parsing text into sentences; parsing sentences into grammatical units; re-arranging the

units of the sentence into grammatically permissible combinations; expanding the com-

binations based on stem forms of words; allowing for singularities and pluralities of words,

and matching the allowable variations against the terms listed in the nomenclature.

A typical natural language autocoder parses text at about 1 kilobyte per second, which

is equivalent to a terabyte of text every 30 years. Big Data resources typically containmany

terabytes of data; thus, natural language autocoding software is unsuitable for translating

Big Data resources. This being the case, what good are they?

Natural language autocoders have value when they are employed at the time of data

entry. Humans type sentences at a rate far less than 1 kilobyte per second, and natural

language autocoders can keep upwith typists, inserting codes for terms, as they are typed.

They can operate much the same way as auto-correct, auto-spelling, look-ahead, and

other commonly available crutches intended to improve or augment the output of plod-

ding human typists.

– Recoding and speed

It would seem that by applying the natural language parser at the moment when the

data is being prepared, all of the inherent limitations of the algorithm can be overcome.

This belief, popularized by developers of natural language software, and perpetuated

by a generation of satisfied customers, ignores two of the most important proper-

ties that must be preserved in Big Data resources: longevity, and curation. [Glossary

Curator]
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Nomenclatures change over time. Synonymous terms and the codes will vary from year

to year as new versions of old nomenclature are published and new nomenclatures are

developed. In some cases, the textual material within the Big Data resource will need

to be annotated using codes from nomenclatures that cover informational domains that

were not anticipated when the text was originally composed.

Most of the people who work within an information-intensive society are accustomed

to evanescent data; data that is forgotten when its original purpose is served. Do we really

want all of our old e-mails to be preserved forever? Dowe not regret our earliest blog posts,

Facebook entries, and tweets? In the medical world, a code for a clinic visit or a biopsy

diagnosis, or a reportable transmissible disease will be used in a matter of minutes or

hours; maybe days or months. Few among us place much value on textual information

preserved for years and decades. Nonetheless, it is the job of the Big Data manager to pre-

serve resource data over years and decades. When we have data that extends back, over

decades, we can find and avoid errors that would otherwise reoccur in the present, and

we can analyze trends that lead us into the future.

To preserve its value, data must be constantly curated, adding codes that apply to cur-

rently available nomenclatures. There is no avoiding the chore; the entire corpus of textual

data held in the Big Data resource needs to be recoded again and again, using modified

versions of the original nomenclature, or using one or more new nomenclatures. This

time, an autocoding application will be required to code huge quantities of textual data

(possibly terabytes), quickly. Natural language algorithms, which depend heavily on regex

operations (i.e., finding word patterns in text) are too slow to do the job. [Glossary RegEx]

A faster alternative is so-called lexical parsing. This involves parsing text, word byword,

looking for exact matches between runs of words and entries in a nomenclature. When a

match occurs, the words in the text that matched the nomenclature term are assigned the

nomenclature code that corresponds to the matched term. Here is one possible algorith-

mic strategy for autocoding the sentence: “Margins positive malignant melanoma.” For

this example, you would be using a nomenclature that lists all of the tumors that occur

in humans. Let us assume that the terms “malignant melanoma,” and “melanoma” are

included in the nomenclature. They are both assigned the same code, for example

“Q5673013,” because the people who wrote the nomenclature considered both terms to

be biologically equivalent.

Let us autocode the diagnostic sentence, “Margins positive malignant melanoma”:

1. Begin parsing the sentence, one word at a time. The first word is “Margins.” You check

against the nomenclature, and find nomatch. Save the word “margins.”Wewill use it in

step 2.

2. You go to the second word, “positive” and find no matches in the nomenclature. You

retrieve the former word “margins” and check to see if there is a 2-word term, “margins

positive.” There is not. Save “margins” and “positive” and continue.

3. You go to the next word, “malignant.” There is no match in the nomenclature. You

check to determinewhether the 2-word term “positivemalignant” and the 3-word term

“margins positive malignant” are in the nomenclature. They are not.
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4. You go to the next word, “melanoma.” You check and find that melanoma is in the

nomenclature. You check against the two-word term “malignant melanoma,” the

three-word term “positive malignant melanoma,” and the four-word term “margins

positive malignant melanoma.” There is a match for “malignant melanoma” but it

yields the same code as the code for “melanoma.”

5. The autocoder appends the code, “Q5673013” to the sentence, and proceeds to the next

sentence, where it repeats the algorithm.

The algorithm seems like a lot of work, requiringmany comparisons, but it is actuallymuch

more efficient than natural language parsing. A complete nomenclature, with each

nomenclature term paired with its code, can be held in a single variable, in volatile

memory. Look-ups to determine whether a word or phrase is included in the nomenclature

are also fast. As it happens, there aremethods thatwill speed things along. In Section 2.7, we

will see a 12-line autocoder algorithm that can parse through terabytes of text at a rate that is

much faster than commercial-grade natural language autocoders [7]. [Glossary Variable]

Another approach to the problem of recoding large volumes of textual data involves

abandoning the attempt to autocode the entire corpus, in favor of on-the-fly autocoding,

when needed. On-the-fly autocoding involves parsing through a text of any size, and

searching for all the terms that match one particular concept (i.e., the search term).

Here is a general algorithm on-the-fly coding [8]. This algorithm starts with a query

term and seeks to find every synonym for the query term, in any collection of Big Data

resources, using any convenient nomenclature.

1. The analyst starts with a query term submitted by a data user. The analyst chooses a

nomenclature that contains his query term, as well as the list of synonyms for the term.

Any vocabulary is suitable, so long as the vocabulary consists of term/code pairs, where

a term and its’ synonyms are all paired with the same code.

2. All of the synonyms for the query term are collected together. For instance the

2004 version of a popular medical nomenclature, the Unified Medical

Language System, had 38 equivalent entries for the code C0206708, nine of

which are listed here:
C0206708 jCervical Intraepithelial Neoplasms
C0206708 jCervical Intraepithelial Neoplasm

C0206708 jIntraepithelial Neoplasm, Cervical
C0206708 jIntraepithelial Neoplasms, Cervical
C0206708 jNeoplasm, Cervical Intraepithelial

C0206708 jNeoplasms, Cervical Intraepithelial
C0206708 jIntraepithelial Neoplasia, Cervical

C0206708 jNeoplasia, Cervical Intraepithelial
C0206708 jCervical Intraepithelial Neoplasia

If the analyst had chosen to search on “Cervial Intraepithelial Neoplasia,” his

term will be attached to the 38 synonyms included in the nomenclature.
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3. One-by-one, the equivalent terms are matched against every record in every Big Data

resource available to the analyst.

4. Records are pulled that contain terms matching any of the synonyms for the term

selected by the analyst.

In the case of the example, this would mean that all 38 synonymous terms for “Cervical

Intraepithelial Neoplasms” would be matched against the entire set of data records. The

benefit of this kindof search is that data records that contain any search term, or its nomen-

clature equivalent, can be extracted frommultiple data sets inmultiple BigData resources,

as they areneeded, in response to any query. There is nopre-coding, and there is noneed to

match against nomenclature terms that have no interest to the analyst. The drawback of

this method is that it multiplies the computational task by the number of synonymous

terms being searched, 38-fold in this example. Luckily, there are published methods for

conducting simple and fast synonym searches, using precompiled concordances [8].
Section 2.6. Case Study: Instantly Finding the Precise Location
of Any Atom in the Universe (Some Assembly Required)

There’s as many atoms in a single molecule of your DNA as there are stars in the

typical galaxy. We are, each of us, a little universe.
Neil deGrasse Tyson, Cosmos

If you have sat through an introductory course in Computer Science, you are no doubt

familiar with three or four sorting algorithms. Indeed, most computer science books

devote a substantial portion of their texts to describing sorting algorithms. The reason

for this infatuation with sorting is that all sorted lists can be searched nearly instantly,

regardless of the size of the list. The so-called binary algorithm for searching a sorted list

is incredibly simple. For the sake of discussion, let us consider an alphabetically sorted list

of 1024 words. I want to determine if the word “kangaroo” is in the list; and, if so, its exact

location in the list. Here is how a binary search would be conducted.

1. Go to the middle entry of the list.

2. Compare the middle entry to the word “kangaroo.” If the middle entry comes earlier in

the alphabet than “kangaroo,” then repeat step 1, this time ignoring the first half of the

list and using only the second half of the list (i.e., going to the middle entry of the

second half of the file). Otherwise, go to step 1, this time ignoring the second half of the

list and using only the first half.

These steps are repeated until you come to the location where kangaroo resides, or until

you have exhausted the list without finding your kangaroo.

Each cycle of searching cuts the size of the list in half. Hence, a search through a sorted

list of 1024 items would involve, at most, 10 cycles through the two-step algorithm

(because 1024 ¼ 2 1̂0).
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Every computer science student is expected towrite her own binary search script. Here

is a simple script, binary.py, that does five look-ups through a sorted numeric list, report-

ing on which items are found, and which items are not.

def Search(search_list, search_item):

first_item = 0
last_item = len(search_list)-1

found = False
while (first_item <= last_item) and not found:

middle = (first_item + last_item)//2
if search_list[middle] == search_item:

found = True
else:

if search_item < search_list[middle]:
last_item = middle - 1

else:

first_item = middle + 1
return found

sorted_list = [4, 5, 8, 15, 28, 29, 30, 45, 67, 82, 99, 101, 1002]
for item in [3, 7, 28, 31, 45, 1002]:

print(Search(sorted_list, item))

output:
False
False

True
False

True
True

Let us say, just for fun, we wanted to search through a sorted list of every atom in the uni-

verse. First we would take each atom in the universe and assign it a location. Then we

would sort the locations based on their distances from the center of the center of the uni-

verse, which is apparently located at the tip of my dog’s left ear. We could then substitute

the sorted atom list for the sorted_list in the binary.py script, shown above.

How long would it take to search all the atoms of the universe, using the binary.py

script. As it happens, we could find the list location for any atom in the universe, almost

instantly. The reason is that there are only about 2 2̂60 atoms in the known universe. This

means that the algorithmwould required, at the verymost, 260 2-step cycles. Each cycle is

very fast, requiring only that we compare the search atom’s distance from my dog’s ear,

against the middle atom of the list.

Of course, composing the list of atom locations may pose serious difficulties, and we

might need another universe, much larger than our own, to hold the sorted list that we
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create. Nonetheless, a valid point emerges; that binary searches are fast, and the time to

completion of a binary search is not significantly lengthened by any increase in the num-

ber of items in the list. Had we chosen, we could have annotated the items of sorted_list

with any manner of information (e.g., locations in a file, nomenclature code, links to web

addresses, definitions of the items, metadata), so that our binary searches would yield

something more useful than the location of the item in the list.
Section 2.7. Case Study (Advanced): A Complete Autocoder
(in 12 Lines of Python Code)

Software is a gas; it expands to fill its container.
Nathan Myhrvold

This script requires two external files:

1. The nomenclature file that will be converted into a Python dictionary, wherein each

term is a dictionary key, and each nomenclature code is a value assigned to a term.

[Glossary Dictionary]
Here are a few sample lines from the nomenclature file (nomenclature_dict.txt, in

this case):

oropharyngeal adenoid cystic adenocarcinoma , C6241000

peritoneal mesothelioma , C7633000
benign tumour arising from the exocrine pancreas , C4613000

basaloid penile squamous cell cancer , C6980000
cns malignant soft tissue tumor , C6758000
digestive stromal tumour of stomach , C5806000

bone with malignancy , C4016000
benign mixed tumor arising from skin , C4474000
2. The file containing a corpus of sentences that will be autocoded by the script.
Here are a few sample lines from the corpus file (tumorabs.txt, in this case):

local versus diffuse recurrences of meningiomas factors correlated

to the extent of the recurrence

the effect of an unplanned excision of a soft tissue sarcoma on
prognosis

obstructive jaundice associated burkitt lymphoma mimicking
pancreatic carcinoma

efficacy of zoledronate in treating persisting isolated tumor

cells in bone marrow in patients with breast cancer a phase ii pilot
study
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metastatic lymph node number in epithelial ovarian carcinoma does it
have any clinical significance

extended three dimensional impedance map methods for identifying

ultrasonic scattering sites

aberrant expression of connexin 26 is associated with lung metastasis
of colorectal cancer
The 19-line python script, autocode.txt, produces a sentence-by-sentence list of extracted

autocoded terms:

outfile = open("autocoded.txt", "w")
literalhash = {}

with open("nomenclature_dict.txt") as f:
for line in f:

(key, val) = line.split(" , ")
literalhash[key] = val

corpus_file = open("tumorabs.txt", "r")
for line in corpus_file:

sentence = line.rstrip()

outfile.write("\n" + sentence[0].upper() + sentence[1:] + "." +
"\n")

sentence_array = sentence.split(" ")
length = len(sentence_array)

for i in range(length):
for place_length in range(len(sentence_array)):

last_element = place_length + 1
phrase = ' '.join(sentence_array[0:last_element])

if phrase in literalhash:
outfile.write(phrase + " " + literalhash[phrase])

sentence_array.pop(0)

The first seven lines of code are housekeeping chores, in which the external nomenclature

is loaded into a Python dictionary (literalhash, in this case), and an external file composed

of lines, with one sentence on each line, is opened and prepared for reading, and which

another external file, autocoded.txt, is created to accept the script’s output. We will not

count these first seven lines as belonging to our autocoder because, in all fairness, they

are not doing any of the work of autocoding. Themeat of the script is the next twelve lines,

beginning with “for line in corpus_file.”

Here is a sample of the output:

Obstructive jaundice associated burkitt lymphoma mimicking pancreatic
carcinoma.

burkitt lymphoma C7188000
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lymphoma C7065000
pancreatic carcinoma C3850000

carcinoma C2000000

Littoral cell angioma of the spleen.
littoral cell angioma C8541100

littoral cell angioma of the spleen C8541100
angioma C3085000

angioma of the spleen C8541000

Isolated b cell lymphoproliferative disorder at the dura mater with b

cell chronic lymphocytic leukemia immunophenotype.
lymphoproliferative disorder C4727100

b cell chronic lymphocytic leukemia C3163000
chronic lymphocytic leukemia C3163000

lymphocytic leukemia C7539000
leukemia C3161000

By observing a few samples of autocoded lines of text, we can see that the autocoder

extracts all cancer terms, and supplies its nomenclature code, regardless of whether a term

is contained within a longer term.

For example, the autocoder managed to find four terms within the sentence “Littoral

cell angioma of the spleen,” these being: littoral cell angioma, littoral cell angioma of the

spleen, angioma, and angioma of the spleen. The ability to extract every valid term, even

when they are subsumed by larger terms, guarantees that a query term and all its syno-

nyms will always be retrieved, if the query term happens to be a valid nomenclature term.

This short autocoding script comes with a few advantages that are of particular interest

to Big Data professionals:

– Scalable to any size

All nomenclatures are small. Most of us have a working vocabulary of a few thousand

words. Most dictionaries are smaller, containing maybe 60,000 words. The most extreme

case of verbiage about verbiage is The 20-volume Oxford English Dictionary, which con-

tains about 170,000 entries. Even in this case, slurping the entire list of Oxford English dic-

tionary items would be a simple matter for any modern computer.

Most importantly, the autocoding algorithm imposes no limits on the size of the Big

Data corpus. The software proceeds line-by-line until the task is complete. Memory

requirements and other issues of scalability are not a problem.

– Fast

On my modest desktop computer, the 12-line autocoding algorithm processes text at the

rate of 1 megabyte every two seconds. A fast and powerful computer, using the same algo-

rithm, would be expected to parse at rates of 1 gigabytes of text per second, or greater.
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– Repeatable

Code a gigabyte of data in the morning. Do it all over again in the afternoon. Use another

version of the nomenclature, or use a different nomenclature, entirely. Recoding is not a

problem.

– Simple and adaptable, with easily maintained code

The larger the program, the more difficult it is to find bugs, or to recover from errors pro-

duced when the code is modified. It is nearly impossible to inflict irreversible damage

upon a simple, 12-line script. As a general rule, tiny scripts are seldom a problem if

you maintain records of where the scripts are located, how the scripts are used, and

how the scripts are modified over time.

– Reveals the dirty little secret that every programmer knows, but few are willing

to admit.

Virtually all useful algorithms can be implemented in a few lines of code; autocoders

are no exception. The thousands, or millions, of lines of code in just about any

commercial software application are devoted, in one way or another, to the graphic user

interface.
Section 2.8. Case Study: Concordances as Transformations
of Text

Interviewer: Is there anything from home that you brought over with you to set up for

yourself? Creature comforts?

Hawkeye: I brought a book over.

Interviewer: What book?

Hawkeye: The dictionary. I figure it’s got all the other books in it.
Interview with the character Hawkeye, played by Alan Alda, from television show M*A*S*H

A transform is amathematical operation that takes a function, a signal, or a set of data and

changes it into something else, that is easier to work with than the original data. The con-

cept of the transform is a simple but important idea that has revolutionized many scien-

tific fields including electrical engineering, digital signal processing, and data analysis. In

the field of digital signal processing, data in the time domain (i.e., wherein the amplitude

of a measurement varies over time, as in a signal), is commonly transformed into the fre-

quency domain (i.e., wherein the original data can be assigned to amplitude values for a

range of frequencies). There are dozens, possibly hundreds, of mathematical transforms

that enable data analysts to move signal data between forward transforms (e.g., time

domain to frequency domain), and their inverse counterparts (e.g., frequency domain

to time domain). [Glossary Transform, Signal, Digital signal, Digital Signal Processing,

DSP, Fourier transform, Burrows-Wheeler transform]
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A concordance is transform, for text. A concordance takes a linear text and transforms it

a word-frequency distribution list; which can reversed as needed. Like any good trans-

form, we can expect to find circumstances when it is easier to perform certain types of

operations on the transformed data than on the original data. [Glossary Concordance]

Here is an example, from the Python script proximate_words.py, where we use a con-

cordance to list the words in close proximity to the concordance entries (i.e., the words

contained in the text). In this script, we use the previously constructed (vida supra) con-

cordance of the Gettysburg address.

import string
infile = open ("concordance.txt", "r")

places = []
word_array = []

concordance_hash = {}
words_hash = {}
for line in infile:

line = line.rstrip()
line_array = line.split(" ")

word = line_array[0]
places = line_array[1]

places_array = places.split(",")
words_hash[word] = places_array

for word_position in places_array:
concordance_hash[word_position] = word

for k, v in words_hash.items():

print(k, end=" - \n")
for items in v:

n=0
while n < 5:

nextone = str(int(items) + n)
if nextone in concordance_hash:

print(concordance_hash[nextone], end=" ")
n=n+1

print()
print()

The script produces a list of the words from the Gettysburg address, along with short

sequences of the text that follow each occurrence of the word in the text, as shown in this

sampling from the output file:

to -

to the proposition that all
to dedicate a portion of



36 PRINCIPLES AND PRACTICE OF BIG DATA
to add or detract. The
to be dedicated here to

to the unfinished work which
to be here dedicated to

to the great task remaining
to that cause for which

dedicated -

dedicated to the proposition that
dedicated can long endure. We
dedicated here to the unfinished

dedicated to the great task

Inspecting some of the output, we see that the word “to” appears 8 times in the Gettysburg

address. We used the concordance to reconstruct four words that follow the word “to”

wherever it occurs in the text. Likewise we see that the word “dedicated” occurs 4 times

in the text, and the concordance tells us the four words that follow at each of the locations

where “dedicated” appears. We can construct these proximity phrases very quickly,

because the concordance tells us the exact location of the words in the text. If we were

working from the original text, instead of its transform (i.e., the concordance), then our

algorithmwould runmuchmore slowly, because each word would need to be individually

found and retrieved, by parsing every word in the text, sequentially.
Section 2.9. Case Study (Advanced): Burrows Wheeler
Transform (BWT)

All parts should go together without forcing. You must remember

that the parts you are reassembling were disassembled by you. Therefore,

if you can’t get them together again, there must be a reason. By all

means, do not use a hammer.
IBM Manual, 1925

One of the most ingenious transforms in the field of data science is the Burrows Wheeler

transform. Imagine analgorithm that takes a corpus of text and creates anoutput string con-

sisting of a transformed text combinedwith its ownword index, in a format that canbe com-

pressed to a smaller size than the compressed original file. The BurrowsWheeler Transform

does all this, and more [9,10]. A clever informatician may find many ways to use the BWT

transform in search and retrieval algorithms and in data merging projects [11]. Using the

BWT file, you can re-compose the original file, or you can find any portion of a file preceding

or following any word from the file [12]. [Glossary Data merging, Data fusion]

Excellent discussions of the algorithm are available, along with implementations in

several languages [9,10,13]. The Python script, bwt.py, shown here, is a modification of

a script available on Wikipedia [13]. The script executes the BWT algorithm in just three



Chapter 2 • Providing Structure to Unstructured Data 37
lines of code. In this example, the input string is a excerpt from Lincoln’s Gettysburg

address [12].

input = "four score and seven years ago our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"

input = input + "\0"
table = sorted(input[i:] + input[:i] for i in range(len(input)))

last_column = [row[-1:] for row in table]
print("".join(last_column))

Here is the transformed output:

dtsyesnsrtdnwaordnhn efni n snenryvcvnhbsn uatttgl tthe oioe oaai
eogipccc

fr fuuuobaeoerri nhra naro ooieet

Admittedly, the output does not look like much. Let us juxtapose our input string and our

BWT’s transform string:

four score and seven years ago our fathers brought forth upon this

continent a new nation conceived in liberty and
dtsyesnsrtdnwaordnhn efni n snenryvcvnhbsn uatttgl tthe oioe oaai

eogipcccfr fuuuobaeoerri nhra naro ooieet

We see that the input string and the transformed output string both have the same length,

so there doesn’t seem to be any obvious advantage to the transform. If we look a bit closer,

though, we see that the output string consists largely of runs of repeated individual char-

acters, repeated substrings, and repeated spaces (e.g., “ttt” “uuu”). These frequent repeats

in the transform facilitate compression algorithms that hunt for repeat patterns. BWT’s

facility for creating runs of repeated characters accounts for its popularity in compression

software (e.g., the Bunzip compression utility).

The Python script, bwt_inverse.py, computes the inverse BWT to re-construct the orig-

inal input string. Notice that the inverse algorithm is implemented in just the last four

lines of the python code (the first five lines re-created the forward BWT transform) [12]

input = "four score and seven years ago our fathers brought forth upon"

input = input + " this continent a new nation conceived in liberty and"
input = input + "\0"
table = sorted(input[i:] + input[:i] for i in range(len(input)))

last_column = [row[-1:] for row in table]
#The first lines re-created the bwt transform

#The next four lines compute the inverse transform

table = [""] * len(last_column)
for i in range(len(last_column)):

table = sorted(last_column[i] + table[i] for i in range(len(input)))
print([row for row in table if row.endswith("\0")][0])
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As we would expect, the output of the bwt_inverse.py script, is our original input

string:

four score and seven years ago our fathers brought forth upon this
continent a new nation conceived in liberty and

The charm of the BWT transform is demonstratedwhenwe create an implementation that

parses the input string word-by-word; not character-by-character.

Here is the Python script, bwt_trans_inv.py, that transforms an input string, word-by-

word, producing its transform; then reverses the process to yield the original string, as an

array of words. As an extra feature, the script produces the first column, as an array, of the

transform table [12]. [Glossary Numpy]

import numpy as np

input = "\0 four score and seven years ago our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"
word_list = input.rsplit()

table = sorted(word_list[i:] + word_list[:i] for i in range(len
(word_list)))

last_column = [row[-1:] for row in table]
first_column = [row[:1] for row in table]

print("First column of the transform table:\n" + str(first_column) +
"\n")

table = [""] * len(last_column)
for i in range(len(last_column)):

table = sorted(str(last_column[i]) + " " + str(table[i]) for i in

range(len(word_list)))
original = [row for row in table][0]

print("Inverse transform, as a word array:\n" + str(original))

Here is the output of the bwt_trans_inv.py script. Notice oncemore that the word-by-word

transform was implemented in 3 lines of code, and the inverse transform was implemen-

ted in four lines of code.

First column of the transform table:

[['\x00'], ['a'], ['ago'], ['and'], ['and'], ['brought'],
['conceived'], ['continent'], ['fathers'], ['forth'], ['four'],
['in'], ['liberty'], ['nation'], ['new'], ['our'], ['score'],

['seven'], ['this'], ['upon'], ['years']]

Inverse transform, as a word array:
['\x00'] ['four'] ['score'] ['and'] ['seven'] ['years'] ['ago']

['our'] ['fathers'] ['brought'] ['forth'] ['upon'] ['this']
['continent'] ['a'] ['new'] ['nation'] ['conceived'] ['in']

['liberty'] ['and']
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The first column of the transform, created in the forward BWT, is a list of the words in the

input string, in alphabetic order. Notice that words that occurred more than one time in

the input text were repeated in the first column of the transform table (i.e., [and], [and] in

the example sentence). Hence, the transform yields all the words from the original input,

along with their frequency of occurrence in the text. As expected, the inverse of the trans-

form yields our original input string.

Glossary
Accuracy versus precision Accuracymeasures how close your data comes to being correct. Precision pro-

vides a measurement of reproducibility (i.e., whether repeated measurements of the same quantity

produce the same result). Data can be accurate but imprecise. If you have a 10 pound object, and

you report its weight as 7.2376 pounds, on every occasion when the object is weighed, then your pre-

cision is remarkable, but your accuracy is dismal.

Algorithm An algorithm is a logical sequence of steps that lead to a desired computational result. Algo-

rithms serve the same function in the computer world as production processes serve in the

manufacturing world and as pathways serve in the world of biology. Fundamental algorithms can

be linked to one another, to create new algorithms (just as biological pathways can be linked). Algo-

rithms are the most important intellectual capital in computer science. In the past half century, many

brilliant algorithms have been developed for the kinds of computation-intensive work required for Big

Data analysis [14,15].

Binary data Computer scientists say that there are 10 types of people. Those who think in terms of binary

numbers, and those who do not. Pause for laughter and continue. All digital information is coded as

binary data. Strings of 0s and 1s are the fundamental units of electronic information. Nonetheless,

some data is more binary than other data. In text files, 8-bite sequences are converted into decimals

in the range of 0–256, and these decimal numbers are converted into characters, as determined by the

ASCII standard. In several raster image formats (i.e., formats consisting of rows and columns of pixel

data), 24-bit pixel values are chopped into red, green and blue values of 8-bits each. Files containing

various types of data (e.g., sound, movies, telemetry, formatted text documents), all have some kind of

low-level software that takes strings of 0s and 1s and converts them into data that has some particular

meaning for a particular use. So-called plain-text files, including HTML files and XML files are distin-

guished from binary data files and referred to as plain-text or ASCII files. Most computer languages

have an option wherein files can be opened as “binary,” meaning that the 0s and 1s are available to

the programmer, without the intervening translation into characters or stylized data.

Burrows-Wheeler transform Abbreviated as BWT, the Burrows-Wheeler transform produces a com-

pressed version of an original file, along with a concordance to the contents of the file. Using a reverse

BWT, you can reconstruct the original file, or you can find any portion of a file preceding or succeeding

any location in the file. The BWT transformation is an amazing example of simplification, applied to

informatics. A detailed discussion of the BWT is found in Section 2.9, “Case Study (Advanced): Burrows

Wheeler Transform.”

Class A class is a group of objects that share a set of properties that define the class and that distinguish

themembers of the class frommembers of other classes. The word “class,” lowercase, is used as a gen-

eral term. The word “Class,” uppercase, followed by an uppercase noun (e.g., Class Animalia), repre-

sents a specific class within a formal classification.

Classification A system in which every object in a knowledge domain is assigned to a class within a hier-

archy of classes. The properties of superclasses are inherited by the subclasses. Every class has one

immediate superclass (i.e., parent class), although a parent class may have more than one immediate

subclass (i.e., child class). Objects do not change their class assignment in a classification, unless there
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was a mistake in the assignment. For example, a rabbit is always a rabbit, and does not change into a

tiger. Classifications can be thought of as the simplest and most restrictive type of ontology, and serve

to reduce the complexity of a knowledge domain [16].

Classifications can be easily modeled in an object-oriented programming language and are non-chaotic

(i.e., calculations performed on themembers and classes of a classification should yield the same out-

put, each time the calculation is performed). A classification should be distinguished froman ontology.

In an ontology a class may have more than one parent class and an object may be a member of more

than one class. A classification can be considered a special type of ontology wherein each class is lim-

ited to a single parent class and each object has membership in one and only one class.

Coding The term “coding” has three very differentmeanings depending onwhich branch of science influ-

ences your thinking. For programmers, coding means writing the code that constitutes a computer

programmer. For cryptographers, coding is synonymouswith encrypting (i.e., using a cipher to encode

amessage). Formedics, coding is calling an emergency team to handle a patient in extremis. For infor-

maticians and library scientists, coding involves assigning a alphanumeric identifier, representing a

concept listed in a nomenclature, to a term. For example, a surgical pathology report may includes

the diagnosis, “Adenocarcinoma of prostate.” A nomenclature may assign a code C4863000 that

uniquely identifies the concept “Adenocarcinoma.” Coding the report may involve annotating every

occurrence of the work “Adenocarcinoma” with the “C4863000” identifier. For a detailed explanation

of coding, and its importance for searching and retrieving data, see the full discussion in Section 3.4,

“Autoencoding and Indexing with Nomenclatures.”

Concordance A concordance is an index consisting of every word in the text, along with every location

wherein each word can be found. It is computationally trivial to reconstruct the original text from

the concordance. Before the advent of computers, concordances fell into the provenance of religious

scholars, who painstakingly recorded the locations of the all words appearing in the Bible, ancient

scrolls, and any texts whose words were considered to be divinely inspired. Today, a concordance

for a Bible-length book can be constructed in about a second. Furthermore, the original text can be

reconstructed from the concordance, in about the same time.

Curator The word “curator” derives from the latin, “curatus,” the same root for “curative,” indicating that

curators “take care of” things. A data curator collects, annotates, indexes, updates, archives, searches,

retrieves, and distributes data. Curator is another of those somewhat arcane terms (e.g., indexer, data

archivist, lexicographer) that are being rejuvenated in the newmillennium. It seems that if we want to

enjoy the benefits of a data-centric world, we will need the assistance of curators, trained in data

organization.

DSP Abbreviation for Digital Signal Processing.

Data fusion Data fusion is very closely related to data integration. The subtle difference between the two

concepts lies in the end result. Data fusion creates a new and accurate set of data representing the

combined data sources. Data integration is an on-the-fly usage of data pulled from different domains

and, as such, does not yield a residual fused set of data.

Data integration The process of drawing data from different sources and knowledge domains in a man-

ner that uses and preserves the identities of data objects and the relationships among the different data

objects. The term “integration” should not be confused with a closely related term, “interoperability.”

An easy way to remember the difference is to note that integration applies to data; interoperability

applies to software.

Datamerging A nonspecific term that includes data fusion, data integration, and any methods that facil-

itate the accrual of data derived from multiple sources.

Dictionary In general usage a dictionary is a word list accompanied by a definition for each item. In

Python a dictionary is a data structure that holds an unordered list of key/value pairs. A dictionary,

as used in Python, is equivalent to an associative array, as used in Perl.

Digital Signal Processing Digital Signal Processing (DSP) is the field that deals with creating, transform-

ing, sending, receiving, and analyzing digital signals. Digital signal processing began as a specialized
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subdiscipline of signal processing, another specialized subdiscipline. For most of the twentieth cen-

tury, many technologic advances came from converting non-electrical signals (temperature, pressure,

sound, and other physical signals) into electric signals that could be carried via electromagnetic waves,

and later transformed back into physical actions. Because electromagnetic waves sit at the center of so

many transform process, even in instances when the input and outputs are non-electrical in nature,

the field of electrical engineering and signal processing have paramount importance in every field of

engineering. In the past several decades the intermediate signals have been moved from the analog

domain (i.e., waves) into the digital realm (i.e., digital signals expressed as streams of 0s and 1s). Over

the years, as techniques have developed by which any kind of signal can be transformed into a digital

signal, the subdiscipline of digital signal processing has subsumed virtually all of the algorithms once

consigned to its parent discipline. In fact, asmore andmore processes have been digitized (e.g., telem-

etry, images, audio, sensor data, communications theory), the field of digital signal processing has

come to play a central role in data science.

Digital signal A signal is a description of how one parameter varies with some other parameter. Themost

familiar signals involve some parameter varying over time (e.g., sound is air pressure varying over

time).When the amplitude of a parameter is sampled at intervals, producing successive pairs of values,

the signal is said to be digitized.

Fourier transform A transform is a mathematical operation that takes a function or a time series (e.g.,

values obtained at intervals of time) and transforms it into something else. An inverse transform takes

the transform function and produces the original function (Fig. 2.1). Transforms are useful when there

are operations that can be more easily performed on the transformed function than on the original

function. Possibly the most useful transform is the Fourier transform, which can be computed with

great speed on modern computers, using a modified form known as the fast Fourier Transform. Peri-

odic functions and waveforms (periodic time series) can be transformed using this method. Opera-

tions on the transformed function can sometimes eliminate repeating artifacts or frequencies that

occur below a selected threshold (e.g., noise). The transform can be used to find similarities between

two signals. When the operations on the transform function are complete, the inverse of the transform

can be calculated and substituted for the original set of data (Fig. 2.2).

Identifier A string that is associated with a particular thing (e.g., person, document, transaction, data

object), and not associated with any other thing [17]. In the context of Big Data, identification usually

involves permanently assigning a seemingly random sequence of numeric digits (0–9) and alphabet

characters (a-z and A-Z) to a data object. The data object can be a class of objects.

Indexes Every writer must search deeply into his or her soul to find the correct plural form of “index”. Is it

“indexes” or is it “indices”? Latinists insist that “indices” is the proper and exclusive plural form. Gram-

marians agree, reserving “indexes” for the third person singular verb form; “The student indexes his

thesis.” Nonetheless, popular usage of the plural of “index,” referring to the section at the end of a

book, is almost always “indexes,” the form used herein.
FIG. 2.1 The Fourier transform and its inverse. In this representation of the transform, x represents time in seconds and

the transform variable zeta represents frequency in hertz.



FIG. 2.2 A square wave is approximated by a single sine wave, the sum of two sine waves, three sine waves, and so on.

As more components are added, the representation of the original signal or periodic set of data, is more closely

approximated. From Wikimedia Commons.
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Interoperability It is desirable and often necessary to create software that operates with other software,

regardless of differences in hardware, operating systems and programming language. Interoperability,

though vital to Big Data science, remains an elusive goal.

Machine translation Ultimately, the job ofmachine translation is to translate text from one language into

another language. The process of machine translation begins with extracting sentences from text,

parsing the words of the sentence into grammatical parts, and arranging the grammatical parts into

an order that imposes logical sense on the sentence. Once this is done, each of the parts can be trans-

lated by a dictionary that finds equivalent terms in a foreign language, then re-assembled as a foreign
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language sentence by applying grammatical positioning rules appropriate for the target language.

Because these steps apply the natural rules for sentence constructions in a foreign language, the pro-

cess is often referred to as natural language machine translation. It is important to note that nowhere

in the process of machine translation is it necessary to find meaning in the source text, or to produce

meaning in the output. Good machine translation algorithms preserve ambiguities, without attempt-

ing to impose a meaningful result.

Natural language processing A field broadly concerned with how computers interpret human language

(i.e., machine translation). At its simplest level this may involve parsing through text and organizing

the grammatical units of individual sentences (i.e., tokenization). For example, wemight assign the fol-

lowing tokens to thegrammatical partsof a sentence:A¼adjective,D¼determiner,N¼noun,P¼prep-

osition, V ¼ main verb. A determiner is a word such as “a” or “the”, which specifies the noun [18].

Consider the sentence, “The quick brown fox jumped over lazy dogs.” This sentence can be grammat-

ically tokenized as:

the::D

quick::A

brown::A

fox::N

jumped::V

over::P

the::D

lazy::A

dog::N

We can express the sentence as the sequence of its tokens listed in the order of occurrence in the sentence:

DAANVPDAN. This does not seem like much of a breakthrough, but imagine having a large collection

of such token sequences representing every sentence from a large text corpus. With such a data set, we

could begin to understand the rules of sentence structure. Commonly recurring sequences, like

DAANVPDAN, might be assumed to be proper sentences. Sequences that occur uniquely in a large

text corpus are probably poorly constructed sentences. Before long, wemight find ourselves construct-

ing logic rules for reducing the complexity of sentences by dropping subsequences which, when

removed, yield a sequence that occurs more commonly than the original sequence. For example,

our table of sequencesmight indicate that we can convert DAANVPDAN intoNVPAN (i.e., “Fox jumped

over lazy dog”), without sacrificing toomuch of themeaning from the original sentence and preserving

a grammatical sequence that occurs commonly in the text corpus.

This short example serves as an overly simplistic introduction to natural language processing. We can

begin to imagine that the grammatical rules of a language can be represented by sequences of tokens

that can be translated into words or phrases from a second language, and re-ordered according to

grammatical rules appropriate to the target language. Many natural language processing projects

involve transforming text into a new form, with desirable properties (e.g., other languages, an index,

a collection of names, a new text withwords and phrases replacedwith canonical forms extracted from

a nomenclature) [18]. When we use natural language rules to autocode text, the grammatical units are

trimmed, reorganized, and matched against concept equivalents in a nomenclature.

Ngrams Ngrams are subsequences of text, of length n words. A complete collection of ngrams consists of

all of the possible ordered subsequences of words in a text. Because sentences are the basic units of

statements and ideas, when we speak of ngrams, we are confining ourselves to ngrams of sentences.

Let us examine all the ngrams for the sentence, “Ngrams are ordered word sequences.”

Ngrams (1-gram)
are (1-gram)
ordered (1-gram)
word (1-gram)
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sequences (1-gram)
Ngrams are (2-gram)
are ordered (2-gram)
ordered word (2-gram)
word sequences (2-gram)
Ngrams are ordered (3-gram)
are ordered word (3-gram)
ordered word sequences (3-gram)
Ngrams are ordered word (4-gram)
are ordered word sequences (4-gram)
Ngrams are ordered word sequences (5-gram)

Here is a short Python script, ngram.py, that will take a sentence and produce a list of all the contained

ngrams.

import string
text = "ngrams are ordered word sequences"
partslist = []
ngramlist = {}
text_list = text.split(" ")
while(len(text_list) > 0):

partslist.append(" ".join(text_list))
del text_list[0]

for part in partslist:
previous = ""
wordlist = part.split(" ")
while(len(wordlist) > 0):

ngramlist[(" ".join(wordlist))] = ""
firstword = wordlist[0]
del wordlist[0]
ngramlist[firstword] = ""
previous = previous + " " + firstword
previous = previous.strip()
ngramlist[previous] = ""

for key in sorted(ngramlist):
print(key)

exit

output:
are
are ordered
are ordered word
are ordered word sequences
ngrams
ngrams are
ngrams are ordered
ngrams are ordered word
ngrams are ordered word sequences
ordered
ordered word
ordered word sequences
sequences
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word
word sequences

The ngram.py script can be easily modified to parse through all the sentences of any text, regardless of

length, building the list of ngrams as it proceeds.

Google has collected ngrams from scanned literature dating back to 1500. The public can enter their own

ngrams into Google’s ngram viewer, and receive a graph of the published occurrences of the phrase,

through time [18]. We can use the Ngram viewer to find trends (e.g., peaks, valleys and periodicities) in

data. Consider the Google Ngram Viewer results for the two-word ngram, “yellow fever” (Fig. 2.3).

We see that the term “yellow fever” (a mosquito-transmitted hepatitis) appeared in the literature begin-

ning about 1800, with several subsequent peaks. The dates of the peaks correspond roughly to out-

breaks of yellow fever in Philadelphia (epidemic of 1793), New Orleans (epidemic of 1853), with

United States construction efforts in the Panama Canal (1904–14), and with well-documented WWII

Pacific outbreaks (about 1942). Following the 1942 epidemic an effective vaccinewas available, and the

incidence of yellow fever, as well as the literature occurrences of the “yellow fever” n-gram, dropped

precipitously. In this case, a simple review of n-gram frequencies provides an accurate chart of historic

yellow fever outbreaks [19,18].

Nomenclature A nomenclatures is a listing of terms that cover all of the concepts in a knowledge domain.

A nomenclature is different from a dictionary for three reasons: 1) the nomenclature terms are not anno-

tated with definitions, 2) nomenclature termsmay bemulti-word, and 3) the terms in the nomenclature

are limited to the scope of the selected knowledge domain. In addition, most nomenclatures group syn-

onyms under a group code. For example, a food nomenclature might collect submarine sandwich,

hoagie, po’ boy, grinder, hero, and torpedo under an alphanumeric code such as “F63958.” Nomencla-

tures simplify textual documents by uniting synonymous terms under a common code. Documents that

have been coded with the same nomenclature can be integrated with other documents that have been

similarly coded, and queries conducted over such documents will yield the same results, regardless of

which term is entered (i.e., a search for either hoagie, or po’ boywill retrieve the same information, if both

terms have been annotated with the synonym code, “F63948”). Optimally, the canonical concepts listed

in the nomenclature are organized into a hierarchical classification [20,21,12].

Nomenclature mapping Specialized nomenclatures employ specific names for concepts that are

included in other nomenclatures, under other names. For example, medical specialists often preserve

their favored names for concepts that cross into different fields ofmedicine. The term that pathologists

use for a certain benign fibrous tumor of the skin is “fibrous histiocytoma,” a term spurned by
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FIG. 2.3 Google Ngram for the phrase “yellow fever,” counting occurrences of the term in a large corpus, from

the years 1700–2000. Peaks roughly correspond to yellow fever epidemics. Source: Google Ngram viewer, with

permission from Google.
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dermatologists, who prefer to use “dermatofibroma” to describe the same tumor. As another horrifying

example, the names for the physiologic responses caused by a reversible cerebral vasoconstricitve

event include: thunderclap headache, Call-Fleming syndrome, benign angiopathy of the central ner-

vous system, postpartum angiopathy, migrainous vasospasm, and migraine angiitis. The choice of

term will vary depending on the medical specialty of the physician (e.g., neurologist, rheumatologist,

obstetrician). Tomitigate the discord among specialty nomenclatures, lexicographersmay undertake a

harmonization project, in which nomenclatures with overlapping concepts are mapped to one

another.

Numpy Numpy (Numerical Python) is an open source extension to Python that supports matrix opera-

tions, as well as a rich assortment of mathematical functions. Numpy can be easily downloaded from

sourceforge.net: http://sourceforge.net/projects/numpy/. Here is a short Python script, numpy_dot.

py, that creates a 3x3 matrix, inverts the matrix, and calculates the dot produce of the matrix and its

inverted counterpart.

import numpy
from numpy.linalg import inv
a = numpy.array([[1,4,6], [9,15,55], [62,-5, 4]])
print(a)
print(inv(a))
c = numpy.dot(a, inv(a))
print(numpy.round_(c))

The numpy_dot.py script employs numpy, numpy’s linear algebra module, and numpy’s matrix inversion

method, and the numpy dot product method. Here is the output of the script, displaying the original

matrix, its inversion, and the dot product, which happens to be the unity matrix:

c:\ftp\py>numpy_dot.py
[[ 1 4 6]
[ 9 15 55]
[62 -5 4]]

[[ 4.19746899e-02 -5.76368876e-03 1.62886856e-02]
[ 4.22754041e-01 -4.61095101e-02 -1.25297582e-04]
[ -1.22165142e-01 3.17002882e-02 -2.63124922e-03]]

[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]

Parsing Much of computer programming involves parsing; moving sequentially through a file or some

sort of data structure and performing operations on every contained item, one item at a time. For files,

thismightmean going through a text file line by line, or sentence by sentence. For a data file, thismight

mean performing an operation on each record in the file. For in-memory data structures, this may

mean performing an operation on each item in a list or a tuple or a dictionary.

The parse_directory.py script prints all the file names and subdirectory names in a directory tree.

import os
for root, dirs, files in os.walk(".", topdown=False):

for filename in files:
print(os.path.join(root, filename))

for dirname in dirs:
print(os.path.join(root, dirname))

Plain-text Plain-text refers to character strings or files that are composed of the characters accessible

to a typewriter keyboard. These files typically have a “.txt” suffix to their names. Plain-text files

are sometimes referred to as 7-bit ascii files because all of the familiar keyboard characters have

http://sourceforge.net
http://sourceforge.net/projects/numpy/
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ASCII vales under 128 (i.e., can be designated in binary with, just seven 0s and 1s. In practice,

plain-text files exclude 7-bit ascii symbols that do not code for familiar keyboard characters. To

further confuse the issue, plain-text files may contain ascii characters above 7 bits (i.e., characters

from 128 to 255) that represent characters that are printable on computer monitors, such as accented

letters.

Plesionymy Nearly synonymous words, or pairs of words that are sometimes synonymous; other times

not. For example, the noun forms of “smell” and “odor” are synonymous. As verb forms, “smell”

applies, but odor does not. You can small a fish, but you cannot odor a fish. Smell and odor are ple-

sionyms. Plesionymy is another challenge for machine translators.

Polysemy Occurs when a word hasmore than one distinct meaning. The intendedmeaning of a word can

sometimes be determined by the context in which the word is used. For example, “She rose to the

occasion,” and “Her favorite flower is the rose.” Sometimes polysemy cannot be resolved. For example,

“Eats shoots and leaves.”

RegEx Short for Regular Expressions, RegEx is a syntax for describing patterns in text. For example, if

I wanted to pull all lines from a text file that began with an uppercase “B” and contained at least

one integer, and ended with the a lowercase x, then I might use the regular expression: “ B̂.*[0-9].
*x$”. This syntax for expressing patterns of strings that can be matched by pre-built methods available

to a programming language is somewhat standardized. This means that a RegEx expression in Perl will

match the same pattern in Python, or Ruby, or any language that employs RegEx. The relevance of

RegEx to Big Data is several-fold. RegEx can be used to build or transform data from one format to

another; hence creating or merging data records. It can be used to convert sets of data to a desired

format; hence transforming data sets. It can be used to extract records thatmeet a set of characteristics

specified by a user; thus filtering subsets of data or executing data queries over text-based files or text-

based indexes. The big drawback to using RegEx is speed: operations that call for many RegEx oper-

ations, particularly when those operations are repeated for each parsed line or record, will reduce soft-

ware performance. RegEx-heavy programs that operate just fine on megabyte files may take hours,

days or months to parse through terabytes of data.

A 12-line python script, file_search.py, prompts the user for the name of a text file to be searched, and then

prompts the user to supply a RegEx pattern. The script will parse the text file, line by line, displaying

those lines that contain a match to the RegEx pattern.

import sys, string, re
print("What is file would you like to search?")
filename = sys.stdin.readline()
filename = filename.rstrip()
print("Enter a word, phrase or regular expression to search.")
word_to_search = (sys.stdin.readline()).rstrip()
infile = open (filename, "r")
regex_object = re.compile(word_to_search, re.I)
for line in infile:
m= regex_object.search(line)
if m:

print(line)

Scalable Software is scalable if it operates smoothly, whether the data is small or large. Software programs

that operate by slurping all data into a RAM variable (i.e., a data holder in RAMmemory) are not scal-

able, because such programs will eventually encounter a quantity of data that is too large to store in

RAM. As a rule of thumb, programs that process text at speeds less than amegabyte per second are not

scalable, as they cannot cope, in a reasonable time frame, with quantities of data in the gigabyte and

higher range.

Script A script is a program that is written in plain-text, in a syntax appropriate for a particular program-

ming language, that needs to be parsed through that language’s interpreter before it can be compiled
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and executed. Scripts tend to run a bit slower than executable files, but they have the advantage that

they can be understood by anyone who is familiar with the script’s programming language.

Sentence Computers parse files line by line, not sentence by sentence. If you want a computer to perform

operations on a sequence of sentences found in a corpus of text, then you need to include a subroutine

in your scripts that list the sequential sentences. One of the simplest ways to find the boundaries of

sentences is to look for a period followed by one ormore spaces, followed by an uppercase letter. Here’s

a simple Python demonstration of a sentence extractor, using a few famous lines from the Lewis Carroll

poem, Jabberwocky.

import re
all_text =\
"And, has thou slain the Jabberwock? Come \
to my arms, my beamish boy! O frabjous \
day! Callooh! Callay! He chortled in his \
joy. Lewis Carroll, excerpted from \
Jabberwocky";
sentence_list = re.split(r'[\.\!\?] +(?=[A-Z])', all_text)
print("\n".join(sentence_list))

Here is the output:

And, has thou slain the Jabberwock
Come to my arms, my beamish boy
O frabjous day
Callooh
Callay
He chortled in his joy
Lewis Carroll, excerpted from Jabberwocky

Themeat of the script is the following line of code, which splits lines of text at the boundaries of sentences:

sentence_list = re.split(r'[\.\!\?] +(?=[A-Z])',in_text_string)
This algorithm is hardly foolproof, as periods are used for many purposes other than as sentence termi-

nators. But it may suffice for most purposes.

Signal In a very loose sense a signal is awayof gauginghowmeasuredquantities (e.g., force, voltage, or pres-

sure) change in response to, or alongwith, othermeasuredquantities (e.g., time). A soundsignal is caused

by the changes in pressure, exerted on our eardrums, over time. A visual signal is the change in the pho-

tons impinging on our retinas, over time. An image is the change in pixel values over a two-dimensional

grid. Because much of the data stored in computers consists of discrete quantities of describable

objects, and because these discrete quantities change their values, with respect to one another, we

can appreciate that a great deal of modern data analysis is reducible to digital signal processing.

Specification A specification is amethod for describing objects (physical objects such as nuts and bolts or

symbolic objects such as numbers). Specifications do not require specific types of information, and do

not impose any order of appearance of the data contained in the document. Specifications do not gen-

erally require certification by a standards organization. They are generally produced by special interest

organizations, and their legitimacy depends on their popularity. Examples of specifications are RDF

(Resource Description Framework) produced by the W3C (WorldWide Web Consortium), and TCP/

IP (Transfer Control Protocol/Internet Protocol), maintained by the Internet Engineering Task Force.

String A string is a sequence of characters. Words, phrases, numbers, and alphanumeric sequences (e.g.,

identifiers, one-way hash values, passwords) are strings. A book is a long string. The complete

sequence of the human genome (3 billion characters, with each character an A,T,G, or C) is a very long

string. Every subsequence of a string is another string.
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Syntax Syntax is the standard form or structure of a statement. What we know as English grammar is

equivalent to the syntax for the English language. If I write, “Jules hates pizza,” the statement would

be syntactically valid, but factually incorrect. If I write, “Jules drives towork in his pizza,” the statement

would be syntactically valid but nonsensical. For programming languages, syntax refers to the

enforced structure of command lines. In the context of triplestores, syntax refers to the arrangement

and notation requirements for the three elements of a statement (e.g., RDF format or N3 format).

Charles Mead distinctly summarized the difference between syntax and semantics: “Syntax is struc-

ture; semantics is meaning” [22].

Systematics The term “systematics” is, by tradition, reserved for the field of biology that deals with tax-

onomy (i.e., the listing of the distinct types of organisms) and with classification (i.e., the classes of

organisms and their relationships to one another). There is no reason why biologists should lay exclu-

sive claim to the field of systematics. As used herein, systematics equals taxonomics plus classification,

and this term applies just as strongly to stamp collecting, marketing, operations research, and object-

oriented programming as it does to the field of biology.

Taxa Plural of taxon.

Taxon A taxon is a class. The common usage of “taxon” is somewhat inconsistent, as it sometimes refers to

the class name, and at other times refers to the instances (i.e., members) of the class. In this book, the

term “taxon” is abandoned in favor of “class,” the plesionym used by computer scientists. Hence, the

term “class” is used herein in the samemanner that it is used inmodern object oriented programming

languages.

Taxonomy When we write of “taxonomy” as an area of study, we refer to the methods and concepts

related to the science of classification, derived from the ancient Greek taxis, “arrangement,” and

nomia, “method.” When we write of “a taxonomy,” as a construction within a classification, we are

referring to the collection of named instances (class members) in the classification. To appreciate

the difference between a taxonomy and a classification, it helps to think of taxonomy as the scientific

field that determines how different members of a classification are named. Classification is the scien-

tific field that determines how related members are assigned to classes, and how the different classes

are related to one another. A taxonomy is similar to a nomenclature; the difference is that in a taxon-

omy, every named instance must have an assigned class.

Term extraction algorithm Terms are phrases, most often noun phrases, and sometimes individual

words, that have a precise meaning within a knowledge domain. For example, “software

validation,” “RDF triple,” and “WorldWide Telescope” are examples of terms that might appear in

the index or the glossary of this book. The most useful terms might appear up to a dozen times in

the text, but when they occur on every page, their value as a searchable item is diminished; there

are just toomany instances of the term to be of practical value. Hence, terms are sometimes described

as noun phrases that have low-frequency and high information content. Various algorithms are avail-

able to extract candidate terms from textual documents. The candidate terms can be examined by a

curator who determines whether they should be included in the index created for the document from

which they were extracted. The curator may also compare the extracted candidate terms against a

standard nomenclature, to determine whether the candidate terms should be added to the nomencla-

ture. For additional discussion, see Section 2.3, “Term Extraction.”

Thesaurus Avocabulary that groups together synonymous terms. A thesaurus is very similar to a nomen-

clature. There are twominor differences. Nomenclatures do not always group terms by synonymy; and

nomenclatures are often restricted to a well-defined topic or knowledge domain (e.g., names of stars,

infectious diseases, etc.).

Transform (noun form) There are three truly great conceptual breakthroughs that have brought with

them great advances to science and to civilization. The first two to be mentioned are well known to

everyone: equations and algorithms. Equations permit us to relate variable quantities in a highly spe-

cific and repeatable way. Algorithms permit us to follow a series of steps that always produce the same
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results. The third conceptual breakthrough, less celebrated but just as important, is the transforma-

tion; a way of changing things to yield a something new, with properties that provide an advantage

over the original item. In the case of reversible transformation, we can return the transformed item

to its original form, and often in improved condition, when we have completed our task.

It should be noted that this definition applies only to the noun form of “transform.” The meaning of the

verb form of transform is to change or modify, and a transformation is the closest noun form equiv-

alent of the verb form, “to transform.”

Uniqueness Uniqueness is the quality of being separable from every other thing in the universe. For data

scientists, uniqueness is achieved when data is bound to a unique identifier (i.e., a randomly chosen

string of alphanumeric characters) that has not, and will never be, assigned to any data. The binding of

data to a permanent and inseparable identifier constitutes the minimal set of ingredients for a data

object. Uniqueness can apply to two or more indistinguishable objects, if they are assigned unique

identifiers (e.g., unique product numbers stamped into identical auto parts).

Variable In algebra, a variable is a quantity, in an equation, that can change; as opposed to a constant

quantity, that cannot change. In computer science, a variable can be perceived as a container that

can be assigned a value. If you assign the integer 7 to a container named “x,” then “x” equals 7, until

you re-assign some other value to the container (i.e., variables are mutable). In most computer lan-

guages, when you issue a command assigning a value to a new (undeclared) variable, the variable auto-

matically comes into existence to accept the assignment. The process whereby an object comes into

existence, because its existence was implied by an action (such as value assignment), is called

reification.

Vocabulary A comprehensive collection of the words used in a general area of knowledge. The term

“vocabulary” and the term “nomenclature” are nearly synonymous. In common usage, a vocabulary

is a list of words and typically includes a wide range of terms and classes of terms. Nomenclatures typ-

ically focus on a class of terms within a vocabulary. For example, a physics vocabulary might contain

the terms “quark, black hole, Geiger counter, and Albert Einstein”; a nomenclaturemight be devoted to

the names of celestial bodies.
References
[1] Krauthammer M, Nenadic G. Term identification in the biomedical literature. J Biomed Inform

2004;37:512–26.

[2] Berman JJ. Methods in medical informatics: fundamentals of healthcare programming in Perl,
Python, and Ruby. Boca Raton: Chapman and Hall; 2010.

[3] Swanson DR. Undiscovered public knowledge. Libr Q 1986;56:103–18.

[4] Wallis E, Lavell C. Naming the indexer: where credit is due. The Indexer 1995;19:266–8.

[5] Hayes A. VA to apologize for mistaken Lou Gehrig’s disease notices. CNN; 2009. August 26. Available
from: http://www.cnn.com/2009/POLITICS/08/26/veterans.letters.disease [viewed September 4,
2012].

[6] Hall PA, Lemoine NR. Comparison of manual data coding errors in 2 hospitals. J Clin Pathol
1986;39:622–6.

[7] Berman JJ. Doublet method for very fast autocoding. BMC Med Inform Decis Mak 2004;4:16.

[8] Berman JJ. Nomenclature-based data retrieval without prior annotation: facilitating biomedical data
integration with fast doublet matching. In Silico Biol 2005;5:0029.

[9] Burrows M, Wheeler DJ. a block-sorting lossless data compression algorithm. SRC Research Report
124, May 10, 1994.

[10] Berman JJ. Perl programming for medicine and biology. Sudbury, MA: Jones and Bartlett; 2007.

http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0010
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0010
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0015
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0015
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0020
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0025
http://www.cnn.com/2009/POLITICS/08/26/veterans.letters.disease
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0035
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0035
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0040
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0045
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0045
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0050
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0050
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0055


Chapter 2 • Providing Structure to Unstructured Data 51
[11] Healy J, Thomas EE, Schwartz JT, Wigler M. Annotating large genomes with exact word matches.
Genome Res 2003;13:2306–15.

[12] Berman JJ. Data simplification: taming information with open source tools. Waltham, MA: Morgan
Kaufmann; 2016.

[13] Burrows-Wheeler transform. Wikipedia. Available at: https://en.wikipedia.org/wiki/Burrows%E2%
80%93Wheeler_transform [viewed August 18, 2015].

[14] Cipra BA. The best of the 20th century: editors name top 10 algorithms. SIAM News May 2000;33(4).

[15] WuX, Kumar V, Quinlan JR, Ghosh J, YangQ,MotodaH, et al. Top 10 algorithms in datamining. Knowl
Inf Syst 2008;14:1–37.

[16] Patil N, Berno AJ, HindsDA, BarrettWA, Doshi JM, Hacker CR, et al. Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromosome 21. Science 2001;294:1719–23.

[17] Paskin N. Identifier interoperability: a report on two recent ISO activities. D-Lib Mag 2006;12:1–23.

[18] Berman JJ. Repurposing legacy data: innovative case studies.Waltham,MA:Morgan Kaufmann; 2015.

[19] Berman JJ. Principles of big data: preparing, sharing, and analyzing complex information. Waltham,
MA: Morgan Kaufmann; 2013.

[20] Berman JJ. Tumor classification: molecular analysis meets Aristotle. BMC Cancer 2004;4:10.

[21] Berman JJ. Tumor taxonomy for the developmental lineage classification of neoplasms. BMC Cancer
2004;4:88.

[22] Mead CN. Data interchange standards in healthcare IT–computable semantic interoperability: now
possible but still difficult, do we really need a better mousetrap? J Healthc Inf Manag 2006;20:71–8.

http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0060
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0060
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0065
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0065
https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0070
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0075
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0075
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0080
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0080
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0085
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0090
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0095
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0095
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0100
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0105
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0105
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0110
http://refhub.elsevier.com/B978-0-12-815609-4.00002-9/rf0110


3
Identification, Deidentification,
and Reidentification
OUTLINE
Section 3.1. What Are Identifiers? ................................................................................................ 53

Section 3.2. Difference Between an Identifier and an Identifier System ................................... 55

Section 3.3. Generating Unique Identifiers .................................................................................. 58

Section 3.4. Really Bad Identifier Methods .................................................................................. 60

Section 3.5. Registering Unique Object Identifiers ...................................................................... 63

Section 3.6. Deidentification and Reidentification ...................................................................... 66

Section 3.7. Case Study: Data Scrubbing ...................................................................................... 69

Section 3.8. Case Study (Advanced): Identifiers in Image Headers ............................................ 71

Section 3.9. Case Study: One-Way Hashes ................................................................................... 74

Glossary ........................................................................................................................................... 76

References ....................................................................................................................................... 82

Section 3.1. What Are Identifiers?

Where is the ‘any’ key?
Homer Simpson, in response to his computer’s instruction to “Press any key”

Let us begin this chapter with a riddle. “Is the number 5 a data object?” If you are likemost

people, you will answer “yes” because “5” is an integer and therefore it is represents

numeric data, and “5” is an object because it exists and is different from all the other

numbers. Therefore “5” is a data object. This line of reasoning happens to be completely

erroneous. Five is not a data object. As a pure abstraction with nothing binding it to a

physical object (e.g., 5 pairs of shoes, 5 umbrellas), it barely qualifies as data.

When we speak of a data object, in computer science, we refer to something that is

identified and described. Consider the following statements:

<f183136d-3051-4c95-9e32-66844971afc5><name><Baltimore>
<f183136d-3051-4c95-9e32-66844971afc5><class><city>

<f183136d-3051-4c95-9e32-66844971afc5><population><620,961>

Without knowing much about data objects (which we will be discussing in detail in

Section 6.2), we can start to see that these three statements are providing information

about Baltimore. They tell us that Baltimore is a city of population 620,961, and that
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00003-0
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Baltimore has been assigned an alphanumeric sequence, “f183136d-3051-4c95-9e32-

66844971afc5,” to which all our available information about Baltimore has been attached.

Peeking ahead into Chapter 6, we can now surmise that a data object consists of a unique

alphanumeric sequence (the object identifier) plus the descriptive information associated

with the identifier (e.g., name, population number, class). We will see that there are

compelling reasons for storing all information contained in Big Data resources within

uniquely identified data objects. Consequently, one of the most important tasks for data

managers is the creation of a dependable identifier system [1]. In this chapter, we will

be focusing our attention on the unique identifier and how it is created and utilized in

the realm of Big Data.

Identification issues are often ignored by data managers who are accustomed to

working on small data projects. It is worthwhile to list, up front, the most important ideas

described in this chapter, many of which are counterintuitive and strange to those whose

careers are spent outside the confusing realm of Big Data.

– All Big Data resources can be imagined as identifier systems to which we attach

our data.

– Without an adequate identification system, a Big Data resource has no value. In this

case, the data within the resource cannot be sensibly analyzed.

– Data deidentification is a process whereby links to the public name of the subject of the

record are removed.

– Deidentification should not be confused with the act of stripping a record of an

identifier. A deidentified record, like any valid data object, must always have an

associated identifier.

– Deidentification should not be confused with data scrubbing. Data scrubbers remove

unwanted information from a data record, including information of a personal nature,

and any information that is not directly related to the purpose of the data record.

[Glossary Data cleaning, Data scrubbing]

– Reidentification is a concept that specifically involves personal and private data

records. It involves ascertaining the name of the individual who is associated with a

deidentified record. Reidentification is sometimes necessary to verify the contents

of a record, or to provide information that is necessary for the well-being of the subject

of a deidentified data record. Ethical reidentification always requires approval and

oversight.

– Where there is no identification, there can be no deidentification and no

reidentification.

– When a deidentified data set contains no unique records (i.e., every record has one

or more additional records from which it cannot be distinguished, aside from its

assigned identifier sequence), then it becomes impossible to maliciously uncover a

deidentified record’s public name.
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Section 3.2. Difference Between an Identifier and an Identifier
System

Many errors, of a truth, consist merely in the application the wrong names of things.
Baruch Spinoza

Data identification is among the most underappreciated and least understood Big Data

issue. Measurements, annotations, properties, and classes of information have no infor-

mational meaning unless they are attached to an identifier that distinguishes one data

object from all other data objects, and that links together all of the information that

has been or will be associated with the identified data object. Themethod of identification

and the selection of objects and classes to be identified relates fundamentally to the orga-

nizationalmodel of the Big Data resource. If data identification is ignored or implemented

improperly, the Big Data resource cannot succeed. [Glossary Annotation]

This chapter will describe, in some detail, the available methods for data identification,

and the minimal properties of identified information (including uniqueness, exclusivity,

completeness,authenticity, andharmonization).Thedire consequencesof inadequate iden-

tification will be discussed, along with real-world examples. Once data objects have been

properly identified, they can be deidentified and, under some circumstances, reidentified.

The ability to deidentify data objects confers enormous advantages when issues of confi-

dentiality, privacy, and intellectual property emerge. The ability to reidentify deidentified

data objects is required for error detection, error correction, and data validation. [Glossary

Deidentification, Re-identification, Privacy versus confidentiality, Intellectual property]

Returning to the title of this section, let us ask ourselves, “What is thedifferencebetween

an identifier and an identifier system?” To answer, by analogy, it is like the difference

between having a $100 dollar bill in your pocket and having a savings account with $100
credited to the account. In the case of the $100 bill, anyone in possession of the bill can

use it to purchase items. In the case of the $100 credit, there is a system inplace for uniquely

assigning the $100 toone individual, until such time as that individual conducts anaccount

transaction that increases or decreases the account value. Likewise, an identifier system

creates a permanent environment in which the identifiers are safely stored and used.

Every good information system is, at its heart, an identification system: a way of nam-

ing data objects so that they can be retrieved by their name, and a way of distinguishing

each object from every other object in the system. If data managers properly identified

their data, and did absolutely nothing else, they would be producing a collection of data

objects with more informational value than many existing Big Data resources.

The properties of a good identifier system are the following:

– Completeness

Every unique object in the big data resource must be assigned an identifier.
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– Uniqueness

Each identifier is a unique sequence.

– Exclusivity

Each identifier is assigned to a unique object, and to no other object.

– Authenticity

The objects that receive identification must be verified as the objects that they are

intended to be. For example, if a young man walks into a bank and claims to be Richie

Rich, then the bank must ensure that he is, in fact, who he says he is.

– Aggregation

The Big Data resourcemust have a mechanism to aggregate all of the data that is properly

associated with the identifier (i.e., to bundle all of the data that belongs to the uniquely

identified objected). In the case of a bank, this might mean collecting all of the transac-

tions associated with an account holder. In a hospital, this mightmean collecting all of the

data associated with a patient’s identifier: clinic visit reports, medication transactions,

surgical procedures, and laboratory results. If the identifier system performs properly,

aggregation methods will always collect all of the data associated with an object and will

never collect any data that is associated with a different object.

– Permanence

The identifiers and the associated data must be permanent. In the case of a hospital sys-

tem, when the patient returns to the hospital after 30 years of absence, the record system

must be able to access his identifier and aggregate his data. When a patient dies, the

patient’s identifier must not perish.

– Reconciliation

There should be a mechanism whereby the data associated with a unique, identified

object in one Big Data resource can be merged with the data held in another resource,

for the same unique object. This process, which requires comparison, authentication,

and merging is known as reconciliation. An example of reconciliation is found in health

record portability. When a patient visits a hospital, it may be necessary to transfer her elec-

tronic medical record from another hospital. Both hospitals need a way of confirming the

identity of the patient and combining the records. [Glossary Electronic medical record]

– Immutability

In addition to being permanent (i.e., never destroyed or lost), the identifier must never

change (see Chapter 6) [2]. In the event that two Big Data resources are merged, or that

legacy data is merged into a Big Data resource, or that individual data objects from two

different Big Data resources are merged, a single data object will be assigned two
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identifiers; one from each of themerging systems. In this case, the identifiers must be pre-

served as they are, without modification. The merged data object must be provided with

annotative information specifying the origin of each identifier (i.e., clarifying which iden-

tifier came from which Big Data resource).

– Security

The identifier system is vulnerable to malicious attack. A Big Data resource with an

identifier system can be irreversibly corrupted if the identifiers are modified. In the case

of human-based identifier systems, stolen identifiers can be used for a variety of

malicious activities directed against the individuals whose records are included in the

resource.

– Documentation and Quality Assurance

A system should be in place to find and correct errors in the identifier system. Protocols

must be written for establishing the identifier system, for assigning identifiers, for protect-

ing the system, and for monitoring the system. Every problem and every corrective action

taken must be documented and reviewed. Review procedures should determine whether

the errors were corrected effectively; and measures should be taken to continually

improve the identifier system. All procedures, all actions taken, and all modifications of

the system should be thoroughly documented. This is a big job.

– Centrality

Whether the information systembelongs to a savings bank, an airline, a prison system, or a

hospital, identifiers play a central role. You can think of information systems as a scaffold

of identifiers to which data is attached. For example, in the case of a hospital information

system, the patient identifier is the central key towhich every transaction for the patient is

attached.

– Autonomy

An identifier systemhas a life of its own, independent of the data contained in the BigData

resource. The identifier system can persist, documenting and organizing existing and

future data objects even if all of the data in the Big Data resource were to suddenly vanish

(i.e., when all of the data contained in all of the data objects are deleted).

In theory, identifier systems are incredibly easy to implement. Here is exactly how it is

done:

1. Generate a unique character sequence, such as UUID, or a long random number.

[Glossary UUID, Randomness]

2. Assign the unique character sequence (i.e., identifier) to each new object, at the

moment that the object is created. In the case of a hospital a patient chart is created at

themoment he or she is registered into the hospital information system. In the case of a

bank a customer record is created at the moment that he or she is provided with an
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account number. In the case of an object-oriented programming language, such as

Ruby, this would be the moment when the “new” method is sent to a class object,

instructing the class object to create a class instance. [Glossary Object-oriented

programming, Instance]

3. Preserve the identifier number and bind it to the object. In practical terms, this means

that whenever the data object accrues new data, the new data is assigned to the

identifier number. In the case of a hospital system, this would mean that all of the lab

tests, billable clinical transactions, pharmacy orders, and so on, are linked to the

patient’s unique identifier number, as a service provided by the hospital information

system. In the case of a banking system, this would mean that all of the customer’s

deposits and withdrawals and balances are attached to the customer’s unique

account number.
Section 3.3. Generating Unique Identifiers

A UUID is 128 bits long, and can guarantee uniqueness across space and time.
P. Leach, M. Mealling and R. Salz [3]

Uniqueness is one of those concepts that everyone intuitively understands; explanations

would seem unnecessary. Actually, uniqueness in the computational sciences is a some-

what different concept than uniqueness in the natural world. In computational sciences,

uniqueness is achieved when a data object is associated with an unique identifier (i.e., a

character string that has not been assigned to any other data object). Most of us, when

we think of a data object, are probably thinking of a data record, which may consist of

the name of a person followed by a list of feature values (height, weight, and age), or a

sample of blood followed by laboratory values (e.g., white blood cell count, red cell

count, and hematocrit). For computer scientists a data object is a holder for data values

(the so-called encapsulated data), descriptors of the data, and properties of the holder

(i.e., the class of objects to which the instance belongs). Uniqueness is achieved when

the data object is permanently bound to its own identifier sequence. [Glossary

Encapsulation]

Unique objects have three properties:

– A unique object can be distinguished from all other unique objects.

– A unique object cannot be distinguished from itself.

– Uniqueness may apply to collections of objects (i.e., a class of instances can be

unique).

UUID (Universally Unique IDentifier) is an example of one type of algorithm that creates

unique identifiers, on command, at themoment when new objects are created (i.e., during

the run-time of a software application). A UUID is 128 bits long and reserves 60 bits for a

string computed directly from a computer time stamp, and is usually represented by a

sequence of alphanumeric ASCII characters [3]. UUIDs were originally used in the Apollo
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Network Computing System and were later adopted in the Open Software Foundation’s

Distributed Computing Environment [4]. [Glossary Time stamp, ASCII]

Linux systems have a built-in UUID utility, “uuidgen.exe,” that can be called from the

system prompt.

Here are a few examples of output values generated by the “uuidgen.exe” utility: [Glos-

sary Command line utility, Utility]

$ uuidgen.exe
312e60c9-3d00-4e3f-a013-0d6cb1c9a9fe

$ uuidgen.exe
822df73c-8e54-45b5-9632-e2676d178664

$ uuidgen.exe
8f8633e1-8161-4364-9e98-fdf37205df2f

$ uuidgen.exe
83951b71-1e5e-4c56-bd28-c0c45f52cb8a
$ uuidgen -t

e6325fb6-5c65-11e5-b0e1-0ceee6e0b993
$ uuidgen -r

5d74e36a-4ccb-42f7-9223-84eed03291f9

Notice that eachof the final twoexampleshasaparameteradded to the“uuidgen”command

(i.e., “-t” and “-r”). There are several versions of the UUID algorithm that are available. The

“-t” parameter instructs the utility to produce a UUID based on the time (measured in sec-

onds elapsed since the first second of October 15, 1582, the start of the Gregorian calendar).

The “-r” parameter instructs theutility toproduceaUUIDbasedon thegenerationofapseu-

dorandom number. In any circumstance, the UUID utility instantly produces a fixed length

character string suitableasanobject identifier. TheUUIDutility is trustedandwidelyusedby

computer scientists. Independent-minded readers caneasily design their ownuniqueobject

identifiers, using pseudorandom number generators, or with one-way hash generators.

[Glossary One-way hash, Pseudorandom number generator]

Python has its own UUID generator. The uuid module is included in the standard

python distribution and can be called directly from the script.

import uuid

print(uuid.uuid4())

When discussing UUIDs the question of duplicates (so-called collisions, in the computer

science literature)alwaysarises.Howcanwebecertain thataUUIDisunique? Isn’t itpossible

that the algorithm that we use to create a UUID may, at some point, produce the same

sequence onmore than one occasion? Yes, but the odds are small. It has been estimated that

duplicate UUIDs are produced, on average, once every 2.71 quintillion (i.e., 2.71 * 10^18)
executions [5]. It seems that reports of UUID collisions, when investigated, have been

attributed to defects in the implementation of the UUID algorithms. The general consensus

seems tobe thatUUIDcollisions arenotworthworrying about, even in the realmofBigData.



60 PRINCIPLES AND PRACTICE OF BIG DATA
Section 3.4. Really Bad Identifier Methods

I always wanted to be somebody, but now I realize I should have been more specific.
Lily Tomlin

Names are poor identifiers. First off, we can never assume that any name is unique. Sur-

names such as Smith, Zhang, Garcia, Lo, and given names such as John and Susan are very

common. In Korea, five last names account for nearly 50% of the population [6]. Moreover,

if we happened to find an individual with a truly unique name (e.g., Mr. Mxyzptlk), there

would be no guarantee that some other unique individual might one day have the same

name. Compounding the non-uniqueness of names, there is the problem of themany var-

iant forms of a single name. The sources for these variations are many. Here is a partial

listing:

1. Modifiers to the surname (du Bois, DuBois, Du Bois, Dubois, Laplace, La Place, van de

Wilde, Van DeWilde, etc.).

2. Accents that may or may not be transcribed onto records (e.g., acute accent, cedilla,

diacritical comma, palatalized mark, hyphen, diphthong, umlaut, circumflex, and a

host of obscure markings).

3. Special typographic characters (the combined “ae”).

4. Multiple “middle names” for an individual, that may not be transcribed onto records.

Individuals who replace their first name with their middle name for common usage,

while retaining the first name for legal documents.

5. Latinized and other versions of a single name (Carl Linnaeus, Carl von Linne, Carolus

Linnaeus, Carolus a Linne).

6. Hyphenated names that are confused with first and middle names (e.g., Jean-Jacques

Rousseau, or Jean Jacques Rousseau; Louis-Victor-Pierre-Raymond, 7th duc de

Broglie, or Louis Victor Pierre Raymond Seventh duc deBroglie).

7. Cultural variations in name order that are mistakenly rearranged when transcribed

onto records. Many cultures do not adhere to the Western European name order (e.g.,

given name, middle name, surname).

8. Name changes; through marriage or other legal actions, aliasing, pseudonymous

posing, or insouciant whim.

Aside from the obvious consequences of using names as record identifiers (e.g., corrupt

database records, forced merges between incompatible data resources, impossibility of

reconciling legacy record), there are non-obvious consequences that are worth consider-

ing. Take, for example, accented characters in names. These word decorations wreak

havoc on orthography and on alphabetization. Where do you put a name that contains

an umlauted character? Do you pretend the umlaut is not there, and alphabetize it accord-

ing to its plain characters? Do you order based on the ASCII-numeric assignment for the

character, in which the umlauted lettermay appear nowhere near the plain-letteredwords

in an alphabetized list. The same problem applies to every special character. [Glossary

American Standard Code for Information Interchange, ASCII]
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A similar problem exists for surnames with modifiers. Do you alphabetize de Broglie

under “D” or under “d” or under “B”? If you choose B, then what do you do with the

concatenated form of the name, “deBroglie”? When it comes down to it, it is impossible

to satisfactorily alphabetize a list of names. This means that searches based on proximity

in the alphabet will always be prone to errors.

I have had numerous conversations with intelligent professionals who are tasked with

the responsibility of assigning identifiers to individuals. At some point in every conversa-

tion, theywill find itnecessary toexplain that althoughan individual’snamecannot serveas

an identifier, the combination of nameplus date of birthprovides accurate identification in

almost every instance. They sometimes get carried away, insisting that the combination of

name plus date of birth plus social security number provides perfect identification, as no

twopeoplewill share all three identifiers: samename, samedate of birth, same social secu-

rity number. This argument rises to the height of folly and completely misses the point of

identification. As we will see, it is relatively easy to assign unique identifiers to individuals

and to any data object, for thatmatter. Formanagers of BigData resources, the larger prob-

lem is ensuring that each unique individual has only one identifier (i.e., denying one object

multiple identifiers). [Glossary Social Security Number]

Let us see what happens when we create identifiers from the name plus the birthdate.

We will examine name + birthdate + social security number later in this section.

Consider this example. Mary JessicaMeagher, born June 7, 1912 decided to open a sep-

arate bank account in each of 10 different banks. Some of the banks had application forms,

which she filled out accurately. Other banks registered her account through a teller, who

asked her a series of questions and immediately transcribed her answers directly into a

computer terminal. Ms. Meagher could not see the computer screen and could not review

the entries for accuracy.

Here are the entries for her name plus date of birth:

1. Marie Jessica Meagher, June 7, 1912 (the teller mistook Marie for Mary).

2. Mary J. Meagher, June 7, 1912 (the form requested a middle initial, not name).

3. Mary Jessica Magher, June 7, 1912 (the teller misspelled the surname).

4. Mary Jessica Meagher, Jan 7, 1912 (the birth month was constrained, on the form, to

three letters; Jun, entered on the form, was transcribed as Jan).

5. Mary Jessica Meagher, 6/7/12 (the form provided spaces for the final two digits of the

birth year. Through a miracle of modern banking, Mary, born in 1912, was re-born a

century later).

6. Mary Jessica Meagher, 7/6/2012 (the form asked for day, month, year, in that order, as

is common in Europe).

7. Mary Jessica Meagher, June 1, 1912 (on the form, a 7 was mistaken for a 1).

8. Mary Jessie Meagher, June 7, 1912 (Marie, as a child, was called by the informal form

of her middle name, which she provided to the teller).

9. Mary JesseMeagher, June 7, 1912 (Marie, as a child, was called by the informal form of

her middle name, which she provided to the teller, and which the teller entered as the

male variant of the name).
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10. Marie Jesse Mahrer, 1/1/12 (an underzealous clerk combined all of the mistakes on

the form and the computer transcript, and added a new orthographic variant of the

surname).

For each of these ten examples, a unique individual (Mary Jessica Meagher) would be

assigned a different identifier at each of 10 banks. Had Mary re-registered at one bank,

ten times, the outcome may have been the same.

If you toss the social security number into the mix (name + birth date + social security

number) the problem is compounded. The social security number for an individual is any-

thing but unique. Few of us carry our original social security cards. Our number changes

due to false memory (“You mean I’ve been wrong all these years?”), data entry errors

(“Character transpositoins, I mean transpositions, are very common”), intention to

deceive (“I don’t want to give those people my real number”), or desperation (“I don’t have

a number, so I’ll invent one”), or impersonation (“I don’t have health insurance, so I’ll use

my friend’s social security number”). Efforts to reduce errors by requiring patients to pro-

duce their social security cards have not been entirely beneficial.

Beginning in the late 1930s, the E. H. Ferree Company, a manufacturer of wallets, pro-

moted their product’s card pocket by including a sample social security card with each

wallet sold. The display card had the social security number of one of their employees.

Many people found it convenient to use the card as their own social security number. Over

time, thewallet display number was claimed by over 40,000 people. Today, few institutions

require individuals to prove their identity by showing their original social security card.

Doing so puts an unreasonable burden on the honest patient (who does not happen to

carry his/her card) and provides an advantage to criminals (who can easily forge a card).

Entities that compel individuals to provide a social security number have dubious legal

standing. The social security number was originally intended as a device for validating a

person’s standing in the social security system. More recently, the purpose of the social

security number has been expanded to track taxable transactions (i.e., bank accounts, sal-

aries). Other uses of the social security number are not protected by law. The Social Secu-

rity Act (Section 208 of Title 42 U.S. Code 408) prohibits most entities from compelling

anyone to divulge his/her social security number.

Considering the unreliability of social security numbers in most transactional settings,

and considering the tenuous legitimacy of requiring individuals to divulge their social

security numbers, a prudently designed medical identifier system will limit its reliance

on these numbers. The thought of combining the social security number with name

and date of birth will virtually guarantee that the identifier system will violate the strict

one-to-a-customer rule.

Most identifiers are not purely randomnumbers; they usually contain some embedded

information that can be interpreted by anyone familiar with the identification system. For

example, theymay embed the first three letters of the individual’s family name in the iden-

tifier. Likewise, the last two digits of the birth year are commonly embedded inmany types

of identifiers. Such information is usually included as a crude “honesty” check by people

“in the know.” For instance, the nine digits of a social security number are divided into an
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area code (first three digits), a group number (the next two digits), followed by a serial

number (last four digits). People with expertise in the social security numbering system

can pry considerable information from a social security number, and can determine

whether certain numbers are bogus, based on the presence of excluded sub-sequences.

Seemingly inconsequential information included in an identifier can sometimes be

used to discover confidential information about individuals. Here is an example. Suppose

every client transaction in a retail store is accessioned under a unique number, consisting

of the year of the accession, followed by the consecutive count of accessions, beginning

with the first accession of the new year. For example, accession 2010-3518582 might rep-

resent the 3,518,582nd purchase transaction in the year 2010. Because each number is

unique, andbecause thenumber itself says nothing about thepurchase, itmaybe assumed

that inspection of the accession number would reveal nothing about the transaction.

Actually, the accession number tells you quite a lot. The prefix (2010) tells you the year

of the purchase. If the accession number had been 2010-0000001, then you could safely

say that accession represented the first item sold on the first day of business in the year

2010. For any subsequent accession number in 2010, simply divide the suffix number (in

this case 3,518,582) by the last accession number of the year, and multiply by 365 (the

number of days in a non-leap year), and you have the approximate day of the year that

the transaction occurred. This day can easily be converted to a calendar date.

Unimpressed? Consider this scenario. You know that a prominent member of the Pres-

ident’s staff hadvisitedaWashington,D.C.Hospital onFebruary15, 2005, for thepurposeof

having a liver biopsy. You would like to know the results of that biopsy. You go to aWeb site

that lists the deidentified pathology records for the hospital, for the years 2000–2010.
Though no personal identifiers are included in these public records, the individual records

are sorted by accession numbers. Using the aforementioned strategy, you collect all of the

surgical biopsies performedonor about February 15, 2010.Of these biopsies, only three are

liver biopsies. Of these three biopsies, only one was performed on a person whose gender

andagematched thePresident’s staffmember.The report provides thediagnosis. Youman-

aged to discover some very private information without access to any personal identifiers.

The alphanumeric character string composing the identifier should not expose the

patient’s identity. For example, a character string consisting of a concatenation of the

patient’s name, birth date, and social security number might serve to uniquely identify

an individual, but it could also be used to steal an individual’s identity. The safest identi-

fiers are random character strings containing no information whatsoever.

Section 3.5. Registering Unique Object Identifiers

It isn’t that they can’t see the solution. It’s that they can’t see the problem.
G. K. Chesterton

Registries are trusted services that provide unique identifiers to objects. The idea is that

everyone using the object will use the identifier provided by the central registry. Unique

object registries serve a very important purpose, particularly when the object identifiers
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are persistent. It makes sense to have a central authority for Web addresses, library acqui-

sitions, and journal abstracts. Such registries include:

– DOI, Digital object identifier

– PMID, PubMed identification number

– LSID (Life Science Identifier)

– HL7 OID (Health Level 7 Object Identifier)

– DICOM (Digital Imaging and Communications in Medicine) identifiers

– ISSN (International Standard Serial Numbers)

– Social Security Numbers (for United States population)

– NPI, National Provider Identifier, for physicians

– Clinical Trials Protocol Registration System

– Office of Human Research Protections FederalWide Assurance number

– Data Universal Numbering System (DUNS) number

– International Geo Sample Number

– DNS, Domain Name Service

– URL, Unique Resource Locator [Glossary URL]

– URN, Unique Resource Name [Glossary URN]

In some cases the registry does not provide the full identifier for data objects. The registry

may provide a general identifier sequence that will apply to every data object in the

resource. Individual objects within the resource are provided with a non-unique registry

number. A unique suffix sequence is appended locally (i.e., not by a central registrar). Life

Science Identifiers (LSIDs) serve as a typical example of a registered identifier. Every LSIDs

is composed of the following 5 parts: Network Identifier, root DNS name of the issuing

authority, name chosen by the issuing authority, a unique object identifier assigned

locally, and an optional revision identifier for versioning information.

In the issued LSID identifier, the parts are separated by a colon, as shown:

urn:lsid:pdb.org:1AFT:1

This identifies the first version of the 1AFT protein in the Protein Data Bank. Here are a

few LSIDs:

urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434

This identifies a PubMed citation

urn:lsid:ncbi.nlm.nig.gov:GenBank:T48601:2

This refers to the second version of an entry in GenBank

AnOID, short for Object Identifier, is a hierarchy of identifier prefixes. Successive num-

bers in the prefix identify the descending order of the hierarchy. Here is an example of an

OID from HL7, an organization that deals with health data interchanges:

1.3.6.1.4.1.250

Each node is separated from the successor by a dot, Successively finer registration

detail leads to the institutional code (the final node). In this case the institution identified

by the HL7 OID happens to be the University of Michigan.
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The final step in creating an OID for a data object involves placing a unique identifier

number at the end of the registered prefix. OID organizations leave the final step to the

institutional data managers.

The problem with this approach is that the final within-institution data object

identifier is sometimes prepared thoughtlessly, corrupting the OID system [7]. Here is

an example. Hospitals use an OID system for identifying images, part of the DICOM

(Digital Imaging and Communications in Medicine) image standard. There is a prefix

consisting of a permanent, registered code for the institution and the department, and

a suffix consisting of a number generated for an image as it is created.

A hospital may assign consecutive numbers to its images, appending these numbers to

an OID that is unique for the institution and the department within the institution. For

example, the first image created with a CT-scanner might be assigned an identifier

consisting of the OID (the assigned code for institution and department) followed by a

separator such as a hyphen, followed by “1.”

In a worst-case scenario, different instruments may assign consecutive numbers to

images, independently of one another. This means that the CT-scanner in room A may

be creating the same identifier (OID + image number) as the CT-scanner in Room B;

for images on different patients. This problem could be remedied by constraining each

CT-scanner to avoid using numbers assigned by any other CT-scanner. This remedy

can be defeated if there is a glitch anywhere in the system that accounts for image

assignments (e.g., if the counters are re-set, broken, replaced or simply ignored).

When imagecounting isdoneproperly, and thescannersareconstrained toassignunique

numbers (notpreviouslyassignedbyotherscanners in thesameinstitution), eachimagemay

indeed have a unique identifier (OID prefix + image number suffix). Nonetheless, the use of

consecutive numbers for imageswill create havoc over time. Problems arisewhen the image

service is assigned to another department in the institution, or when departments or insti-

tutions merge. Each of these shifts produces a change in the OID (the institutional and

departmental prefix) assigned to the identifier. If a consecutive numbering system is used,

then you can expect to create duplicate identifiers if institutional prefixes are replaced after

themerge.Theold records inbothof themerging institutionswillbeassignedthesameprefix

and will contain replicate (consecutively numbered) suffixes (e.g., image 1, image 2, etc.).

Yet another problemmay occur if one unique object is provided withmultiple different

unique identifiers. A software application may be designed to ignore any previously

assigned unique identifier and to generate its own identifier, using its own assignment

method. Doing so provides software vendors with a strategy that insulates the vendors

from bad identifiers created by their competitor’s software, and locks the customer to a

vendor’s software, and identifiers, forever.

In the end the OID systems provide a good set of identifiers for the institution, but the

data objects created within the institution need to have their own identifier systems. Here

is the HL7 statement on replicate OIDs:

ThoughHL7 shall exercise diligence beforeassigninganOID in theHL7branch to third

parties, given the lackof a globalOIDregistrymechanism, one cannotmakeabsolutely

certain that there is no preexisting OID assignment for such third-party entity [8].
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It remains to be seen whether any of the registration identifier systems will be used and

supported with any serious level of permanence (e.g., over decades and centuries).
Section 3.6. Deidentification and Reidentification

Never answer an anonymous letter.
Yogi Berra

For scientists, deidentification serves two purposes:

– To protect the confidentiality and the privacy of the individual (when the data

concerns a particular human subject), and

– To remove information that might bias the experiment (e.g., to blind the

experimentalist to patient identities).

Deidentification involves stripping information from a data record that might link the

record to the public name of the record’s subject. In the case of a patient record, this would

involve stripping any information from the record that would enable someone to connect

the record to the name of the patient. The most obvious item to be removed in the dei-

dentification process is the patient’s name. Other information that should be removed

would be the patient’s address (which could be linked to the name), the patient’s date

of birth (which narrows down the set of individuals to whom the data record might per-

tain), and the patient’s social security number. In the United States, patient privacy reg-

ulations include a detailed discussion of record deidentification and this discussion

recommends 18 patient record items for exclusion from deidentified records [9].

Before going any further, it is important to clarify that deidentification is not achieved

by removing an identifier from a data object. In point of fact, nothing good is ever achieved

by simply removing an identifier from a data object; doing so simply invalidates the data

object (i.e., every data object, identified or deidentified, must have an identifier). Deiden-

tification involves removing information contained in the data object that reveals some-

thing about the publicly known name of the data object. This kind of information is often

referred to as identifying information, but it would be much less confusing if we used

another term for such data, such as “name-linking information.” The point here is that

we do not want to confuse the identifier of a data object with information contained in

a data object that can link the object to its public name.

It may seem counterintuitive, but there is very little difference between an identifier

and a deidentifier; under certain conditions the two concepts are equivalent. Here is

how a dual identification/deidentification system might work:

1. Collect data on unique object. “Joe Ferguson’s bank account contains $100.”
2. Assign a unique identifier. “Joe Ferguson’s bank account is 7540038947134.”

3. Substitute name of object with its assigned unique identifier: “754003894713 contains

$100.”.
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4. Consistently use the identifier with data.

5. Do not let anyone know that Joe Ferguson owns account “754003894713.”

The dual use of an identifier/deidentifier is a tried and true technique. Swiss bank

accounts are essentially unique numbers (identifiers) assigned to a person. You access

the bank account by producing the identifier number. The identifier number does not pro-

vide information about the identity of the bank account holder (i.e., it is a deidentifier and

an identifier).

The purpose of an identifier is to tell you that whenever the identifier is encountered, it

refers to the same unique object, and whenever two different identifiers are encountered,

they refer to different objects. The identifier, by itself, should contain no information that

links the data object to its public name.

It is important to understand that the process of deidentification can succeed only

when each record is properly identified (i.e., there can be no deidentification without

identification). Attempts to deidentify a poorly identified data set of clinical information

will result in replicative records (multiple records for one patient), mixed-in records (sin-

gle records composed of information on multiple patients), and missing records (uniden-

tified records lost in the deidentification process).

Theprocessofdeidentification isbestunderstoodasanalgorithmperformedon-the-fly,

in response to a query from a data analyst. Here is how such an algorithmmight proceed.

1. The data analyst submits a query requesting a record from a Big Data resource. The

resource contains confidential records that must not be shared, unless the records are

deidentified.

2. The Big Data resource receives the query and retrieves the record.

3. A copy of the record is parsed and any of the information within the data record that

might link the record to the public name of the subject of the record (usually the name

of an individual) is deleted from the copy. This might include the aforementioned

name, address, date of birth, and social security number.

4. A pseudo-identifier sequence is prepared for the deidentified record. The pseudo-

identifier sequence might be generated by a random number generator, by encrypting

the original identifier, through a one-way hash algorithm, or by other methods chosen

by the Big Data manager. [Glossary Encryption]

5. A transaction record is attached to the original record that includes the pseudo-

identifier, the deidentified record, the time of the transaction, and any information

pertaining to the requesting entity (e.g., the data analyst who sent the query) that is

deemed fit and necessary by the Big Data resource data manager.

6. A record is sent to the data analyst that consists of the deidentified record (i.e., the

record stripped of its true identifier and containing no data that links the record to a

named person) and the unique pseudo-identifier created for the record.

Because the deidentified record, and its unique pseudo-identifier are stored with the orig-

inal record, subsequent requests for the pseudo-identified record can be retrieved and
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provided, at the discretion of the Big Datamanager. This general approach to data deiden-

tification will apply to requests for a single record or to millions of records.

At this point, youmight be asking yourself the following question, “What gives the data

manager the right to distribute parts of a confidential record, even if it happens to be

deidentified?” You might think that if you tell someone a secret, under the strictest con-

fidence, then youwould not want any part of that secret to be sharedwith anyone else. The

whole notion of sharing confidential information that has been deidentified may seem

outrageous and unacceptable.

We will discuss the legal and ethical issues of Big Data in Chapters 18 and 19. For now,

readers should know that there are several simple and elegant principles that justify shar-

ing deidentified data.

Consider the statement “Jules Berman has a blood glucose level of 85.” This would be

considered a confidential statement because it tells people something about my medical

condition.

Consider the phrase, “Blood glucose 85.”

When the name “Jules Berman” is removed, we are left with a disembodied piece of

data. “Blood glucose 85” is no different from “Temperature 98.6” or “Apples 2” or

“Terminator 3.” They are simply raw data belonging to nobody in particular. The act of

removing information linking data to a person renders the data harmless. Because the

use of properly deidentified data poses no harm to human subjects, United States Regu-

lations allow the unrestricted use of such data for research purposes [9,10]. Other coun-

tries have similar provisions.

– Reidentification

Because confidentiality and privacy concerns always apply to human subject data, it

would seem imperative that deidentification should be an irreversible process (i.e., the

names of the subjects and samples should be held a secret, forever).

Scientific integrity does not always accommodate irreversible deidentification. On

occasion, experimental samples are mixed-up; samples thought to come from a certain

individual, tissue, record, or account, may in fact come from another source. Sometimes

major findings in science need to be retracted when a sample mix-up has been shown to

occur [11,12,13,14,15]. When samples are submitted, without mix-up, the data is some-

times collected improperly. For example, reversing electrodes on an electrocardiogram

may yield spurious and misleading results. Sometimes data is purposefully fabricated

and otherwise corrupted, to suit the personal agendas of dishonest scientists. When data

errors occur, regardless of reason, it is important to retract the publications [16,17]. To pre-

serve scientific integrity, it is sometimes necessary to discover the identity of deidentified

records.

In some cases, deidentification stops the data analyst from helping individuals whose

confidentiality is being protected. Imagine you are conducting an analysis on a collection

of deidentified data, and you find patients with a genetic marker for a disease that is cur-

able, if treated at an early stage; or you find a new biomarker that determines which
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patients would benefit from surgery and which patients would not. You would be com-

pelled to contact the subjects in the database to give them information that could poten-

tially save their lives. Having an irreversibly deidentified data sets precludes any

intervention with subjects; nobody knows their identities.

Deidentified records can, under strictly controlled circumstances, be reidentified. Rei-

dentification is typically achieved by entrusting a third party with a confidential list that

maps individuals to their deidentified records. Obviously, reidentification can only occur if

the Big Data resource keeps a link connecting the identifiers of their data records to the

identifiers of the corresponding deidentified record (what we’ve been calling pseudo-

identifiers). The act of assigning a public name to the deidentified record must always

involve strict oversight. The data manager must have in place a protocol that describes

the process whereby approval for reidentification is obtained. Reidentification provides

an opportunity whereby confidentiality can be breached and human subjects can be

harmed. Consequently, stewarding the reidentification process is one of the most serious

responsibilities of Big Data managers [18].
Section 3.7. Case Study: Data Scrubbing

It is a sin to believe evil of others but it is seldom a mistake.
Garrison Keillor

The term “data scrubbing” is sometimes used, mistakenly, as a synonym for deidentifica-

tion. It is best to think of data scrubbing as a process that begins where deidentification

ends. A data scrubber will remove unwanted information from a data record, including

information of a personal nature and any information that is not directly related to the

purpose of the data record. For example, in the case of a hospital record a data scrubber

might remove the names of physicians who treated the patient; the names of hospitals or

medical insurance agencies; addresses; dates; and any textual comments that are inappro-

priate, incriminating, irrelevant, or potentially damaging. [Glossary Data munging, Data

scraping, Data wrangling]

In medical data records, there is a concept known as “minimal necessary” that applies

to shared confidential data [9]. It holds that when records are shared, only the minimum

necessary information should be released. Any information not directly relevant to the

intended purposes of the data analyst should be withheld. The process of data scrubbing

gives datamanagers the opportunity to render a data record that is free of information that

would link the record to its subject and free of extraneous information that the data ana-

lyst does not actually require. [Glossary Minimal necessary]

There are many methods for data scrubbing. Most of these methods require that data

managers develop an exception list of items that should not be included in shared records

(e.g., cities, states, zip codes, and names of people). The scrubbing application moves

through the records, extracting unnecessary information along the way. The end product

is cleaned, but not sterilized. Though many undesired items can be successfully removed,
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this approach never produces a perfectly scrubbed set of data. In a Big Data resource, it is

simply impossible for the data manager to anticipate every objectionable item and to

include it in an exception list. Nobody is that smart.

There is, however, a method whereby data records can be cleaned, without error. This

method involves creating a list of data (often in the form of words and phrases) that is

acceptable for inclusion in a scrubbed and deidentified data set. Any data that is not in

the list of acceptable information is automatically deleted. Whatever is left is the scrubbed

data. This method can be described as a reverse scrubbing method. Everything is in the

data set is automatically deleted, unless it is an approved “exception.”

This method of scrubbing is very fast and can produce an error-free deidentified and

scrubbed output [4,19,20]. An example of the kind of output produced by such a scrubber

is shown:

Since the time when * * * * * * * * his own * and the * * * *, the anomalous * * have

been * and persistent * * *; and especially * true of the construction and functions of

the human *, indeed, it was the anomalous that was * * * in the * the attention, * *
that were * to develop into the body * *which we now * *. As by the aid * * * * * * * * *
our vision into the * * * has emerged *, we find * * and even evidence of *. To the high-
est type of * * it is the * the ordinary * * * * *. * to such, no less than to themost *, * * * is
of absorbing interest, and it is often * * that the * * the most * into the heart of the

mystery of the ordinary. * * been said, * * * * *. * * dermoid cysts, for example, we seem

to * * * the secret * of Nature, and * out into the * * of her clumsiness, and * of her * * *
*, *, * tell us much of * * * used by the vital * * * * even the silent * * * upon the * * *.

The reverse-scrubber requires the preexistence of a set of approved terms. One of the sim-

plest methods for generating acceptable terms involves extracting them from a nomen-

clature that comprehensively covers the terms used in a knowledge domain. For

example, a comprehensive listing of living species will not contain dates or zip codes

or any of the objectionable language or data that should be excluded from a scrubbed data

set. In a method that I have published a list of approved doublets (approximately 200,000

two-word phrases collected from standard nomenclatures) are automatically collected for

the scrubbing application [4]. The script is fast, and its speed is not significantly reduced

by the size of the list of approved terms.

Here is a short python script. scrub.py, that will take any line of text and produce a

scrubbed output. It requires an external file, doublets.txt, containing an approved list

of doublet terms.

import sys, re, string

doub_file = open("doublets.txt", "r")
doub_hash = {}

for line in doub_file:
line = line.rstrip()

doub_hash[line] = " "
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doub_file.close()
print("What would you like to scrub?")

line = sys.stdin.readline()
line = line.lower()

line = line.rstrip()
linearray = re.split(r' +', line)

lastword = "*"
for i in range(0, len(linearray)):

doublet = " ".join(linearray[i:i+2])
if doublet in doub_hash:

print(" " + linearray[i], end="")

lastword = " " + linearray[i+1]
else:

print(lastword, end="")
lastword = " *"

if (i == len(linearray) + 1):
print(lastword, end="")
Section 3.8. Case Study (Advanced): Identifiers in Image
Headers

Plus ca change, plus c’est la meme chose.
Old French saying (“The more things change, the more things stay the same.”)

As it happens, nothing is ever as simple as it ought to be. In the case of an implementation of

systems that employ long sequencegenerators toproduceunique identifiers, themost com-

mon problem involves indiscriminate reassignment of additional unique identifiers to the

same data object, thus nullifying the potential benefits of the unique identifier systems.

Let us look at an example wherein multiple identifiers are redundantly assigned to the

same image, corrupting the identifier system. In Section 4.3, we discuss image headers,

and we provide examples wherein the ImageMagick “identify” utility could extract the

textual information included in the image header. One of the header properties created,

inserted, and extracted by ImageMagick’s “identify” is an image-specific unique string.

[Glossary ImageMagick]

When ImageMagick is installed in our computer, we can extract any image’s unique

string, using the “identify” utility and the “-format” attribute, on the following system

command line: [Glossary Command line]

c:\>identify -verbose -format "%#" eqn.jpg

Here, the image file we are examining is “eqn.jpg”. The “%#” character string is ImageMa-

gick’s special syntax indicating that we would like to extract the image identifier from the

image header. The output is shown.
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219e41b4c761e4bb04fbd67f71cc84cd6ae53a26639d4bf33155a5f62ee36e33

We can repeat the command line whenever we like, for this image; and the same image-

specific unique sequence of characters will be produced.

Using ImageMagick, we can insert text into the “comment” section of the header, using

the “-set” attribute. Let us add the text, “I’m modifying myself”:

c:\ftp>convert eqn.jpg -set comment "I'm modifying myself" eqn.jpg

Now, let us extract the comment that we just added, to satisfy ourselves that the “-set”

attribute operated as we had hoped. We do this using the “-format” attribute and the

“%c” character string, which is ImageMagick’s syntax for extracting the comment section

of the header.

c:\ftp>identify -verbose -format "%c" eqn.jpg

The output of the command line is:

I'm modifying myself

Now, let us run, one more time, the command line that produces the unique character

string that is unique for the eqn.jpg image file

c:\ftp>identify -verbose -format "%#" eqn.jpg

The output is:

cb448260d6eeeb2e9f2dcb929fa421b474021584e266d486a6190067a278639f

What just happened? Why has the unique character string specific for the eqn.jpg image

changed?Has our smallmodification of the file, which consisted of adding a text comment

to the image header, resulted in the production of a new image object, worthy of a new

unique identifier?

Before answering these very important questions, let us pose the following gedanken

question. Imagine you have a tree. This tree, like every living organism, is unique. It has a

unique history, a unique location, and a unique genome (i.e., a unique sequence of nucle-

otides composing its geneticmaterial). In ten years, its leaves drop off and are replaced ten

times. Its trunk expands in size and its height increases. In the ten years of its existence,

has the identify of the tree changed? [Glossary Gedanken]

Youwould probably agree that the tree has changed, but that it hasmaintained its iden-

tity (i.e., it is still the same tree, containing the descendants of the same cells that grew

within the younger version of itself ).

In informatics, a newly created object is given an identifier, and this identifier is immu-

table (i.e., cannot be changed), regardless of how the object is modified. In the case of the

unique string assigned to an image by ImageMagick, the string serves as an authenticator,

not as an identifier. When the image is modified a new unique string is created. By com-

paring the so-called identifier string in copies of the image file, we can determine whether

any modifications have been made. That is to say, we can authenticate the file.
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Getting back to the image file in our example, when wemodified the image by inserting

a text comment, ImageMagick produced a new unique string for the image. The identity of

the image had not changed, but the image was different from the original image (i.e., no

longer authentic). It seems that the string that we thought to be an identifier string was

actually an authenticator string. [Glossary Authentication]

If we want an image to have a unique identifier that does not change when the image is

modified, we must create our own identifier that persists when the image is modified.

Here is a short Python script, image_id.py, that uses Python’s standardUUIDmethod to

create an identifier, which is inserted into the comment section of the image’s header, and

flanking the identifier with XML tags. [Glossary XML, HTML]

import sys, os, uuid
my_id = "<image_id>" + str(uuid.uuid4()) + "</image_id>"

in_command = "convert leaf.jpg -set comment \"" + my_id + "\" leaf.jpg"
os.system(in_command)
out_command = "identify -verbose -format \"%c\" leaf.jpg"

print ("\nHere's the unique identifier:")
os.system(out_command)

print ("\nHere's the unique authenticator:")
os.system("identify -verbose -format \"%#\" leaf.jpg")

os.system("convert leaf.jpg -resize 325x500! leaf.jpg")
print ("\nHere's the new authenticator:")

os.system("identify -verbose -format \"%#\" leaf.jpg")
print ("\nHere's the unique identifier:")
os.system(out_command)

Here is the output of the image_id.py script:

Here's the unique identifier:
<image_id>b0836a26-8f0e-4a6b-842d-9b0dde2b3f59</image_id>

Here's the unique authenticator:
98c9fe07e90ce43f49961ab6226cd1ccffee648edd1a456a9d06a53ad6d3215a

Here's the new authenticator:

017e401d80a41aafa289ae9c2a1adb7c00477f7a943143141912189499d69ad2

Here's the unique identifier:

<image_id>b0836a26-8f0e-4a6b-842d-9b0dde2b3f59</image_id>

What did the script do and what does it teach us? It employed the UUID utility to create a

unique and permanent identifier for the image (leaf.jpg, in this case), and inserted the

unique identifier into the image header. This identifier, “b0836a26-8f0e-4a6b-842d-

9b0dde2b3f59,” did not change when the image was subsequently modified. A new

authenticator string was automatically inserted into the image header, by ImageMagick,

when the image was modified. Hence, we achieved what we needed to achieve: a unique
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identifier that never changes, and a unique authenticator that changes when the image is

modified in any way.

If you have followed the logic of this section, then you are prepared for the following

question posed as an exercise for Zen Buddhists. Imagine you have a hammer. Over the

years, you have replaced its head, twice, and its handle, thrice. In this case, with nothing

remaining of the original hammer, has it maintained its identity (i.e., is it still the same

hammer?). The informatician would answer “Yes,” the hammer hasmaintained its unique

identity, but it is no longer authentic (i.e., it is what it must always be, though it has

become something different).
Section 3.9. Case Study: One-Way Hashes

I live on a one-way street that’s also a dead end. I’m not sure how I got there.
Steven Wright

A one-way hash is an algorithm that transforms a string into another string is such a way

that the original string cannot be calculated by operations on the hash value (hence the

term “one-way” hash). Popular one-way hash algorithms are MD5 and Standard Hash

Algorithm (SHA). A one-way hash value can be calculated for any character string, includ-

ing a person’s name, or a document, or even another one-way hash. For a given input

string, the resultant one-way hash will always be the same.

Here are a few examples of one-way hash outputs performed on a sequential list of

input strings, followed by their one-way hash (md5 algorithm) output.

Jules Berman => Ri0oaVTIAilwnS8+nvKhfA

"Whatever" => n2YtKKG6E4MyEZvUKyGWrw
Whatever => OkXaDVQFYjwkQ+MOC8dpOQ

jules berman => SlnuYpmyn8VXLsxBWwO57Q
Jules J. Berman => i74wZ/CsIbxt3goH2aCS+A

Jules J Berman => yZQfJmAf4dIYO6Bd0qGZ7g
Jules Berman => Ri0oaVTIAilwnS8+nvKhfA

The one-way hash values are a seemingly randomsequence of ASCII characters (the charac-

ters available on a standard keyboard). Notice that a small variation among input strings

(e.g., exchanging anuppercase for a lowercase character, adding a periodorquotationmark)

produces a completely different one-way hash output. The first and the last entry (Jules Ber-

man) yield the same one-way hash output (Ri0oaVTIAilwnS8+nvKhfA) because the two

input strings are identical. A given string will always yield the same hash value, so long as

the hashing algorithm is not altered. Each one-way hash has the same length (22 characters

for this particularmd5 algorithm) regardless of the length of the input term. A one-way hash

outputof the same length (22characters) couldhavebeenproduced fora stringor fileordoc-

ument of any length. Once produced, there is no feasible mathematical algorithm that can

reconstruct the input string from its one-way hash output. In our example, there is no way

of examining the string “Ri0oaVTIAilwnS8+nvKhfA” andcomputing thenameJulesBerman.
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We see that the key functional difference between a one-way hash and a UUID

sequence is that the one-way hash algorithm, performed on a unique string, will always

yield the same random-appearing alphanumeric sequence. A UUID algorithm has no

input string; it simply produces unique alphanumeric output, and never (almost never)

produces the same alphanumeric output twice.

One-way hashes values can serve as ersatz identifiers, permitting Big Data resources

to accrue data, over time, to a specific record, even when the record is deidentified

(e.g., even when its UUID identifier has been stripped from the record). Here is how

it works [18]:

1. A data record is chosen, before it is deidentified, and a one-way hash is performed on

its unique identifier string.

2. The record is deidentified by removing the original unique identifier. The output of the

one-way hash (from step 1) is substituted for the original unique identifier.

3. The record is deidentified because nobody can reconstruct the original identifier from

the one-way hash that has replaced it.

4. The same process is done for every record in the database.

5. All of the data records that were associated with the original identifier will now have the

same one-way hash identifier and can be collected under this substitute identifier,

which cannot be computationally linked to the original identifier.

Implementation of one-way hashes carry certain practical problems. If anyone happens to

have a complete listing of all of the original identifiers, then it would be a simple matter to

perform one-way hashes on every listed identifier. This would produce a look-up table

that can match deidentified records back to the original identifier, a strategy known as

a dictionary attack. For deidentification to work, the original identifier sequences must

be kept secret.

One-way hash protocols have many practical uses in the field of information science

[21,18,4]. It is very easy to implement one-way hashes, and most programming languages

and operating systems come bundled with one ormore implementations of one-way hash

algorithms. The two most popular one-way hash algorithms are md5 (message digest

version 5) and SHA (Secure Hash Algorithm). [Glossary HMAC, Digest, Message digest,

Check digit]

Here we use Cygwin’s own md5sum.exe utility on the command line to produce a

one-way hash for an image file, named dash.png:

c:\ftp>c:\cygwin64\bin\md5sum.exe dash.png

Here is the output:

db50dc33800904ab5f4ac90597d7b4ea *dash.png

We could call the same command line from a Python script:

import sys, os

os.system("c:/cygwin64/bin/md5sum.exe dash.png")
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The output will always be the same, as long as the input file, dash.png, does not change:

db50dc33800904ab5f4ac90597d7b4ea *dash.png

OpenSSL contains several one-way hash implementations, including both md5 and sev-

eral variants of SHA.

One-way hashes on files are commonly used as a quick and convenient authentication

tool. When you download a file from aWeb site, you are likely to see that the file distributor

has posted the file’s one-way hash value. When you receive the file, it is a good idea to cal-

culate the one-way hash on the file that you have received. If the one-way hash value is

equal to the posted one-way hash value, then you can be certain that the file received is

an exact copy of the file that was intentionally sent. Of course, this does not ensure that

the file that was intentionally sent was a legitimate file or that the website was an honest

file broker.Wewill be using our knowledge of one-way hasheswhenwe discuss trusted time

stamps (Section 8.5), blockchains (Section 8.6) and data security protocols (Section 18.3).
Glossary
ASCII ASCII is the American Standard Code for Information Interchange, ISO-14962-1997. The ASCII

standard is a way of assigning specific 8-bit strings (a string of 0s and 1s of length 8) to the alphanu-

meric characters and punctuation. Uppercase letters are assigned a different string of 0s and 1s than

their matching lowercase letters. There are 256 ways of combining 0s and 1s in strings of length 8. This

means that that there are 256 different ASCII characters, and every ASCII character can be assigned a

number-equivalent, in the range of 0–255. The familiar keyboard keys produce ASCII characters that

happen to occupy ASCII values under 128. Hence, alphanumerics and common punctuation are repre-

sented as 8-bits, with the first bit, “0”, serving as padding. Hence, keyboard characters are commonly

referred to as 7-bit ASCII, and files composed exclusively of common keyboard characters are referred

to as plain-text files or as 7-bit ASCII files.

These are the classic ASCII characters:

!"#$%&'()*+,-./0123456789:;<=>
?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
[\] _̂`abcdefghijklmnopqrstuvwxyz{j}�

Python has several methods for removing non-printable characters from text, including the

“printable” method, as shown in this short script, printable.py.

# -*- coding: iso-8859-15 -*-

import string
in_string = "prin€u�eâ€aàtable"
out_string = "".join(s for s in in_string if s in string.printable)
print(out_strung)
output:
printable

It is notable that the first line of code violates a fundamental law of Python programming; that the

pound sign signifies that a comment follows, and that the Python interpreter will ignore the pound
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sign and any characters that follow the pound sign on the line in which they appear. For obscure rea-

sons, the top line of the snippet is a permitted exception to the rule. In nonpythonic language, the top

line conveys to the Python compiler that itmay expect to find non-ASCII characters encoded in the iso-

8859-15 standard.

The end result of this strange snippet is that non-ASCII characters are stripped from input strings; a handy

script worth saving.

American Standard Code for Information Interchange Long form of the familiar acronym, ASCII.

Annotation Annotation involves describing data elements with metadata or attaching supplemental

information to data objects.

Authentication A process for determining if the data object that is received (e.g., document, file, image) is

the data object that was intended to be received. The simplest authentication protocol involves one-

way hash operations on the data that needs to be authenticated. Suppose you happen to know that a

certain file, named temp.txt will be arriving via email and that this file has an MD5 hash of

“a0869a42609af6c712caeba454f47429”. You receive the temp.txt file, and you perform an MD5 one-

way hash operation on the file.

In this example, wewill use themd5 hash utility bundled into the CygWin distribution (i.e., the Linux emu-

lator for Windows systems). Any md5 implementation would have sufficed.

c:\cygwin64\bin>openssl md5 temp.txt

MD5(temp.txt)= a0869a42609af6c712caeba454f47429

We see that themd5 hash value generated for the received file is identical to themd5 hash value produced

on the file, by the file’s creator, before the file was emailed. This tells us that the received, temp.txt, is

authentic (i.e., it is the file that you were intended to receive) because no other file has the same MD5

hash. Additional implementations of one-way hashes are described in Section 3.9.

The authentication process, in this example, does not tell you who sent the file, the time that the file

was created, or anything about the validity of the contents of the file. These would require a protocol

that included signature, time stamp, and data validation, in addition to authentication. In common

usage, authentication protocols often include entity authentication (i.e., some method by which

the entity sending the file is verified). Consequently, authentication protocols are often confused with

signature verification protocols. An ancient historical example serves to distinguish the concepts of

authentication protocols and signature protocols. Since earliest of recorded history, fingerprints were

used as a method of authentication. When a scholar or artisan produced a product, he would press his

thumb into the clay tablet, or the pot, or the wax seal closing a document. Anyone doubting the

authenticity of the pot could ask the artisan for a thumbprint. If the new thumbprint matched the

thumbprint on the tablet, pot, or document, then all knew that the person creating the new thumb-

print and the person who had put his thumbprint into the object were the same individual. Hence,

ancient pots were authenticated. Of course, this was not proof that the object was the creation of

the person with the matching thumbprint. For all anyone knew, there may have been a hundred dif-

ferent pottery artisans, with one person pressing his thumb into every pot produced. You might argue

that the thumbprint served as the signature of the artisan. In practical terms, no. The thumbprint, by

itself, does not tell you whose print was used. Thumbprints could not be read, at least not in the same

way as a written signature. The ancients needed to compare the pot’s thumbprint against the thumb-

print of the living person whomade the print. When the person died, civilization was left with a bunch

of pots with the same thumbprint, but without any certain way of knowing whose thumb produced

them. In essence, because there was no ancient database that permanently associated thumbprints

with individuals, the process of establishing the identity of the pot-maker became very difficult once

the artisan died. A good signature protocol permanently binds an authentication code to a unique

entity (e.g., a person). Today, we can find a fingerprint at the scene of a crime; we can find a matching

signature in a database; and we can link the fingerprint to one individual. Hence, in modern times,
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fingerprints are true “digital” signatures, no pun intended. Modern uses of fingerprints include keying

(e.g., opening locked devices based on an authenticated fingerprint), tracking (e.g., establishing the

path andwhereabouts of an individual by following a trail of fingerprints or other identifiers), and body

part identification (i.e., identifying the remains of individuals recovered frommass graves or from the

sites of catastrophic events based on fingerprint matches). Over the past decade, flaws in the vaunted

process of fingerprint identification have been documented, and the improvement of the science of

identification is an active area of investigation [22].

Check digit A checksum that produces a single digit as output is referred to as a check digit. Some of the

common identification codes in use today, such as ISBN numbers for books, come with a built-in

check digit. Of course, when using a single digit as a check value, you can expect that some transmitted

errors will escape the check, but the check digit is useful in systems wherein occasional mistakes are

tolerated; or wherein the purpose of the check digit is to find a specific type of error (e.g., an error pro-

duced by a substitution in a single character or digit), and wherein the check digit itself is rarely trans-

mitted in error.

Command line Instructions to the operating system, that can be directly entered as a line of text from the

a system prompt (e.g., the so-called C prompt, “c:\>”, in Windows and DOS operating systems; the

so-called shell prompt, “$”, in Linux-like systems).

Command line utility Programs lacking graphic user interfaces that are executed via command line

instructions. The instructions for a utility are typically couched as a series of arguments, on the com-

mand line, following the name of the executable file that contains the utility.

Data cleaning More correctly, data cleansing, and synonymous with data fixing or data correcting. Data

cleaning is the process bywhich errors, spurious anomalies, andmissing values are somehowhandled.

The options for data cleaning are: correcting the error, deleting the error, leaving the error unchanged,

or imputing a different value [23]. Data cleaning should not be confused with data scrubbing.

Data munging Refers to a multitude of tasks involved in preparing data for some intended purpose (e.g.,

data cleaning, data scrubbing, and data transformation). Synonymous with data wrangling.

Data scraping Pulling together desired sections of a data set or text by using software.

Data scrubbing A term that is very similar to data deidentification and is sometimes used improperly as a

synonym for data deidentification. Data scrubbing refers to the removal of unwanted information

from data records. Thismay include identifiers, private information, or any incriminating or otherwise

objectionable language contained in data records, as well as any information deemed irrelevant to the

purpose served by the record.

Data wrangling Jargon referring to a multitude of tasks involved in preparing data for eventual analysis.

Synonymous with data munging [24].

Deidentification The process of removing all of the links in a data record that can connect the informa-

tion in the record to an individual. This usually includes the record identifier, demographic informa-

tion (e.g., place of birth), personal information (e.g., birthdate), and biometrics (e.g., fingerprints). The

deidentification strategy will vary based on the type of records examined. Deidentifying protocols exist

wherein deidentificated records can be reidentified, when necessary.

Digest As used herein, “digest” is equivalent to a one-way hash algorithm. The word “digest” also refers to

the output string produced by a one-way hash algorithm.

Electronic medical record Abbreviated as EMR, or as EHR (Electronic Health Record). The EMR is the

digital equivalent of a patient’s medical chart. Central to the idea of the EMR is the notion that all

of the documents, transactions, and all packets of information containing test results and other infor-

mation on a patient are linked to the patient’s unique identifier. By retrieving all data linked to the

patient’s identifier, the EMR (i.e., the entire patient’s chart) can be assembled instantly.

Encapsulation The concept, from object oriented programming, that a data object contains its associated

data. Encapsulation is tightly linked to the concept of introspection, the process of accessing the data
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encapsulated within a data object. Encapsulation, Inheritance, and Polymorphism are available fea-

tures of all object-oriented languages.

Encryption A common definition of encryption involves an algorithm that takes some text or data and

transforms it, bit-by-bit, into an output that cannot be interpreted (i.e., from which the contents of

the source file cannot be determined). Encryption comes with the implied understanding that there

exists some reverse transform that can be applied to the encrypted data, to reconstitute the original

source. As used herein, the definition of encryption is expanded to include any protocols by which files

can be shared, in such a way that only the intended recipients can make sense of the received docu-

ments. This would include protocols that divide files into pieces that can only be reassembled into the

original file using a password. Encryption would also include protocols that alter parts of a file while

retaining the original text in other parts of the file. As described in Chapter 5, there are instances when

some data in a file should be shared, while only specific parts need to be encrypted. The protocols that

accomplish these kinds of file transformations need not always employ classic encryption algorithms

(e.g., Winnowing and Chaffing [25], threshold protocols [21]).

Gedanken Gedanken is the German word for “thought.” A gedanken experiment is one in which the sci-

entist imagines a situation and its outcome, without resorting to any physical construction of a scien-

tific trial. Albert Einstein, a consummate theoretician, was fond of inventing imaginary scenarios, and

his use of the term “gedanken trials” has donemuch to popularize the concept. The scientific literature

contains multiple descriptions of gedanken trials that have led to fundamental breakthroughs in our

understanding of the natural world and of the universe [26].

HMAC Hashed Message Authentication Code. When a one-way hash is employed in an authentication

protocol, it is often referred to as an HMAC.

HTML HyperText Markup Language is an ASCII-based set of formatting instructions for web pages.

HTML formatting instructions, known as tags, are embedded in the document, and double-bracketed,

indicating the start point and end points for instruction. Here is an example of anHTML tag instructing

the web browser to display the word “Hello” in italics:<i>Hello</i>. All web browsers conforming to

the HTML specification must contain software routines that recognize and implement the HTML

instructions embedded within in web documents. In addition to formatting instructions, HTML also

includes linkage instructions, in which the web browsers must retrieve and display a listed web page,

or a web resource, such as an image. The protocol whereby web browsers, following HTML instruc-

tions, retrieve web pages from other Internet sites, is known as HTTP (HyperText Transfer Protocol).

ImageMagick An open source utility that supports a huge selection of robust and sophisticated image

editing methods. ImageMagick is available for download at: https://www.imagemagick.org/script/

download.php

Instance An instance is a specific example of an object that is not itself a class or group of objects. For

example, Tony the Tiger is an instance of the tiger species. Tony the Tiger is a unique animal and is

not itself a group of animals or a class of animals. The terms instance, instance object, and object

are sometimes used interchangeably, but the special value of the “instance” concept, in a system

wherein everything is an object, is that it distinguishes members of classes (i.e., the instances) from

the classes to which they belong.

Intellectual property Data, software, algorithms, and applications that are created by an entity capable of

ownership (e.g., humans, corporations, and universities). The entity holds rights over the manner in

which the intellectual property can be used and distributed. Protections for intellectual property may

come in the form of copyrights and patent. Copyright applies to published information. Patents apply

to novel processes and inventions. Certain types of intellectual property can only be protected by being

secretive. For example, magic tricks cannot be copyrighted or patented; this is why magicians guard

their intellectual property so closely. Intellectual property can be sold outright, essentially transferring

ownership to another entity; but this would be a rare event. In other cases, intellectual property is

https://www.imagemagick.org/script/download.php
https://www.imagemagick.org/script/download.php
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retained by the creator who permits its limited use to others via a legal contrivance (e.g., license, con-

tract, transfer agreement, royalty, and usage fee). In some cases, ownership of the intellectual property

is retained, but the property is freely shared with the world (e.g., open source license, GNU license,

FOSS license, and Creative Commons license).

Message digest Within the context of this book, “message digest”, “digest”, “HMAC”, and “one-way hash”

are equivalent terms.

Minimal necessary In the field of medical informatics, there is a concept known as “minimal necessary”

that applies to shared confidential data [9]. It holds that when records are shared, only the minimum

necessary information should be released. Information not directly relevant to the intended purposes

of the study should be withheld.

Object-oriented programming In object-oriented programming, all data objects must belong to one of

the classes built into the language or to a class created by the programmer. Class methods are subrou-

tines that belong to a class. The members of a class have access to the methods for the class. There is a

hierarchy of classes (with superclasses and subclasses). A data object can access anymethod from any

superclass of its class. All object-oriented programming languages operate under this general strategy.

The twomost important differences among the object oriented programming languages relate to syn-

tax (i.e., the required style in which data objects call their available methods) and content (the built-in

classes and methods available to objects). Various esoteric issues, such as types of polymorphism

offered by the language,multi-parental inheritance, and non-Boolean logic operations may play a role

in how expert programmer’s choose a specific object-oriented language for the job at-hand.

One-way hash A one-way hash is an algorithm that transforms one string into another string (a fixed-

length sequence of seemingly random characters) in such a way that the original string cannot be cal-

culated by operations on the one-way hash value (i.e., the calculation is one-way only). One-way hash

values can be calculated for any string, including a person’s name, a document, or an image. For any

given input string, the resultant one-way hash will always be the same. If a single byte of the input

string is modified, the resulting one-way hash will be changed, and will have a totally different

sequence than the one-way hash sequence calculated for the unmodified string.

Most modern programming languages have several methods for generating one-way hash values. Regard-

less of the language we choose to implement a one-way hash algorithm (e.g., md5, SHA), the output

value will be identical. One-way hash values are designed to produce long fixed-length output strings

(e.g., 256 bits in length). When the output of a one-way hash algorithm is very long, the chance of a

hash string collision (i.e., the occurrence of two different input strings generating the same one-way

hash output value) is negligible. Clever variations on one-way hash algorithms have been repurposed

as identifier systems [27,28,29,30]. A detailed discussion of one-way hash algorithms can be found in

Section 3.9, “Case Study: One-Way Hashes.”

Privacy versus confidentiality The concepts of confidentiality and of privacy are often confused, and it is

useful to clarify their separate meanings. Confidentiality is the process of keeping a secret with which

you have been entrusted. You break confidentiality if you reveal the secret to another person. You vio-

late privacy when you use the secret to annoy the person whose confidential information was

acquired. If you give a friend your unlisted telephone number in confidence, then your fried is

expected to protect this confidentiality by never revealing the number to other persons. In addition,

your friend may be expected to protect your privacy by resisting the temptation to call you in the mid-

dle of the night, complain about a mutual acquaintance. In this case, the same information object

(unlisted telephone number) is encumbered by separable confidentiality and privacy obligations.

Pseudorandom number generator It is impossible for computers to produce an endless collection of

truly random numbers. Eventually, algorithms will cycle through their available variations and begins

to repeat themselves, producing the same set of “random” numbers, in the same order; a phenomenon

referred to as the generator’s period. Because algorithms that produce seemingly random numbers are

imperfect, they are known as pseudorandom number generators. The Mersenne Twister algorithm,
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which has an extremely long period, is used as the default random number generator in Python. This

algorithm performs well on most of the tests that mathematicians have devised to test randomness.

Randomness Various tests of randomness are available [31]. One of the easiest to implement takes advan-

tage of the property that random strings are uncompressible. If you can show that if a character string,

a series of numbers, or a column of data cannot be compressed by gzip, then it is pretty safe to con-

clude that the data is randomly distributed, and without any informational value.

Reidentification A term casually applied to any instance whereby information can be linked to a specific

person after the links between the information and the person associated with the information were

removed. Used this way, the term reidentification connotes an insufficient deidentification process. In

the healthcare industry, the term “reidentification”means something else entirely. In theUnited States,

regulations define “reidentification” under the “Standards for Privacy of Individually Identifiable

Health Information”. Reidentification is defined therein as a legally valid process whereby deidentified

records can be linked back to the respective human subjects, under circumstances deemed compelling

by a privacy board. Reidentification is typically accomplished via a confidential list of links between

human subject names and deidentified records, held by a trusted party. As used by the healthcare

industry, reidentification only applies to the approved process of re-establishing the identity of a dei-

dentified record. When a human subject is identified through fraud, trickery, or through the deliberate

use of computational methods to break the confidentiality of insufficiently deidentified records, the

term “reidentification” would not apply.

Social Security Number The common strategy, in the United States, of employing social security num-

bers as identifiers is often counterproductive, owing to entry error, mistaken memory, or the intention

to deceive. Efforts to reduce errors by requiring individuals to produce their original social security

cards puts an unreasonable burden on honest individuals, who rarely carry their cards, and provides

an advantage to dishonest individuals, who can easily forge social security cards. Institutions that

compel patients to provide a social security number have dubious legal standing. The social security

number was originally intended as a device for validating a person’s standing in the social security sys-

tem. More recently, the purpose of the social security number has been expanded to track taxable

transactions (i.e., bank accounts, salaries). Other uses of the social security number are not protected

by law. The Social Security Act (Section 208 of Title 42U.S. Code 408) prohibitsmost entities from com-

pelling anyone to divulge his/her social security number. Legislation or judicial action may one day

stop healthcare institutions from compelling patients to divulge their social security numbers as a con-

dition for providingmedical care. Prudent and forward-thinking institutions will limit their reliance on

social security numbers as personal identifiers.

Time stamp Many data objects are temporal events and all temporal events must be given a time stamp

indicating the time that the event occurred, using a standard measurement for time. The time stamp

must be accurate, persistent, and immutable. The Unix epoch time (equivalent to the Posix epoch

time) is available for most operating systems and consists of the number of seconds that have elapsed

since January 1, 1970, midnight, Greenwhichmean time. The Unix epoch time can easily be converted

into any other standard representation of time. The duration of any event can be easily calculated by

subtracting the beginning time from the ending time. Because the timing of events can bemaliciously

altered, scrupulous datamanagers employ a trusted time stampprotocol bywhich a time stamp can be

verified. A trusted time stamp must be accurate, persistent, and immutable. Trusted time stamp pro-

tocols are discussed in Section 8.5, “Case Study: The Trusted Time stamp.”

URL Unique Resource Locator. The Web is a collection of resources, each having a unique address, the

URL.When you click on a link that specifies aURL, your browser fetches the page located at the unique

location specified in the URL name. If the Web were designed otherwise (i.e., if several different web

pages had the same web address, or if one web address were located at several different locations),

then the web could not function with any reliability.
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URN Unique Resource Name.Whereas the URL identifies objects based on the object’s unique location in

the Web, the URN is a system of object identifiers that are location-independent. In the URN system,

data objects are provided with identifiers, and the identifiers are registered with, and subsumed by,

the URN.

For example:

urn:isbn-13:9780128028827

Refers to the unique book, “Repurposing Legacy Data: Innovative Case Studies,” by Jules Berman

urn:uuid:e29d0078-f7f6-11e4-8ef1-e808e19e18e5

Refers to a data object tied to the UUID identifier e29d0078-f7f6-11e4-8ef1-e808e19e18e5.

In theory, if every data object were assigned a registered URN, and if the system were implemented as

intended, the entire universe of information could be tracked and searched.

UUID UUID, the abbreviation for Universally Unique IDentifiers, is a protocol for assigning identifiers to

data objects, without using a central registry. UUIDs were originally used in the Apollo Network Com-

puting System [3].

Utility In the context of software, a utility is an application that is dedicated to performing one specific

task, very well, and very fast. In most instances, utilities are short programs, often running from the

command line, and thus lacking any graphic user interface.Many utilities are available at no cost, with

open source code. In general, simple utilities are preferable to multi-purpose software applications

[32]. Remember, an application that claims to do everything for the user is, most often, an application

that requires the user to do everything for the application.

XML Abbreviation for eXtensible Markup Language. A syntax for marking data values with descriptors

(metadata). The descriptors are commonly known as tags. In XML, every data value is enclosed by

a start-tag, indicating that a value will follow, and an end-tag, indicating that the value had preceded

the tag. For example: <name>Tara Raboomdeay</name>. The enclosing angle brackets, “<>”, and

the end-tag marker, “/”, are hallmarks of XMLmarkup. This simple but powerful relationship between

metadata and data allows us to employ each metadata/data pair as though it were a small database

that can be combined with related metadata/data pairs from any other XML document. The full value

ofmetadata/data pairs comeswhenwe can associate the pair with a unique object, forming a so-called

triple.
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Section 4.1. Metadata

Life is a concept.
Patrick Forterre [1]

When you think about it, numbers aremeaningless. The number “8” has no connection to

anything in the physical realm until we attach some information to the number (e.g., 8

candles, 8 minutes). Some numbers, like “0” or “�5” have no physical meaning under

any set of circumstances. There really is no such thing as “0 dollars”; it is an abstraction

indicating the absence of a positive number of dollars. Likewise, there is no such thing as

“�5 walnuts”; it is an abstraction that we use to make sense of subtractions (5�10¼�5).

When we write “8 walnuts,” “walnuts” is the metadata that tells us what is being

referred to by the data, in this case the number “8.”

When we write “8 o’clock”, “8” is the data and “o’clock” is the metadata.
Section 4.2. eXtensible Markup Language

The purpose of narrative is to present us with complexity and ambiguity.
Scott Turow

XML (eXtensible Markup Language) is a syntax for attaching descriptors (so-called

metadata) to data values. [Glossary Metadata]

In XML, descriptors are commonly known as tags.
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XML has its own syntax; a set of rules for expressing data/metadata pairs. Every data

value is flanked by a start-tag and an end-tag. Enclosing angle brackets, “<>”, and the

end-tag marker, “/”, are hallmarks of XML markup. For example:

<name>Tara Raboomdeay</name>

This simple but powerful relationship between metadata and data allows us to employ

every metadata/data pair as a miniscule database that can be combined with related

metadata/data pairs from the same XML document or from different XML documents.

It is impossible to overstate the importance of XML (eXtensible Markup Language) as a

data organization tool. With XML, every piece of data tells us something about itself. When

a data value has been annotatedwithmetadata, it can be associatedwith other, related data,

evenwhentheotherdata is located inaseeminglyunrelateddatabase. [Glossary Integration].

When all data is flanked by metadata, it is relatively easy to port the data into spread-

sheets, where the column headings correspond to the metadata tags, and the data values

correspond to the value found in the cells of the spreadsheet. The rows correspond to the

record number.

A file that contains XMLmarkup is considered a proper XML document only if it is well

formed. Here are the properties of a well-formed XML document.

– The documentmust have a proper XML header. The header can vary somewhat, but

it usually looks something like:
<?xml version="1.0" ?>
– XML files are ASCII files consisting of characters available to a standard keyboard.

– Tags in XML files must conform to composition rules (e.g., spaces are not permitted

within a tag, and tags are case-sensitive).

– Tags must be properly nested (i.e., no overlapping). For example, the following is

properly nested XML.

<chapter><chapter_title>Introspection</chapter_title></chapter>

Compare the previous example, with the following, improperly nested XML.

<chapter><chapter_title>Introspection</chapter></chapter_title>

Web browsers will not display XML files that are not well formed.

The actual structure of an XML file is determined by another XML file known as an

XML Schema. The XML Schema file lists the tags and determines the structure for those

XML files that are intended to comply with a specific Schema document. A valid XML file

conforms to the rules of structure and content defined in its assigned XML Schema.

Every XML file that is valid under a particular Schema will contain data that is

described using the same tags that are listed in that same XML schema, permitting data

integration among those files. This is one of the strengths of XML.

The greatest drawback of XML is that data/metadata pairs are not assigned to a unique

object. XML describes its data, but it does not tell us the object of the data. This gaping

hole in XMLwas filled by RDF (Resource Description Framework), a modified XML syntax
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designed to associate every data/metadata pair with a unique data object. Before we can

begin to understand RDF, we need to understand the concept of “meaning,” in the context

of information science.

Section 4.3. Semantics and Triples

Supplementary bulletin from the Office of Fluctuation Control, Bureau of Edible

Condiments, Soluble and Indigestible Fats and Glutinous Derivatives,

Washington, D.C. Correction of Directive #943456201, . . . the quotation on ground-

hog meat should read ‘ground hog meat.’
Bob Elliot and Ray Goulding, comedy routine

Metadata gives structure to data values, but it does not tell us anything about how the data

value relates to anything else. For example,

<height_in_feet_inches>5'11"</height_in_feet_inches>

What does it mean to know that 501100 is a height attribute, expressed in feet and inches?

Nothing really. The metadata/data pair has no meaning, as it stands, because it does not

describe anything in particular. If we were to assert that John Harrington has a height of

501100, then we would be making a meaningful statement. This brings us to ask ourselves:

What is the meaning of meaning? This question sounds like another one of those

Zen mysteries that has no answer. In informatics, “meaningfulness” is achieved when

described data (i.e., a metadata/data pair) is bound to the unique identifier of a data

object.

Let us look once more at our example:

"John Harrington's height is five feet eleven inches."

This sentence has meaning because there is data (five feet eleven inches), and it is

described (person’s height), and it is bound to a unique individual (John Harrington).

Let us generate a unique identifier for John Harrington using our UUID generator (dis-

cussed in Section 3.3) and rewrite our assertion in a format in which metadata/data pairs

are associated with a unique identifier:

9c7bfe97-e637-461f-a30b-d931b97907fe name John Harrington
9c7bfe97-e637-461f-a30b-d931b97907fe height 5'11"

We now have two meaningful assertions: one that associates the name “John Harrington”

with a unique identifier (9c7bfe97-e637-461f-a30b-d931b97907fe); and one that tells us that

the object associated with the unique identifier (i.e., JohnHarrington) is 501100 tall. We could

insert these two assertions into a Big Data resource, knowing that both assertions fulfill

our definition of meaning. Of course, we would need to have some process in place to

ensure that any future information collected on our unique John Harrington (i.e., the John

Harrington assigned the identifier 9c7bfe97-e637-461f-a30b-d931b97907fe) will be

assigned the same identifier.
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A statement withmeaning does not need to be a true statement (e.g., The height of John

Harringtonwas not 5 feet 11 inches when JohnHarringtonwas an infant). That is to say, an

assertion can be meaningful but false.

Semantics is the study of meaning. In the context of Big Data, semantics is the tech-

nique of creating meaningful assertions about data objects. All meaningful assertions,

without exception, can be structured as a 3-item list consisting of an identified data object,

a data value, and a descriptor for the data value. These 3-item assertions are referred to as

“triples.” Just as sentences are the fundamental informational unit of spoken languages,

the triple is the fundamental unit of computer information systems.

In practical terms, semantics involves making assertions about data objects (i.e., mak-

ing triples), combining assertions about data objects (i.e., aggregating triples), and assign-

ing data objects to classes; hence relating triples to other triples. As a word of warning, few

informaticians would define semantics in these terms, but I would suggest that all legit-

imate definitions for the term “semantics” are functionally equivalent to the definition

offered here. For example every cell in a spreadsheet is a data value that has a descriptor

(the column header), and a subject (the row identifier). A spreadsheet can be pulled apart

and re-assembled as a set of triples (known as a triplestore) equal in number to the

number of cells contained in the original spreadsheet. Each triple would be an assertion

consisting of the following:

<row identifier> <column header> <content of cell>

Likewise, any relational database, no matter how many relational table are included, can

be decomposed into a triplestore. The primary keys of the relational tables would corre-

spond to the identifier of the RDF triple. Column header and cell contents complete the

triple.

If spreadsheets and relational databases are equivalent to triplestores, then is there

any special advantage to creating triplestores? Yes. A triple is a stand-alone unit of

meaning. It does not rely on the software environment (e.g., excel spreadsheet or

SQL database engine) to convey its meaning. Hence, triples can be merged without

providing any additional structure. Every triple on the planet could be concatenated

to create the ultimate superduper triplestore, from which all of the individual triples

pertaining to any particular unique identifier, could be collected. This is something

that could not be done with spreadsheets and database engines. Enormous triplestores

can serve as native databases or as a large relational table, or as pre-indexed tables.

Regardless, the final products have all the functionality of any popular database

engine [2].
Section 4.4. Namespaces

It is once again the vexing problem of identity within variety; without a solution to

this disturbing problem there can be no system, no classification.
Roman Jakobson
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A namespace is the metadata realm in which a metadata tag applies. The purpose of a

namespace is to distinguish metadata tags that have the same name, but different mean-

ing. For example, within a single XML file, themetadata term “date”may be used to signify

a calendar date, or the fruit, or the social engagement. To avoid confusion, the metadata

term is given a prefix that is associated with a Web document that defines the term within

an assigned Web location. [Glossary Namespace]

For example, an XML pagemight contain three date-related values, and their metadata

descriptors:

<calendar:date>June 16, 1904</caldendar:date>
<agriculture:date>Thoory</agriculture:date>

<social:date>Pyramus and Thisbe<social:date>

At the top of the XML document you would expect to find declarations for the namespaces

used in the XML page. Formal XML namespace declarations have the syntax:

xmlns:prefix="URI"

In the fictitious example used in this section, the namespace declarations might

appear in the “root” tag at the top of the XML page, as shown here (with fake web

addresses):

<root xmlns:calendar="http://www.calendercollectors.org/"
xmlns:agriculture="http://www.farmersplace.org/"

xmlns:social="http://hearts_throbbing.com/">

The namespace URIs are the web locations that define themeanings of the tags that reside

within their namespace.

The relevance of namespaces to Big Data resources relates to the heterogeneity of

information contained in or linked to a resource. Every description of a valuemust be pro-

vided a unique namespace. With namespaces, a single data object residing in a Big Data

resource can be associated with assertions (i.e., object-metadata-data triples) that include

descriptors of the same name, without losing the intended sense of the assertions.

Furthermore, triples held in different Big Data resources can be merged, with their proper

meanings preserved.

Here is an example wherein two resources are merged, with their data arranged as

assertion triples.

Big Data resource 1

29847575938125 calendar:date February 4, 1986

83654560466294 calendar:date June 16, 1904

Big Data resource 2

57839109275632 social:date Jack and Jill
83654560466294 social:date Pyramus and Thisbe

http://www.calendercollectors.org
http://www.farmersplace.org
http://hearts_throbbing.com
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Merged Big Data Resource 1 + 2

29847575938125 calendar:date February 4, 1986
57839109275632 social:date Jack and Jill

83654560466294 social:date Pyramus and Thisbe
83654560466294 calendar:date June 16, 1904

There you have it. The object identified as 83654560466294 is associated with a “date”

metadata tag in both resources. When the resources are merged, the unambiguous

meaning of the metadata tag is conveyed through the appended namespaces (i.e., social:

and calendar:)
Section 4.5. Case Study: A Syntax for Triples

I really do not know that anything has ever been more exciting than diagramming

sentences.
Gertrude Stein

If you want to represent data as triples, you will need to use a standard grammar and syn-

tax. RDF (ResourceDescription Framework) is a dialect of XML designed to convey triples.

Providing detailed instruction in RDF syntax, or its dialects, lies far outside the scope of

this book. However, every Big Data manager must be aware of those features of RDF that

enhance the value of Big Data resources. These would include:

1. The ability to express any triple in RDF (i.e., the ability to make RDF statements).

2. The ability to assign the subject of an RDF statement to a unique, identified, and

defined class of objects (i.e., that ability to assign the object of a triple to a class).

RDF is a formal syntax for triples. The subjects of triples can be assigned to classes of

objects defined in RDF Schemas and linked from documents composed of RDF triples.

RDF Schemas will be described in detail in Section 5.9.

When data objects are assigned to classes, the data analysts can discover new relation-

ships among the objects that fall into a class, and can also determine relationships among

different related classes (i.e., ancestor classes and descendant classes, also known as

superclasses and subclasses). RDF triples plus RDF Schemas provide a semantic structure

that supports introspection and reflection. [Glossary Child class, Subclass, RDF Schema,

RDFS, Introspection, Reflection]

3. The ability for all data developers to use the same publicly available RDF Schemas and

namespace documents with which to describe their data, thus supporting data

integration over multiple Big Data resources.

This last feature allows us to turn theWeb into aworldwide BigData resource composed of

RDF documents.
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Wewill briefly examine each of these three features in RDF. First, consider the following

triple:

pubmed:8718907 creator Bill Moore

Every triple consists of an identifier (the subject of the triple), followed by metadata, fol-

lowed by a value. In RDF syntax the triple is flanked by metadata indicating the beginning

and end of the triple. This is the<rdf:description> tag and its end-tag</rdf:description).

The identifier is listed as an attribute within the <rdf:description> tag, and is described

with the rdf:about tag, indicating the subject of the triple. There follows a metadata

descriptor, in this case <author>, enclosing the value, “Bill Moore.”

<rdf:description rdf:about="urn:pubmed:8718907">
<creator>Bill Moore</creator>

</rdf:description>

The RDF triple tells us that Bill Moore wrote the manuscript identified with the PubMed

number 8718907. The PubMed number is the National library of Medicine’s unique iden-

tifier assigned to a specific journal article. We could express the title of the article in

another triple.

pubmed:8718907, title, "A prototype Internet autopsy database. 1625

consecutive fetal and neonatal autopsy facesheets spanning 20 years."

In RDF, the same triple is expressed as:

<rdf:description rdf:about="urn:pubmed:8718907">
<title>A prototype Internet autopsy database. 1625 consecutive

fetal and neonatal autopsy facesheets spanning 20 years</title>
</rdf:description>

RDF permits us to nest triples if they apply to the same unique object.

<rdf:description rdf:about="urn:pubmed:8718907">
<author>Bill Moore</author>

<title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</title>

</rdf:description>

Here we see that the PubMed manuscript identified as 8718907 was written by Bill Moore

(the first triple) and is titled “A prototype Internet autopsy database. 1625 consecutive fetal

and neonatal autopsy facesheets spanning 20 years” (a second triple).

What do we mean by the metadata tag “title”? How can we be sure that the metadata

term “title” refers to the name of a document and does not refer to an honorific (e.g., The

Count of Monte Cristo or the Duke of Earl). We append a namespace to the metadata.

Namespaces were described in Section 4.4.
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<rdf:description rdf:about="urn:pubmed:8718907">
<dc:creator>Bill Moore</dc:creator>

<dc:title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</dc:title>

</rdf:description>

In this case, we appended “dc:” to our metadata. By convention, “dc:” refers to the Dublin

Core metadata set at: http://dublincore.org/documents/2012/06/14/dces/.

We will be describing the Dublin Core in more detail, in Section 4.6. [Glossary Dublin

Core metadata].

RDF was developed as a semantic framework for the Web. The object identifier system

for RDF was created to describe Web addresses or unique resources that are available

through the Internet. The identification of unique addresses is done through the use of

a Uniform Resource Name (URN) [3]. In many cases the object of a triple designed for

the Web will be a Web address. In other cases the URN will be an identifier, such as the

PubMed reference number in the example above. In this case, we appended the “urn:”

prefix to the PubMed reference in the “about” declaration for the object of the triple.

<rdf:description rdf:about="urn:pubmed:8718907">

Let us create an RDF triple whose subject is an actual Web address.

<rdf:Description rdf:about="http://www.usa.gov/">
<dc:title>USA.gov: The U.S. Government's Official Web Portal</dc:

title>
</rdf:Description>

Here we created a triple wherein the object is uniquely identified by the unique Web

address http://www.usa.gov/, and the title of the Web page is “USA.gov: The U.S. Govern-

ment’s Official Web Portal.” The RDF syntax for triples was created for the purpose of iden-

tifying information with its URI (Unique Resource Identifier). The URI is a string of

characters that uniquely identifies aWeb resource (such as a uniqueWeb address, or some

unique location at a Web address, or some unique piece of information that can be ulti-

mately reached through theWorldwideWeb). In theory, usingURIs as identifiers for triples

will guarantee that all triples will be accessible through the so-called “Semantic Web” (i.e.,

theWeb of meaningful assertions) [3]. Using RDF, Big Data resources can design a scaffold

for their information that can be understood by humans, parsed by computers, and shared

by other Big Data resources. This solution transforms every RDF-compliantWeb page into

a an accessible database whose contents can be searched, extracted, aggregated, and inte-

grated along with all the data contained in every existing Big Data resource.

In practice, the RDF syntax is just one of many available formats for packaging triples,

and can be usedwith identifiers that have invalid URIs (i.e., that do not relate in anyway to

Web addresses or Web resources). The point to remember is that Big Data resources that

employ triples can port their data into RDF syntax, or into any other syntax for triples, as

needed. [Glossary Notation 3, Turtle]

http://dublincore.org/documents/2012/06/14/dces/
http://www.usa.gov
http://USA.gov
http://www.usa.gov
http://USA.gov
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Section 4.6. Case Study: Dublin Core

For myself, I always write about Dublin, because if I can get to the heart of Dublin

I can get to the heart of all the cities of the world. In the particular is contained

the universal.
James Joyce

James Joyce believed that Dublin held the meaning of every city in the world. In a sim-

ilar vein, the Dublin Core metadata descriptors hold the meaning of every document

in the world. The principle difference between the two Dublin-centric philosophies is

that James Joyce hailed from Dublin, Ireland, while the Dublin Core metadata

descriptors hailed from Dublin, Ohio, United States. For it was in Dublin, Ohio, in

1995, that a coterie of interested Internet technologists and librarians met for the

purpose of identifying a core set of descriptive data elements that every electronic

document should contain.

The specification resulting from this early workshop came to be known as the Dublin

Core [4]. The Dublin Core elements include such information as the date that the file was

created, the name of the entity that created the file, and a general comment on the con-

tents of the file. The Dublin Core elements aid in indexing and retrieving electronic files,

and should be included in every electronic document, including every image file. The

Dublin Core metadata specification is found at:

http://dublincore.org/documents/dces/

Some of the most useful Dublin Core elements are [5]:

– Contributor—the entity that contributes to the document

– Coverage—the general area of information covered in the document

– Creator—the entity primarily responsible for creating the document

– Date—a time associated with an event relevant to the document

– Description—description of the document

– Format—file format

– Identifier—a character string that uniquely and unambiguously identifies the

document

– Language—the language of the document

– Publisher—the entity that makes the resource available

– Relation—a pointer to another, related document, typically the identifier of the related

document

– Rights—the property rights that apply to the document

– Source—an identifier linking to another document from which the current document

was derived

– Subject—the topic of the document

– Title—title of the document

– Type—genre of the document

An XML syntax for expressing the Dublin Core elements is available [6,7].

http://dublincore.org/documents/dces/
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Glossary
Child class The direct or first generation subclass of a class. Sometimes referred to as the daughter class

or, less precisely, as the subclass.

Dublin Core metadata The Dublin Core is a set of metadata elements developed by a group of librarians

whomet in Dublin, Ohio. It would be very useful if every electronic document were annotated with the

Dublin Core elements. The Dublin Core Metadata is discussed in detail in Chapter 4. The syntax for

including the elements is found at: http://dublincore.org/documents/dces/

Integration Occurs when information is gathered frommultiple data sets, relating diverse data extracted

from different data sources. Integration can broadly be categorized as pre-computed or computed

on-the fly. Pre-computed integration includes such efforts as absorbing new databases into a Big Data

resource or merging legacy data from with current data. On-the-fly integration involves merging data

objects at the moment when the individual objects are parsed. This might be done during a query that

traversesmultiple databases ormultiple networks. On-the-fly data integration can only work with data

objects that support introspection. The two closely related topics of integration and interoperability

are often confused with one another. An easy way to remember the difference is to note that integra-

tion refers to data; interoperability refers to software.

Introspection Well-designed Big Data resources support introspection, a method whereby data objects

within the resource can be interrogated to yield their properties, values, and class membership.

Through introspection the relationships among the data objects in the Big Data resource can be exam-

ined and the structure of the resource can be determined. Introspection is themethod by which a data

user can find everything there is to know about a Big Data resource without downloading the complete

resource.

Metadata Data that describes data. For example in XML, a data quantity may be flanked by a beginning

and an ending metadata tag describing the included data quantity. <age>48 years</age>. In the

example, <age> is the metadata and 48 years is the data.

Namespace A namespace is themetadata realm in which ametadata tag applies. The purpose of a name-

space is to distinguish metadata tags that have the same name, but a different meaning. For example,

within a single XML file, themetadata term “date”may be used to signify a calendar date, or the fruit, or

the social engagement. To avoid confusion themetadata term is given a prefix that is associated with a

Web document that defines the term within the document’s namespace.

Notation 3 Also called n3. A syntax for expressing assertions as triples (unique subject +metadata + data).

Notation 3 expresses the same information as themore formal RDF syntax, but n3 is compact and easy

for humans to read. Both n3 and RDF can be parsed and equivalently tokenized (i.e., broken into ele-

ments that can be re-organized in a different format, such as a database record).

RDF Schema Resource Description Framework Schema (RDFS). A document containing a list of classes,

their definitions, and the names of the parent class(es) for each class (e.g., Class Marsupiala is a

subclass of Class Metatheria). In an RDF Schema, the list of classes is typically followed by a list of

properties that apply to one or more classes in the Schema. To be useful, RDF Schemas are posted

on the Internet, as a Web page, with a unique Web address. Anyone can incorporate the classes

and properties of a public RDF Schema into their own RDF documents (public or private) by linking

named classes and properties, in their RDF document, to the web address of the RDF Schema where

the classes and properties are defined.

RDFS Same as RDF Schema.

Reflection A programming technique wherein a computer program will modify itself, at run-time, based

on information it acquires through introspection. For example, a computer programmay iterate over a

collection of data objects, examining the self-descriptive information for each object in the collection

(i.e., object introspection). If the information indicates that the data object belongs to a particular class

of objects, the program might call a method appropriate for the class. The program executes in a

http://dublincore.org/documents/dces/
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manner determined by descriptive information obtained during run-time; metaphorically reflecting

upon the purpose of its computational task. Because introspection is a property of well-constructed

Big Data resources, reflection is an available technique to programmers who deal with Big Data.

Subclass A class in which every member descends from some higher class (i.e., a superclass) within the

class hierarchy. Members of a subclass have properties specific to the subclass. As every member of a

subclass is also a member of the superclass, the members of a subclass inherit the properties and

methods of the ancestral classes. For example, allmammals havemammary glands becausemammary

glands are a defining property of the mammal class. In addition, all mammals have vertebrae because

the class of mammals is a subclass of the class of vertebrates. A subclass is the immediate child class of

its parent class.

Turtle Another syntax for expressing triples. From RDF came a simplified syntax for triples, known as

Notation 3 or N3 [8]. From N3 came Turtle, thought to fit more closely to RDF. From Turtle came

an even more simplified form, known as N-Triples.
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Section 5.1. It’s All About Object Relationships

Order and simplification are the first steps toward the mastery of a subject.
Thomas Mann

Information has limited value unless it can take its placewithin our general understanding

of the world. When a financial analyst learns that the price of a stock has suddenly

dropped, he cannot help but wonder if the drop of a single stock reflects conditions

in other stocks in the same industry. If so, the analyst may check to ensure that other

industries are following a downward trend. He may wonder whether the downward trend

represents a shift in the national or global economies. There is a commonality to all of the

questions posed by the financial analyst. In every case, the analyst is asking a variation on

a single question: “How does this thing relate to that thing?”

Big Data resources are complex. When data is simply stored in a database, without any

general principles of organization, it becomes impossible to find the relationships among

the data objects. To be useful the information in a Big Data resource must be divided into

classes of data. Each data object within a class shares a set of properties chosen to enhance

our ability to relate one piece of data with another.

Relationships are the fundamental properties of an object that determine the class in

which it is placed. Every member of a class shares these same fundamental properties.

A core set of relational properties is found in all the ancestral classes of an object and

in all the descendant classes of an object. Similarities are just features that one or more
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00005-4
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objects have in common, but they are not fundamental relationships upon which classes

can be organized. Related objects tend to be similar to one another, but these similarities

occur as the consequence of their relationships; not vice versa. For example, youmay have

many similarities to your father. If so, you are similar to your father because you are related

to him; you are not related to him because you are similar to him.

The distinction between grouping data objects by similarity and grouping data

objects by relationship is sometimes lost on computer scientists. I have had numerous

conversations with intelligent scientists who refuse to accept that grouping by similarity

(e.g., clustering) is fundamentally different from grouping by relationship (i.e., building a

classification). [Glossary Cluster analysis]

Consider a collection of 300 objects. Each object belongs to one of two classes, marked

by an asterisk or by an empty box. The three hundred objects naturally cluster into three

groups. It is tempting to conclude that the graph shows three classes of objects that can be

defined by their similarities, but we know from the outset that the objects fall into two

classes, and we see from the graph that objects from both classes are distributed in all

three clusters (Fig. 5.1).

Is this graph far-fetched? Not really. Suppose you have a collection of felines and

canines. The collection of dogsmight include Chihuahuas, St. Bernards, and other breeds.

The collection of cats might include housecats, lions, and other species, and the data

collected on each animalmight include weight, age, and hair length.We do not knowwhat

to expect whenwe cluster the animals by similarities (i.e., weight, age, and hair length) but

we can be sure that short-haired cats and short-haired Chihuahuas of the same age will

probably fall into one cluster. Cheetahs and greyhounds, having similar size and build,
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FIG. 5.1 The spatial distribution of 300 objects represented by data points in three dimensions. Each data object falls

into one of two classes, represented by an asterisk or an empty box. The data naturally segregates into three clusters.

Objects of type asterisk and type box are distributed throughout each cluster.
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might fall into another cluster. The similarity clusters will mix together unrelated animals

and will separate related animals.

OK, similarities are different from relationships; but how do we know when we

are dealing with a similarity and when we are dealing with a true relationship? Here are

two stories that may clarify the functional differences between the two concepts:

1. You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail,

like a lion’s tail, and a fluffy head, like a lion’smane.With a little imagination, themouth

of the lion seems to roar down from the sky. You have succeeded in finding similarities

between the cloud and a lion. If you look at a cloud and you imagine a teakettle

producing a head of steam, then you are establishing a relationship between the

physical forces that create a cloud and the physical forces that produce steam from a

heated kettle, and you understand that clouds are composed of water vapor.

2. You look up at the stars and you see the outline of a flying horse, Pegasus, or the soup

ladle, the Big Dipper. You have found similarities upon which to base the names of

celestial landmarks, the constellations. The constellations help you orient yourself to

the night sky, but they do not tell you much about the physical nature of the twinkling

objects. If you look at the stars and you see the relationship between the twinkling stars

in the night sky, and the round sun in the daylight sky, then you can begin to

understand how the universe operates.

For taxonomists, the importance of grouping by relationship, not by similarity, is a lesson

learned the hard way. Literally two thousand years of mis-classifications, erroneous

biological theorizations, impediments to progress in medicine and agriculture, have

occurred whenever similarities were confused with relationships. Early classifications

of animals were based on similarities (e.g., beak shape, color of coat, or number of toes).

These kinds of classifications led to the erroneous conclusion that the various juvenile

forms of holometabolous insects (i.e., insects that undergo metamorphosis) were distinct

organisms, unrelated to the adult form into which they would mature. The vast field of

animal taxonomy was a useless mess until taxonomists began to think very deeply about

classes of organisms and the fundamental properties that accounted for the relationships

among the classes. [Glossary Classification system versus identification system, Classifi-

cation versus index, Phenetics]

Geneticists have learned that sequence similarities among genes may bear

no relationship to their functionalities, their inheritance from higher organisms, their

physical locations, or to any biological process whatsoever. Geneticists use the term

homology to describe the relationship among sequences that can be credited to descent

from a common ancestral sequence. Similarity among different sequences can be non-

homologous, developing randomly in non-related organisms, or developing by conver-

gence, through selection for genes that have common functionality. Sequence similarity

that is not acquired from a common ancestral sequence seldom relates to the shared

fundamental cellular properties that characterize inherited relationships. Biological

inferences drawn from gene analyses are more useful when they are built upon
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phylogenetic relationships, rather than on superficial genetic or physiologic similarities

[1]. [Glossary Nonphylogenetic property]

The distinction between classification by similarity and classification by relationship

is vitally important to the field of computer science and to the future of Big Data analysis.

I have discussed this point with many of my colleagues, who hold the opposite view: that

the distinction between similarity classification and relationship classification is purely

semantic. There is no practical difference between the two methods. Regardless of which

side you may choose, the issue is worth pondering for a few moments.

Two arguments support the opinion that classification should be based on similarity

measures. The first argument is that classification by similarity is the standard method

by which relational classifications are built. The second argument is that relational prop-

erties are always unknown at the time that the classification is built. The foundation of

every classification must be built on measurable features and the only comparison we

have for measurable features is similarity. This argument has no scientific merit insofar

as comparisons by relationship are always feasible, though not always readily computable.

The second argument, that classification by relationship requires access to unobtain-

able knowledge is a clever observation that hits on a weakness in the relational theory

of classification. To build a classification, you must first know the relational properties

that define classes, superclasses, and subclasses; but if you want to know the relationships

among the classes, you must refer to the classification. It is another bootstrapping

problem. [Glossary Bootstrapping]

Building a classification is an iterative process wherein you hope that your tentative

selection of relational properties and your class assignments will be validated by the test

of time. You build a classification by guessing which properties are fundamental and rela-

tional and by guessing which system of classes will make sense when all of the instances of

the classes are assigned. A classification is often likened to a hypothesis that must be

tested again and again as the classification grows.

Is it ever possible to build a classification using a hierarchical clustering algorithm

based on measuring similarities among objects? The answer is a qualified yes, assum-

ing that the object features that you have measured happen to be the relational prop-

erties that define the classes. A good example of this process is demonstrated by the

work of Carl Woese and his coworkers in the field of the classification of terrestrial

organisms [2]. Woese compared ribosomal RNA sequences among organisms. Ribo-

somal RNA is involved in the precise synthesis of proteins according to instructions

coded in genes. According to Woese, the genes coding for ribosomal RNA mutate more

slowly than other genes, because ribosomal RNA has scarcely any leeway in its func-

tionality. Changes in the sequence of ribosomal RNA act like a chronometer for evolu-

tion. Using sequence similarities Woese developed a brilliant classification of living

organisms that has revolutionized evolutionary genetics. Woese’s analysis is not perfect

and where there are apparent mistakes in his classification, disputations focus on the

limitations of using similarity as a substitute for fundamental relational properties

[3,4]. [Glossary Non-living organism]
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The field ofmedical genetics has been embroiled in a debate, lastingwell over a decade,

on the place of race in science. Somewould argue that when the genomes of humans from

different races are compared, there is no sensible way to tell one genome from another, on

the basis of assigned race. The genes of a tall man and the short man are more different

than the genes of an African-Americanman and a white man. Judged by genetic similarity,

race has no scientific meaning [5]. On the other hand, every clinician understands that

various diseases, congenital and acquired, occur at different rates in the African-American

population than in the white population. Furthermore, the clinical symptoms, clinical

outcome, and even the treatment of these diseases in African-American and white

individuals will sometimes differ among ethnic or racial groups. Hence, many medical

epidemiologists and physicians perceive race as a clinical reality [6]. The discord stems

from a misunderstanding of the meanings of similarity and of relationship. It is quite

possible to have a situation wherein similarities are absent, while relationships pertain.

The lack of informative genetic similarities that distinguish one race from another does

not imply that race does not exist. The basis for race is the relationship created by shared

ancestry. The morphologic and clinical by-product of the ancestry relationship may occur

as various physical features and epidemiologic patterns found by clinicians. [Glossary

Cladistics]

Fundamentally, all analysis is devoted to finding relationships among objects or classes

of objects. All we ever know about the universe, and the processes that play out in our uni-

verse, can be reduced to simple relationships. In many cases the process of finding

and establishing relationships often begins with finding similarities; but it must never

end there.
Section 5.2. Classifications, the Simplest of Ontologies

Consciousness is our awareness of our own awareness.
Descartes

The human brain is constantly processing visual and other sensory information collected

from the environment. When we walk down the street, we see images of concrete and

asphalt and millions of blades of grass, birds, dogs, and other persons. Every step we take

conveys a new world of sensory input. How can we process it all? The mathematician

and philosopher Karl Pearson (1857–1936) has likened the human mind to a “sorting

machine” [7]. We take a stream of sensory information and sort it into objects; we then

collect the individual objects into general classes. Thegreen stuff on the ground is classified

as “grass,” and the grass is subclassified under some larger grouping, such as “plants.”

A flat stretch of asphalt and concrete may be classified as a “road” and the road might be

subclassified under “man-made constructions.” If we lacked a culturally determined

classification of objects for our world, we would be overwhelmed by sensory input, and

we would have no way to remember what we see, and no way to draw general inferences

about anything. Simply put, without our ability to classify, we would not be human [8].
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Every culture has some particular way to impose a uniform way of perceiving the

environment. In English-speaking cultures, the term “hat” denotes a universally recognized

object. Hatsmaybe composed ofmanydifferent types ofmaterials, and theymay vary greatly

in size, weight, and shape. Nonetheless, we can almost always identify a hatwhenwe see one,

andwe can distinguish a hat from all other types of objects. An object is not classified as a hat

simply because it shares a few structural similarities with other hats. A hat is classified as

a hat because it has a class relationship; all hats are items of clothing that fit over the head.

Likewise, all biological classifications are built by relationships, not by similarities [9,8].

Aristotle was one of the first experts in classification. His greatest insight camewhen he

correctly identified a dolphin as a mammal. Through observation, he knew that a large

group of animals was distinguished by a gestational period in which a developing embryo

is nourished by a placenta, and the offspring are delivered into the world as formed, but

small versions of the adult animals (i.e., not as eggs or larvae), and the newborn animals

feed from milk excreted from nipples, overlying specialized glandular organs (mammae).

Aristotle knew that these features, characteristic of mammals, were absent in all other

types of animals. He also knew that dolphins had all these features; fish did not. He

correctly reasoned that dolphins were a type of mammal, not a type of fish. Aristotle

was ridiculed by his contemporaries for whom it was obvious that dolphins were a type

of fish. Unlike Aristotle, they based their classification on similarities, not on relationships.

They saw that dolphins looked like fish and dolphins swam in the ocean like fish, and this

was all the proof they needed to conclude that dolphins were indeed fish. For about two

thousand years following the death of Aristotle, biologists persisted in their belief that

dolphins were a type of fish. For the past several hundred years, biologists have acknowl-

edged that Aristotle was correct after all; dolphins are mammals. Aristotle discovered and

taught the most important principle of classification; that classes are built on relation-

ships among class members; not by counting similarities [8].

Today, the formal systems that assign data objects to classes, and that relate classes

to other classes, are known as ontologies. When the data within a Big Data resource is

classified within an ontology, data analysts can determine whether observations on a

single object will apply to other objects in the same class.

A classification is a very simple form of ontology, in which each class is allowed to have

only one parent class. To build a classification, the ontologist must do the following: (1)

define classes (i.e., find the properties that define a class and extend to the subclasses

of the class); (2) assign instances to classes; (3) position classes within the hierarchy;

and (4) test and validate all the above. [Glossary Parent class]

The constructed classification becomes a hierarchy of data objects conforming to a set

of principles:

1. The classes (groups with members) of the hierarchy have a set of properties or rules

that extend to every member of the class and to all of the subclasses of the class, to

the exclusion of unrelated classes. A subclass is itself a type of class wherein the

members have the defining class properties of the parent class plus some additional

property(ies) specific for the subclass.
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2. In a hierarchical classification, each subclass may have no more than one parent class.

The root (top) class has no parent class. The biological classification of living

organisms is a hierarchical classification.

3. At the bottom of the hierarchy is the class instance. For example, your copy of this

book is an instance of the class of objects known as “books.”

4. Every instance belongs to exactly one class.

5. Instances and classes do not change their positions in the classification. As examples,

a horse never transforms into a sheep, and a book never transforms into a

harpsichord. [Glossary Intransitive property]

6. The members of classes may be highly similar to one another, but their similarities

result from their membership in the same class (i.e., conforming to class properties),

and not the other way around (i.e., similarity alone cannot define class inclusion).

Classifications are always simple; the parental classes of any instance of the classification

can be traced as a simple, non-branched list, ascending through the class hierarchy.

As an example, here is the lineage for the domestic horse (Equus caballus), from the

classification of living organisms:

Equus caballus

Equus subg. Equus

Equus

Equidae

Perissodactyla

Laurasiatheria

Eutheria

Theria

Mammalia

Amniota

Tetrapoda

Sarcopterygii

Euteleostomi

Teleostomi

Gnathostomata

Vertebrata

Craniata

Chordata

Deuterostomia

Coelomata

Bilateria

Eumetazoa

Metazoa

Fungi/Metazoa group

Eukaryota

cellular organisms
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The words in this zoological lineage may seem strange to laypersons, but taxonomists

who view this lineage instantly grasp the place of domestic horses in the classification

of all living organisms.

A classification is a list of every member class along with their relationships to other

classes. Because each class can have only one parent class, a complete classification

can be provided when we list all the classes, adding the name of the parent class for each

class on the list. For example, a few lines of the classification of living organismsmight be:

Craniata, subclass of Chordata

Chordata, subclass of Duterostomia
Deuterostomia, subclass of Coelomata

Coelomata, subclass of Bilateria
Bilateria, subclass of Eumetazoa

Given the name of any class a programmer can compute (with a few lines of code), the

complete ancestral lineage for the class, by iteratively finding the parent class assigned

to each ascending class [10]. [Glossary Iterator]

A taxonomy is a classification with the instances “filled in.” This means that for each

class in a taxonomy, all the known instances (i.e., member objects) are explicitly listed. For

the taxonomy of living organisms the instances are named species. Currently, there are

several million named species of living organisms, and each of these several million

species is listed under the name of some class included in the full classification.

Classifications drive down the complexity of their data domain because every instance

in the domain is assigned to a single class and every class is related to the other classes

through a simple hierarchy.

It is important to distinguish a classification system from an identification system.

An identification system puts a data object into its correct slot within the classification.

For example, a fingerprint matching system may look for a set of features that puts a

fingerprint into a special subclass of all fingerprint, but the primary goal of fingerprint

matching is to establish the identity of an instance (i.e., to determine whether two sets of

fingerprints belong to the same person). In the realm of medicine, when a doctor renders

a diagnosis on a patient’s diseases, she is not classifying the disease; she is finding the cor-

rect slot, within the preexisting classification of diseases, that holds her patient’s diagnosis.
Section 5.3. Ontologies, Classes With Multiple Parents

...science is in reality a classification and analysis of the contents of the mind...
Karl Pearson [7]

Ontologies are constructions that permit an object to be a direct subclass ofmore than one

classes. In an ontology, the class “horse”might be a subclass of Equu, a zoological term; as

well as a subclass of “racing animals” and “farm animals,” and “four-legged animals.”

The class “book” might be a subclass of “works of literature,” as well as a subclass of
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“wood-pulpmaterials,” and “inked products.” Ontologies are unrestrained classifications.

Hence, all classifications are ontologies, but not all ontologies are classifications. Ontol-

ogies are predicated on the belief that a single object or class of objects might have

multiple different fundamental identities, and that these different identities will often

place one class of objects directly under more than one superclass. [Glossary Multiclass

classification, Multiclass inheritance]

Data analysts sometimes prefer ontologies to classifications because they permit the

analyst to find relationships among classes of objects that would have been impossible

to find under a classification. For example, a data analyst might be interested in determin-

ing the relationships among groups of flying animals, such as butterflies, birds, and bats.

In the classification of living organisms, these animals occupy classes that are not closely

related to one another; no two of the different types of flying animals share a single parent

class. Because classifications follow relationships through a lineage, they cannot connect

instances of classes that fall outside the line of descent.

Ontologies are not subject to the analytic limitations imposed by classifications. In an

ontology, a data object can be an instance ofmany different kinds of classes; thus, the class

does not define the essence of the object, as it does in a classification. In an ontology the

assignment of an object to a class and the behavior of the members of the objects of a

class, are determined by rules. An object belongs to a class when it behaves like the other

members of the class, according to a rule created by the ontologist. Every class, subclass,

and superclass is defined by rules; and rules can be programmed into software.

Classifications were created and implemented at a time when scientists did not have

powerful computers that were capable of handling the complexities of ontologies. For

example, the classification of all living organisms on earth was created over a period of

two millennia. Several million species have been assigned to date to the classification.

It is currently estimated that we will need to add another 10–50 million species before

we come close to completing the taxonomy of living organisms. Prior generations of sci-

entists could cope with a simple classification, wherein each class of organisms falls under

a single superclass; they could not hope to cope with a complex ontology of organisms.

The advent of powerful and accessible computers has spawned a new generation

of computer scientists who have developed powerful methods for building complex

ontologies. It is the goal of these computer scientists to analyze data in a manner that

allows us to find and understand ontologic relationships among data objects.

In simple data collections, such as spreadsheets, data is organized in a very specific

manner that preserves the relationships among specific types of data. The rows of the

spreadsheet are the individual data objects (i.e., people, experimental samples, and class

of information). The left-hand field of the row is typically the name assigned to the data

object and the cells of the row are the attributes of the data object (e.g., quantitative

measurements, categorical data, and other information). Each cell of each row occurs

in a specific order and the order determines the kind of information contained in the cell.

Hence, every column of the spreadsheet has a particular type of information in each

spreadsheet cell. [Glossary Categorical data, Observational data]
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Big Data resources are much more complex than spreadsheets. The set of features

belonging to an object (i.e., the values, sometimes called variables, belonging to the object,

and corresponding to the cells in a spreadsheet row) will be different for different classes

of objects. For example, a member of Class Automobile may have a feature such as

“average miles per gallon in city driving,” while a member of Class Mammal would not.

Every data objectmust be assignedmembership in a class (e.g., Class Persons, Class Tissue

Samples, and Class Bank Accounts), and every class must be assigned a set of class

properties. In Big Data resources that are based on class models, the data objects are

not defined by their location in a rectangular spreadsheet; they are defined by their class

membership. Classes, in turn, are defined by their properties and by their relations to

other classes. [Glossary Properties versus classes]

The question that should confront every Big Datamanager is, “Should Imodel my data

as a classification, wherein every class has one direct parent class; or should I model the

resource as an ontology, wherein classes may have multiparental inheritance?”
Section 5.4. Choosing a Class Model

Taxonomy is the oldest profession practiced by people with their clothes on.
Quentin Wheeler, referring to the belief that Adam was assigned the task of naming all the

creatures.

The simple, and fundamental question, “Can a class of objects have more than one parent

class?” lies at the heart of several related fields: database management, computational

informatics, object oriented programming, semantics, and artificial intelligence. Com-

puter scientists are choosing sides, often without acknowledging the problem or fully

understanding the stakes. For example, when a programmer builds object libraries in

the Python or the Perl programming languages, he is choosing to program in a permissive

environment that supports multiclass object inheritance. In Python and Perl, any object

can have asmany parent classes as the programmer prefers. When a programmer chooses

to program in the Ruby programming language, he shuts the door on multiclass inheri-

tance. A Ruby object can have only one direct parent class. Many programmers are totally

unaware of the liberties and restrictions imposed by their choice of programming

language, until they start to construct their own object libraries, or until they begin to

use class libraries prepared by another programmer. [Glossary Artificial intelligence]

In object oriented programming the programming language provides a syntax whereby

a named method is “sent” to data objects and a result is calculated. The named methods

are functions and short programs contained in a library of methods created for a class. For

example, a “close”method, written for file objects, typically shuts a file so that it cannot be

accessed for read or write operations. In object-oriented languages a “close” method is

sent to an instance of class “File” when the programmer wants to prohibit access to

the file. The programming language, upon receiving the “close” method, will look for a

method named “close” somewhere in the library of methods prepared for the “File” class.



Chapter 5 • Classifications and Ontologies 107
If it finds the “close”method in the “File” class library, it will apply themethod to the object

to which the method was sent. In simplest terms the specified file would be closed.

If the “close” method were not found among the available methods for the “File” class

library, the programming language would automatically look for the “close” method in

the parent class of the “File” class. In some languages the parent class of the “File” class

is the “Input/Output” class. If therewere a “close”method in the “Input/Output” class, the

method would be sent to the “File” Object. If not, the process of looking for a “close”

method would be repeated for the parent class of the “Input/Output” class. You get the

idea. Object oriented languages search for methods by moving up the lineage of ancestral

classes for the object instance that receives the method.

In object oriented programming, every data object is assignedmembership to a class of

related objects. Once a data object has been assigned to a class, the object has access to all

of the methods available to the class in which it holds membership, and to all of the

methods in all the ancestral classes. This is the beauty of object oriented programming.

If the object oriented programming language is constrained to single parental inheritance,

as happens in the Ruby programming language, then the methods available to the

programmer are restricted to a tight lineage. When the object oriented language permits

multiparental inheritance, as happens in the Perl and Python programming languages, a

data object can have many different ancestral classes spread horizontally and vertically

through the class libraries. [Glossary Beauty]

Freedom always has its price. Imagine what happens in amultiparental object oriented

programming language when amethod is sent to a data object, and the data object’s class

library does not contain the method. The programming language will look for the named

method in the library belonging to a parent class. Which parent class library should be

searched? Suppose the object has two parent classes, and each of those two parent classes

has a method of the same name in their respective class libraries? The functionality of the

method will change depending on its class membership (i.e., a “close”methodmay have a

different function within class File than it may have within class Transactions or class

Boxes). There is no way to determine how a search for a named method will traverse

its ancestral class libraries; hence, the output of a software program written in an object

oriented language that permits multiclass inheritance is unpredictable.

The rules by which ontologies assign class relationships can become computationally

difficult.When there are no restraining inheritance rules, a class within the ontologymight

be an ancestor of a child class that is an ancestor of its parent class (e.g., a single class

might be a grandfather and a grandson to the same class). An instance of a class might

be an instance of two classes, at once. The combinatorics and the recursive options

can become impossible to compute. [Glossary Combinatorics]

Those who use ontologies that allow multiclass inheritance will readily acknowledge

that they have created a system that is complex and unpredictable. The ontology expert

justifies his complex and unpredictablemodel on the observation that reality itself is com-

plex and unpredictable. A faithful model of reality cannot be created with a simple-

minded classification. With time and effort, modern approaches to complex systems will
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isolate and eliminate computational impedimenta; these are the kinds of problems that

computer scientists are trained to solve. For example, recursion within an ontology can

be avoided if the ontology is acyclic (i.e., class relationships are not permitted to cycle back

onto themselves). For every problem created by an ontology an adept computer scientist

will find a solution. Basically, many modern ontologists believe that the task of organizing

and understanding information cannot reside within the ancient realm of classification.

For those non-programmers who believe in the supremacy of classifications, over

ontologies, their faith may have nothing to do with the computational dilemmas incurred

withmulticlass parental inheritance. They base their faith on epistemological grounds; on

the nature of objects. They hold that an object can only be one thing. You cannot pretend

that one thing is really two ormore things simply because you insist that it is so. One thing

can only belong to one class. Once class can only have one ancestor class; otherwise, it

would have a dual nature. For classical taxonomists, assigning more than one parental

class to an object indicates that you have failed to grasp the essential nature of the object.

The classification expert believes that ontologies (i.e., classifications that permit one class

to have more than one parent classes and that permit one object to hold membership in

more than one class), do not accurately represent reality.

At the heart of traditional classifications is the notion that everything in the universe

has an essence that makes it one particular thing and nothing else. This belief is justified

formany different kinds of systems.When an engineer builds a radio, he knows that he can

assign names to components, and these components can be relied upon to behave

in a manner that is characteristic of its type. A capacitor will behave like a capacitor,

and a resistor will behave like a resistor. The engineer need not worry that the capacitor

will behave like a semiconductor or an integrated circuit.

What is true for the radio engineer may not hold true for the Big Data analyst. In many

complex systems the object changes its function depending on circumstances. For exam-

ple, cancer researchers discovered an important protein that plays a very important role in

the development of cancer. This protein, p53, was, at one time, considered to be the

primary cellular driver for human malignancy. When p53 mutated, cellular regulation

was disrupted and cells proceeded down a slippery path leading to cancer. In the past

few decades, as more information was obtained, cancer researchers have learned that

p53 is just one ofmany proteins that play some role in carcinogenesis, but the role changes

depending on the species, tissue type, cellular microenvironment, genetic background of

the cell, and many other factors. Under one set of circumstances, p53 may play a role in

DNA repair; under another set of circumstances, p53 may cause cells to arrest the growth

cycle [11,12]. It is difficult to classify a protein that changes its primary function based

on its biological context.

As someone steeped in the ancient art of classification, and as someone who has

written extensively on object oriented programming, I am impressed, but not convinced,

by arguments on both sides of the ontology/classification debate. As a matter of practi-

cality, complex ontologies are nearly impossible to implement in Big Data projects. The

job of building and operating a Big Data resource is always difficult. Imposing a complex
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ontology framework onto a Big Data resource tends to transform a tough job into an

impossible job. Ontologists believe that the BigData resourcesmustmatch the complexity

of their data domain. They would argue that the dictum “Keep it simple, stupid!” only

applies to systems that are simple at the outset. I would comment here that one of the

problems with ontology builders is that they tend to build ontologies that are much more

complex than our reality. They do so because it is actually quite easy to add layers of

abstraction to an ontology without incurring any immediate penalty. [Glossary KISS]

Without stating a preference for single-class inheritance (classifications) or multi-class

inheritance (ontologies), I would suggest that when modeling a complex system, you

should always strive to design amodel that is as simple as possible. Thewise ontologist will

settle for a simplified approximation of the truth. Regardless of your personal preference,

you should learn to recognize when an ontology has become too complex for its own good.

Here are the danger signs of an overly-complex ontology:

– You realize that the ontology makes no sense. The solutions obtained by data analysts

contradict direct observations. The ontologists perpetually tinker with the model in an

effort to achieve a semblance of reality and rationality. Meanwhile, the data analysts

tolerate the flawed model because they have no choice in the matter.

– For a given problem, no two data analysts seem able to formulate the query the same

way and no two query results are ever equivalent.

– The time spent on ontology design and improvement exceeds the time spent on

collecting the data that populates the ontology.

– The ontology lacks modularity. It is impossible to remove a set of classes within the

ontology without reconstructing the entire ontology. When anything goes wrong the

entire ontology must be fixed or redesigned.

– The ontology cannot be fitted into a higher level ontology or a lower-level ontology.

– The ontology cannot be debugged when errors are detected.

– Errors occur without anyone knowing where the error has occurred.

– Nobody, even the designers, fully understands the ontology model.

Simple classifications are not flawless. Here are a few danger signs of an overly-simple

classifications.

1. The classification is too granular.

You find it difficult to associate observations with particular instances within a class or to

particular classes within the classification.

2. The classification excludes important relationships among data objects.

For example, dolphins and fish both live in water. As a consequence, dolphins and fish will

both be subject to some of the same influences (e.g., ocean pollutants and water-borne

infectious agents). In this case, relationships that are not based on species ancestry are

simply excluded from the classification of living organisms and cannot be usefully

examined.
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3. The classes in the classification lack inferential competence.

Competence in the ontology field is the ability to infer answers based on the rules for class

membership. For example, in an ontology you can subclass wines intowhite wines and red

wines and you can create a rule that specifies that the two subclasses are exclusive. If you

know that a wine is white, then you can infer that the wine does not belong to the subclass

of red wines. Classifications are built by understanding the essential features of an object

that make it what it is; they are not generally built on rules that might serve the interests of

the data analyst or the computer programmer. Unless a determined effort has been made

to build a rule-based classification, the ability to draw logical inferences fromobservations

on data objects will be sharply limited.

4. The classification contains a “miscellaneous” class.

A formal classification requires that every instance belongs to a class with well-defined

properties. A good classification does not contain a “miscellaneous” class that includes

objects that are difficult to assign. Nevertheless, desperate taxonomists will occasionally

assign objects of indeterminate nature to a temporary class, waiting for further informa-

tion to clarify the object’s correct placement. In the field of biological taxonomy, the task of

creating and assigning the correct classes for the members of these unnatural and tem-

porary groupings, has frustrated biologists overmany decades, and is still a source of some

confusion [13]. [Glossary Unclassifiable objects]

5. The classification is unstable.

Simplisticapproachesmayyieldaclassificationthatserveswell fora limitednumberof tasks,

but fails to be extensible to a wider range of activities or fails to integrate well with classifi-

cations created for other knowledge domains. All classifications require review and revision,

but some classifications are just awful and are constantly subjected to major overhauls.

It seems obvious that in the case of Big Data, a computational approach to data clas-

sification is imperative, but a computational approach that consistently leads to failure is

not beneficial. Many of the ontologies that have been created for data collected inmany of

the fields of science have been ignored or abandoned by their intended beneficiaries.

Ontologies, due to their multi-lineage ancestries, are simply too difficult to understand

and too difficult to implement.
Section 5.5. Class Blending

It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that

just ain’t so.
Mark Twain

A blended class, also known as a noisy class, results when the taxonomist assigns

unrelated objects to the same class. This almost always leads to errors in data analysis
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whose cause is nearly impossible to find. As an example of class blending, suppose you

were testing the effectiveness of an antibiotic on a group of subjects all having a specific

type of bacterial pneumonia. In this case, the accuracy of your results will be forfeit when

your study population includes subjects with viral pneumonia, smoking-related lung

damage, or a pneumonia produced by some bacteria other than the bacteria that is known

to be sensitive to the antibiotic under study. Basically, a classification has no value if its

classes contain unrelated members.

Errors induced by blending classes are often overlooked by data analysts who

incorrectly assume that the experiment was designed to ensure that each data group is

composed of a uniform and representative population. Sometimes class blending occurs

when an incompetent curator misplaces data objects into the wrong class. For example,

you would not want to hire an astronomer who cannot distinguish a moon from a planet.

More commonly, however, the problem lies within the classification itself. It is not

uncommon for the formal class definition (which includes objective criteria for including

or excluding objects from the class) to be ill-conceived.

One caveat. Efforts to eliminate class blending can be counterproductive if undertaken

with excessive zeal. For example, in an effort to reduce class blending, a researcher may

choose groups of subjects who are uniform with respect to every known observable prop-

erty. For example, suppose you want to actually compare apples with oranges. To avoid

class blending, you might want to make very sure that your apples do not include any

cumquats or persimmons. You should be certain that your oranges do not include any

limes or grapefruits. Imagine that you go even further, choosing only apples and oranges

of one variety (e.g., Macintosh apples and Navel oranges), size (e.g., 10cm), and origin

(e.g., California). How will your comparisons apply to the varieties of apples and oranges

that you have excluded from your study? Youmay actually reach conclusions that are inva-

lid and irreproducible formore generalized populations within each class. In this case, you

have succeeded in eliminated class blending at the expense of losing representative sub-

populations of the classes. Some days, the more you try, the more you lose. [Glossary

Representation bias, Confounder]
Section 5.6. Common Pitfalls in Ontology Development

The hallmark of good science is that it uses models and theory but never

believes them.
Martin Wilk

Do ontologies serve a necessary role in the design and development of Big Data resources?

Yes. Because every Big Data resource is composed of many different types of information,

it becomes important to assign types of data into groups that have similar properties:

images, music, movies, documents, and so forth. The data manager needs to distinguish

one type of data object from another, andmust have away of knowing the set of properties

that apply to the members of each class. When a query comes in asking for a list of songs
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written by a certain composer, or performed by a particular musician, the data manager

will need to have a software implementation wherein the features of the query are

matched to the data objects for which those features apply. The ontology that organizes

the Big Data resource may be called by many other names (class systems, tables, data

typing, database relationships, object model), but it will always come down to some

way of organizing information into groups that share a set of properties.

Despite the importance of ontologies to Big Data resources the process of building an

ontology is seldom undertaken wisely. There is a rich and animated literature devoted to

the limitations and dangers of ontology-building [14,15]. Here are just a few pitfalls that

you should try to avoid:

– Do not build transitive classes.

Class assignment is permanent. If you assign your pet beagle to the “dog” class, you

cannot pluck him from this class and reassign him to the “feline” class. Once a dog, always

a dog. Thismay seem like an obvious condition for an ontology, but it can be very tempting

to make a class known as “puppy.” This practice is forbidden because a dog assigned to

class “puppy” will grow out of his class when he becomes an adult. It is better to assign

“puppy” as a property of Class Dog, with a property definition of “age less than one year.”

– Do not build miscellaneous classes.

As previously mentioned, even experienced ontologists will stoop to creating a

“miscellaneous” class, as an act of desperation. The temptation to build a

“miscellaneous” class ariseswhen youhave an instance (of a data object) that does not seem

to fall into any of the well-defined classes. You need to assign the instance to a class, but you

do not know enough about the instance to define a new class for the instance. To keep the

project moving forward, you invent a “miscellaneous” class to hold the object until a better

class can be created. When you encounter another object that does not fit into any of the

defined classes, you simply assign it to the “miscellaneous” class. Now you have two objects

in the “miscellaneous” class. Their only shared property is that neither object can be readily

assigned to any of the defined classes. In the classification of living organisms, Class Pro-

toctista was invented in the mid-nineteenth century to hold, temporarily, some of the

organisms that could not be classified as animal, plant, or fungus. It has taken a century

for taxonomists to rectify the oversight, and it may take another century for the larger sci-

entific community to fully adjust to the revisions. Likewise, mycologists (fungus experts)

have accumulated a large group of unclassifiable fungi. A pseudoclass of fungi, deuteromy-

cetes (spelled with a lowercase “d”, signifying its questionable validity as a true biologic

class) was created to hold these indeterminate organisms until definitive classes can be

assigned. At present, there are several thousand such fungi, sitting in taxonomic limbo, until

they can be placed into a definitive taxonomic class [16]. [Glossary Negative classifier]

Sometimes, everyone just drops the ball andmiscellaneous classes become permanent

[17]. Successive analysts, unaware that the class is illegitimate, assumed that the

“miscellaneous” objects were related to one another (i.e., related through their
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“miscellaneousness”). Doing so led tomisleading interpretations (e.g., finding similarities

among unrelated data objects, and failing to see relationships that would have been

obvious had the objects been assigned to their correct classes). The creation of an unde-

fined “miscellaneous” class is an example of a general design flaw known as “ontological

promiscuity” [14]. When an ontology is promiscuous the members of one class cannot

always be distinguished from members of other classes.

– Do not confuse properties with classes.

Whenever I lecture on the topic of classifications and ontologies, I always throw out the

following question: “Is a leg a subclass of the human body?”Most people answer yes. They

reason that the normal human body contains a leg; hence leg is a subclass of the human

body. They forget that a leg is not a type of human body, and is therefore not a subclass of

the human body. As a part of the human body, “leg” is a property of a class. Furthermore,

lots of different classes of things have legs (e.g., dogs, cows, tables). The “leg” property can

be applied tomany different classes and is usually asserted with a “has_a” descriptor (e.g.,

“Fred has_a leg”). The fundamental difference between classes and properties is one of the

more difficult concepts in the field of ontology.

– Do not invent classes and properties that have already been invented [18].

Time-pressured ontologists may not wish to search, find, and study the classes and

properties created by other ontologists. It is often easier to invent classes and properties

as you need them, defining them in your own Schema document. If your ambitions are

limited to using your own data for your own purposes, there really is no compelling reason

to hunt for external ontologies. Problems will surface only if you need to integrate your

data objects with the data objects held in other Big Data resources. If every resource

invented its own set of classes and properties, then there could be no sensible compari-

sons among classes, and the relationships among the data objects from the different

resources could not be explored.

Most data records, even those that are held in seemingly unrelated databases, contain

information that applies to more than one type of class of data. A medical record, a

financial record and a music video may seem to be heterogeneous types of data, but each

is associated with the name of a person, and each named person might have an address.

The classes of information that deal with names and addresses can be integrated across

resources is they all fit into the same ontology, and if they all have the same intended

meanings in each resource. [Glossary Heterogeneous data]

– Do not use a complex data description language.

If you decide to represent your data objects as triples, you will have a choice of languages,

each with their own syntax, with which to describe your data objects. Examples of "triple"

languages, roughly listed in order of increasing complexity, are: Notation 3, Turtle, RDF,

DAML/OIL, and OWL. Experience suggests that syntax languages start out simple; com-

plexity is added as users demand additional functionalities. The task of expressing triples
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inDAML/OIL orOWLhas gradually becomea job for highly trained specialistswhowork in

the obscure field of descriptive logic. As the complexity of the descriptive language

increases the number of people who can understand and operate the resource tends to

diminish. In general, complex descriptive languages should only be used by well-staffed

andwell-fundedBigData resourcescapableofbenefiting fromtheaddedbellsandwhistles.

[Glossary RDF, Triple]
Section 5.7. Case Study: An Upper Level Ontology

An idea can be as flawless as can be, but its execution will always be full of mistakes.
Brent Scowcroft

Knowing that ontologies reach into higher ontologies, ontologists have endeavored to cre-

ate upper level ontologies to accommodate general classes of objects, under which the

lower ontologies may take their place. Once such ontology is SUMO, the Suggested Upper

Merged Ontology, created by a group of talented ontologists [19]. SUMO is owned by IEEE

(Institute of Electrical and Electronics Engineers), and is freely available, subject to a usage

license [14]. [Glossary RDF Ontology]

As an upper level ontology, SUMO contains classes of objects that other ontologies can

refer to as their superclasses. SUMO permits multiple class inheritance. For example, in

SUMO, the class of humans is assigned to two different parent classes: Class Hominid and

Class CognitiveAgent. “HumanCorpse,” another SUMOclass, is defined in SUMOas “Adead

thing thatwas formerlyaHuman.”Humancorpse is a subclassofClassOrganicObject;notof

Class Human. This means that a human, once it ceases to live, transits to a class that is not

directly related to the class of humans. Consequently, members of Class Human, in the

SUMO ontology, will change their class and their ancestral lineage, at different moments

in time, thus violating the non-transitive rule of classification. [Glossary Superclass]

What went wrong?

– Class HumanCorpse was not created as a subclass of Class Human. This was a mistake,

as all humanswill eventually die. If wewere to create two classes, one called Class Living

Human and one called Class Deceased Human, we would certainly cover all possible

human states of being, but we would be creating a situation where members of a class

are forced to transition out of their class and into another (violating the intransitive rule

of classification). The solution, in this case, is simple. Life and death are properties of

organisms, and all organisms can and will have both properties, but never at the same

time. Assign organisms the properties of life and of death, and stop there.

One last quibble. Consider these two classes from the SUMO ontology, both of which

happen to be subclasses of Class Substance.

Subclass NaturalSubstance

Subclass SyntheticSubstance
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It would seem that these two subclasses aremutually exclusive. However, diamonds occur

naturally, and diamonds can be synthesized. Hence, diamond belongs to Subclass Natur-

alSubstance and to Subclass SyntheticSubstance. The ontology creates two mutually

exclusive classes that contain members of the same objects. This is problematic, because

it violates the uniqueness rule of classifications. We cannot create sensible inference rules

for objects that occupy mutually exclusive classes.

What went wrong?

– At first glance, the concepts “NaturalSubstance” and “SyntheticSubstance” would

appear to be subclasses of “Substance.” Are they really? Would it not be better to think

that being “natural” or being “synthetic” are just properties of substances; not types of

substances. If we agree that diamonds are amember of class substance, we can say that

any specific diamond may have occurred naturally or through synthesis. We can

eliminate two subclasses (i.e., “NaturalSubstance” and “SyntheticSubstance”) and

replace them with two properties of class “Substance”: synthetic and natural. By

assigning properties to a class of objects, we simplify the ontology (by reducing the

number of subclasses), and we eliminate problems created when a class member

belongs to two mutually exclusive subclasses. We will discuss the role of properties in

classifications in Section 5.9.

As ontologies go, SUMO is one of the best, serving a useful purpose as an upper level

repository of classes that can be used freely by Big Data scientists who are trying to sim-

plify how they classify their data objects. Nonetheless, SUMO is not perfect and we are

reminded that all ontologies are works-in-progress that must be critically examined,

tested, and improved, in perpetuity. [Glossary Data scientist]
Section 5.8. Case Study (Advanced): Paradoxes

Owners of dogs will have noticed that, if you provide them with food, water, shelter,

and affection, they will think you are god. Whereas owners of cats are compelled to

realize that, if you provide themwith food, water, shelter, and affection, they draw the

conclusion that they are gods.
Christopher Hitchens

The rules for constructing classifications seem obvious and simplistic. Surprisingly, the

task of building a logical, self-consistent classification is extremely difficult. Most classi-

fications are rife with logical inconsistencies and paradoxes. Let us look at a few examples.

In 1975, while touring the Bethesda, Maryland, campus of the National Institutes of

Health, Iwas informed that their Building 10was the largest all-brick building in theworld,

providing a home to over 7 million bricks. Soon thereafter, an ambitious construction

project was undertaken to greatly expand the size of Building 10. When the work was fin-

ished, building 10 was no longer the largest all-brick building in the world. What
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happened? The builders used material other than brick, and Building 10 lost its classifi-

cation as an all-brick building, violating the immutability rule of class assignments.

Apparent paradoxes that plague any formal conceptualization of classifications are not

difficult to find. Let us look at a few more examples.

Consider the geometric class of ellipses; planar objects in which the sum of the

distances to two focal points is constant. Class Circle is a child of Class Ellipse, for which

the two focal points of instancemembers occupy the same position, in the center, produc-

ing a radius of constant size. Imagine that Class Ellipse is provided with a class method

called “stretch,” in which the foci are moved further apart, thus producing flatter objects.

When the parent class “stretch”method is applied tomembers of the Class Circle the circle

stops being a circle and becomes an ordinary ellipse. Hence the inherited “stretch”

method forces members of Class Circle to transition out of their assigned class, violating

the intransitive rule of classifications. [Glossary Method]

Let us look at the “Bag” class of objects. A “Bag” is a collection of objects and the Class

Bag is included in most object oriented programming languages. A “Set” is also a collec-

tion of objects (i.e., a subclass of Bag), with the special feature that duplicate instances are

not permitted. For example, if Kansas is a member of the set of United States states, then

you cannot add a second state named “Kansas” to the set. If Class Bag were to have an

“increment” method, that added “1” to the total count of objects in the bag, whenever

an object is added to Class Bag, then the “increment” method would be inherited by all

of the subclasses of Class Bag, including Class Set. But Class Set cannot increase in size

when duplicate items are added. Hence, inheritance creates a paradox in the Class Set.

[Glossary Inheritance]

How does a data scientist deal with class objects that disappear from their assigned

class and reappear elsewhere? In the examples discussed here, we saw the following:

1. Building 10 at NIH was defined as the largest all-brick building in the world. Strictly

speaking, Building 10was a structure; it had a certainweight anddimensions, and itwas

constructed of brick. “Brick” is an attribute or property of buildings and properties

cannot form thebasis of a class of building, if theyarenot a constant feature sharedbyall

members of the class (i.e., some buildings have bricks; others do not). Had we not

conceptualized an “all-brick” class of building, we would have avoided any confusion.

2. Class Circle qualified as a member of Class Ellipse, because a circle can be imagined as

an ellipse whose two focal points happen to occupy the same location. Had we defined

Class Ellipse to specify that class members must have two separate focal points, we

could have excluded circles from class Ellipse. Hence, we could have safely included

the stretch method in Class Ellipse without creating a paradox.

3. Class Set was made a subset of Class Bag, but the increment method of class Bag could

not apply to Class Set. We created Class Set without taking into account the basic

properties of Class Bag, which must apply to all its subclasses. Perhaps it would have

been better if Class Set and Class Bag were created as children of Class Collection; each

with its own set of properties.
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Section 5.9. Case Study (Advanced): RDF Schemas and Class
Properties

It’s OK to figure out murder mysteries, but you shouldn’t need to figure out code. You

should be able to read it.
Steve McConnell

In Section 4.5, “Case Study: A Syntax for Triples,” we introduced the topic of RDF

Schemas, and defined them as web-accessible documents that contain the definitions

of classes. How does the RDF schema know how to describe the classes in such a way

that computers can understand the class definitions and determine the properties that

convey to all the members of a class, and to every member of every subclass of a class?

Without moving too far beyond the scope of this book, we can discuss here the mar-

velous “trick” that RDF Schema employs that solves many of the complexity problems

of ontologies and many of the over-simplification issues associated with classifica-

tions. It does so by introducing the new concept of class property. The class property

permits the developer to assign features that can be associated with a class and its

members. A property can apply to more than one class, and may apply to classes that

are not directly related (i.e., neither an ancestor class nor a descendant class). The

concept of the assigned class property permits developers to create simple ontologies,

by reducing the need to create classes to account for every feature of interest to the

developer. Moreover, the concept of the assigned property gives classification devel-

opers the ability to relate instances belonging to unrelated classes through their

shared property features. The RDF Schema permits developers to build class struc-

tures that preserve the best qualities of both complex ontologies and simple

classifications.

How do the Class and Property definitions of RDF Schema work? The RDF Schema

is a file that defines Classes and Properties. When an RDF Schema is prepared, it is

simply posted onto the Internet, as a public Web page, with a unique Web address.

An RDF Schema contains a list of classes, their definition, and the names of the parent

class(es). This is followed by a list of properties that apply to one or more classes in the

Schema. The following is an example of an RDF Schema written in plain English, without

formal RDF syntax.

Class: Fungi

Definition: Contains all fungi
Subclass of: Class Opisthokonta (described in another RDF Schema)

Class Plantae

Definition: Includes multicellular organisms such as flowering plants,
conifers, ferns and mosses.

Subclass of: Class Archaeplastida (described in another RDF Schema)
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Property: Stationary existence
Definition: Adult organism does not ambulate under its own power.

Range of classes: Class Fungi, Class Plantae

Property: Soil-habitation

Definition: Lives in soil.
Range of classes: Class Fungi, Class Plantae

Property: Chitinous cell wall

Definition: Chitin is an extracellular material often forming part of
the matrix surrounding cells.

Range of classes: Class Opisthokonta

Property: Cellulosic cell wall
Definition: Cellulose is an extracellular material often forming part

of the matric surrounding cells.
Range of classes: Class Archaeplastida

This Schema defines two classes: Class Fungi, containing all fungal species, and Class

Plantae containing the flowering plants, conifers and mosses. The Schema defines four

properties. Two of the properties (Property Stationary existence and Property Soil-

habitation apply to twodifferent classes. Twoof theproperties (PropertyChitinous cellwall

and Property Cellulosic cell wall) apply to only one class.

By assigning properties that apply to several unrelated classes, we keep the class

system small, but we permit property comparisons among unrelated classes. In this case,

we defined Property Stationary growth and we indicated that the property applied to

instances of Class Fungi and Class Plantae. This schema permits databases that contain

data objects assigned to Class Fungi or data objects assigned to Class Plantae to include

data object values related to Property Stationary Growth. Data analysts can collect data

from any plant or fungus data object and examine these objects for data values related

to Stationary Growth.

Property Soil-habitation applies to Class Fungi and to Class Plantae. Objects of either

class may include soil-habitation data values. Data objects from two unrelated classes

(Class Fungi and Class Plantae) can be analyzed by a shared property.

The schema lists two other properties, Property Chitinous cell wall and Property Cel-

lulosic cell wall. In this case each property is assigned to one class only. Property Chitinous

cell wall applies to Class Opisthokonta. Property Cellulosic cell wall applies to Class

Archaeplastidae. These two properties are exclusive to their class. If a data object is

described as having a cellulosic cell wall, it cannot be a member of Class Opisthokonta.

If a data object is described as having a chitinous cell wall, then it cannot be a member

of Class Archaeplastidae.

A property assigned to a class will extend to every member of every descendant class.

Class Opisthokonta includes Class Fungi and it also includes Class Animalia, the class of
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all animals. This means that all animals may have the property of chitinous cell wall.

In point of fact, chitin is distributed widely through the animal kingdom, but is not found

in mammals.

As the name implies, RDF Schema are written in RDF syntax. In practice, many of the

so-called RDF Schema documents found on the web are prepared in alternate formats.

They are nominally RDF syntax because they create a namespace for classes and proper-

ties referred by triples listed in RDF documents.

Here is a short schema, written as Turtle triples, and held in a fictitious web site,

“http://www.fictitious_site.org/schemas/life#” [Glossary Turtle]

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@base <http://www.fictitious_site.org/schemas/life#>

:Homo instance_of rdfs:Class.
:HomoSapiens instance_of rdfs:Class;

rdfs:subClassOf :Homo.

Turtle triples have a somewhat different syntax thanN-triples or N3 triples. As you can see,

the turtle triple resembles RDF syntax in form, allowing for nested metadata/data pairs

assigned to the same object. Nonetheless, turtle triples use less verbiage than RDF, but

convey equivalent information. In this minimalist RDF Schema, we specify two classes

that would normally be included in the much larger classification of living organisms:

Homo and HomoSapiens.

A triple that refers to our “http://www.fictitious_site.org/schemas/life#” Schemamight

look something like this:

:Batman instance_of <http://www.fictitious_site.org/schemas/
life#>:HomoSapiens.

The triple asserts that Batman is an instance of Homo Sapiens. The data “HomoSapiens”

links us to the RDF Schema, which in turn tells us that HomoSapiens is a class and is the

subclass of Class Homo.

One of the many advantages of triples is their fungibility. Once you have created your

triple list, you can port them into spreadsheets, or databases, ormorph them into alternate

triple dialects, such as RDF or N3. Triples in any dialect can be transformed into any other

dialect with simple scripts using your preferred programming language.

RDF documents can be a pain to create, but they are very easy to parse. Even in instances

when an RDF file is composed of an off-kilter variant of RDF, it is usually quite easy towrite a

short script that will parse through the file, extracting triples, and using the components of

the triples to serve the programmer’s goals. Such goals may include: counting occurrences

of items in a class, finding properties that apply to specific subsets of items in specific classes,

or merging triples extracted from various triplestore databases. [Glossary Triplestore]

RDF seems like a panacea for ontologists, but it is seldom used in Big Data resources.

The reasons for its poor acceptance are largely due to its strangeness. Savvy data

http://www.fictitious_site.org/schemas/life#
http://www.fictitious_site.org/schemas/life#
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mangers who have led successful careers using standard database technologies are

understandably reluctant to switch over to an entirely new paradigm of information

management. Realistically, a novel and untested approach to data description, such as

RDF, will take decades to catch on. Whether RDF emerges as the data description stan-

dard for Big Data resources is immaterial. The fundamental principles upon which RDF

is built are certain to dominate the world of Big Data.
Section 5.10. Case Study (Advanced): Visualizing Class
Relationships

The ignoramus is a leaf who doesn’t know he is part of a tree
Attributed to Michael Crichton

When working with classifications or ontologies, it is useful to have an image that repre-

sents the relationships among the classes. GraphViz is an open source software utility that

produces graphic representations of object relationships.

The GraphViz can be downloaded from:

http://www.graphviz.org/

GraphViz comeswith a set of applications that generate graphs of various styles. Here is

an example of a GraphViz dot file, number.dot, constructed in GraphViz syntax [20]. Aside

from a few lines that provide instructions for line length and graph size the dot file is a list

of classes and their child classes.

digraph G {

size="7,7";
Object -> Numeric;

Numeric -> Integer;
Numeric -> Float;
Integer -> Fixnum

Integer -> Bignum
}

After the GraphViz exe file (version graphviz-2.14.1.exe, on my computer) is installed, you

can launch the various GraphVizmethods as command lines from its working directory, or

through a system call from within a script. [Glossary Exe file, System call]

c:\ftp\dot>dot -Tpng number.dot -o number.png

The command line tells GraphViz to use the dot method to produce a rendering of the

number.dot text file, saved as an image file, with filename number.png. The output file

contains a class hierarchy, beginning with the highest class and branching until it reaches

the lowest descendant class.

http://www.graphviz.org
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FIG. 5.2 A class hierarchy, described by the number.dot file and converted to a visual file, using GraphViz.
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With a glance, we see that the highest class is Class Object (Fig. 5.2). Class Object has

one child class, Class Numeric. Numeric has two child classes, Class Integer and Class

Float. Class Integer has two child classes, Class Fixnum and Class Bignum. You might

argue that a graphic representation of classes was unnecessary; the textual listing of class

relationships was all that you needed. Maybe so, but when the class structure becomes

complex, visualization can greatly simplify your understanding of the relationships

among classes.

Here is a visualization of a classification of human neoplasms (Fig. 5.3). It was pro-

duced by GraphViz, from a .dot file containing a ranking of classes and their subclasses,

and rendered with the “twopi” method, shown: [Glossary Object rank]

c:\ftp>twopi -Tpng neoplasms.dot -o neoplasms_classes.png

We can look at the graphic version of the classification and quickly make the following

observations:

1. The root class (i.e., the ancestor to every class) is Class Neoplasm. The GraphViz utility

helped us find the root class, by placing it in the center of the visualization.

2. Every class is connected to other classes. There are no classes sitting out in space,

unrelated to other classes.

3. Every class that has a parent class has exactly one parent class.

4. There are no recursive branches to the graph (e.g., the ancestor of a class cannot also be

a descendant of the class).
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FIG. 5.3 A visualization of relationships in a classification of tumors. The image was rendered with the GraphViz

utility, using the twopi method, which produced a radial classification, with the root class in the center.
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If we had only the textual listing of class relationships, without benefit of a graphic visu-

alization, it would be very difficult for a human to verify, at a glance, the internal logic of

the classification.

With a few tweaks to the neo.dot GraphViz file, we can create a nonsensical graphic

visualization:

Notice that one cluster of classes is unconnected to the other, indicating that class

Endoderm/Ectoderm has no parent classes (Fig. 5.4). Elsewhere, Class Mesoderm is both

child and parent to Class Neoplasm. Class Melanocytic and Class Molar are each the child

class to two different parent classes. At a glance, we have determined that the classification

is highly flawed. The visualization simplified the relationships among classes, and allowed

us to see where the classification went wrong. Had we only looked at the textual listing of

classes and subclasses, we may have missed some or all of the logical flaws in our

classification.
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FIG. 5.4 A corrupted classification that might qualify as a valid ontology.
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At this point, youmay be thinking that visualizations of class relationships are nice, but

who has the time and energy to create the long list of classes and subclasses, in GraphViz

syntax, that are the input files for the GraphViz methods? Now comes one of the great

payoffs of data specifications. You must remember that good data specifications are

fungible. A modestly adept programmer can transform a specification into whatever

format is necessary to do a particular job. In this case, the classification of neoplasms

had been specified as an RDF Schema (vida supra). An RDF Schema includes the defini-

tions of classes and properties, with each class provided with the name of its parent class

and each property provided with its range (i.e., the classes to which the property applies).

Because class relationships in an RDF Schema are specified, it is easy to transform an RDF

Schema into a .dot file suitable for Graphviz.

Here is a short RDF python script, dot.py that parses an RDF Schema (contained in

the plain-text file, schema.txt) and produces a GraphViz .dot file, named schema.dot.

[Glossary Metaprogramming]
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import re, string
infile = open('schema.txt', "r")

outfile = open("schema.dot", "w")
outfile.write("digraph G {\n")

outfile.write("size=\"15,15\";\n")
outfile.write("ranksep=\"3.00\";\n")

clump = ""
for line in infile:

namematch = re.match(r'\<\/rdfs\:Class>', line)
if (namematch):
father = ""

child = ""
clump = re.sub(r'\n', ' ', clump)

fathermatch = re.search(r'\:resource\=\"[a-zA-Z0-9\:\/\_\.\-]*
\#([a-zA-Z\_]+)\"', clump)

if fathermatch:
father = fathermatch.group(1)

childmatch = re.search(r'rdf\:ID\=\"([a-zA-Z\_]+)\"', clump)
if childmatch:

child = childmatch.group(1)

outfile.write(father + " -> " + child + ";\n")
clump = ""

else:
clump = clump + line

outfile.write("}\n")

The first 15 lines of output of the dot.pl script:

digraph G {

size="15,15";
ranksep="2.00";
Class -> Tumor_classification;

Tumor_classification -> Neoplasm;
Tumor_classification -> Unclassified;

Neural_tube -> Neural_tube_parenchyma;
Mesoderm -> Sub_coelomic;

Neoplasm -> Endoderm_or_ectoderm;
Unclassified -> Syndrome;

Neoplasm -> Neural_crest;
Neoplasm -> Germ_cell;
Neoplasm -> Pluripotent_non_germ_cell;

Sub_coelomic -> Sub_coelomic_gonadal;
Trophectoderm -> Molar;
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The full schema.dot file, not shown, is suitable for use as an input file for the GraphViz

utility.
Glossary
Artificial intelligence Artificial intelligence is the field of computer science that seeks to create machines

and computer programs that seem to have human intelligence. The field of artificial intelligence some-

times includes the related fields ofmachine learning and computational intelligence. Over the past few

decades the term “artificial intelligence” has taken a battering from professionals inside and outside

the field, for good reasons. First and foremost is that computers do not think in the way that humans

think. Though powerful computers can now beat chess masters at their own game, the algorithms for

doing so do not simulate human thought processes. Furthermore, most of the predicted benefits from

artificial intelligence have not come to pass, despite decades of generous funding. The areas of neural

networks, expert systems, and language translation have not met expectations. Detractors have sug-

gested that artificial intelligence is not a well-defined subdiscipline within computer science as it has

encroached into areas unrelated tomachine intelligence, and has appropriated techniques from other

fields, including statistics and numerical analysis. Some of the goals of artificial intelligence have been

achieved (e.g., speech-to-text translation), and the analytic methods employed in Big Data analysis

should be counted among the enduring successes of the field.

Beauty Tomathematicians, beauty and simplicity are virtually synonymous, both conveying the idea that

someone has managed to produce something of great meaning or value from aminimum of material.

Euler’s identity, relating e, i, pi, 0, and 1 in a simple equation, is held as an example of beauty in math-

ematics. When writing this book, I was tempted to give it the title, “The Beauty of Data,” but I feared

that a reductionist flourish, equating data simplification with beauty, was just too obscure.

Bootstrapping The act of self-creation, fromnothing. The termderives from the ludicrous stunt of pulling

oneself up by one’s own bootstraps. Its shortened form, “booting” refers to the startup process in com-

puters in which the operating system is somehow activated via its operating system, which has not

been activated. The absurd and somewhat surrealistic quality of bootstrapping protocols serves as

one of the most mysterious and fascinating areas of science. As it happens, bootstrapping processes

lie at the heart of some of the most powerful techniques in data simplification (e.g., classification,

object oriented programming, resampling statistics, and Monte Carlo simulations).

It is worth taking a moment to explore the philosophical and the pragmatic aspects of bootstrap-

ping. Starting from the beginning, how was the universe created? For believers, the universe was cre-

ated by an all-powerful deity. If this were so, then howwas the all-powerful deity created?Was the deity

self-created, or did the deity simply bypass the act of creation altogether? The answers to these

questions are left as an exercise for the reader, but we can all agree that there had to be some kind

of bootstrapping process, if something was created from nothing. Otherwise, there would be no

universe, and this book would be much shorter than it is. Getting back to our computers, how is it

possible for any computer to boot its operating system, when we know that the process of managing

the startup process is one of the most important functions of the fully operational operating system?

Basically, at startup, the operating system is non-functional. A few primitive instructions hardwired

into the computer’s processors are sufficient to call forth a somewhat more complex process from

memory, and this newly activated process calls forth other processes, until the operating system is

eventually up and running. The cascading rebirth of active processes takes time and explains why

booting your computer may seem to be a ridiculously slow process.

What is the relationship between bootstrapping and classification? The ontologist creates a clas-

sification based on a worldview in which objects hold specific relationships with other objects. Hence,

the ontologist’s perception of the world is based on preexisting knowledge of the classification of
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things; which presupposes that the classification already exists. Essentially, you cannot build a clas-

sification without first having the classification. How does an ontologist bootstrap a classification into

existence? She may begin with a small assumption that seems, to the best of her knowledge, unassail-

able. In the case of the classification of living organisms, shemay assume that the first organisms were

primitive, consisting of a few self-replicating molecules and some physiologic actions, confined to a

small space, capable of a self-sustaining system. Primitive viruses and prokaryotes (i.e., bacteria) may

have started the ball rolling. This first assumption might lead to observations and deductions, which

eventually yield the classification of living organisms that we know today. Every thoughtful ontologist

will admit that a classification is, at its best, a hypothesis-generating machine; not a factual represen-

tation of reality. We use the classification to create new hypotheses about the world and about the clas-

sification itself. The process of testing hypotheses may reveal that the classification is flawed; that our

early assumptions were incorrect. More often, testing hypotheses will reassure us that our assump-

tions were consistent with new observations, adding to our understanding of the relations between

the classes and instances within the classification.

Categorical data Non-numeric data in which objects are assigned categories, with categories having no

numeric order. Yes or no, male or female, heads or tails, snake-eyes or boxcars, are types of unordered

categorical data. Traditional courses in mathematics and statistics stress the analysis of numeric data,

but data scientists soon learn that much of their work involves the collection and analysis of non-

numeric data.

Cladistics The technique of producing a hierarchy of clades, wherein each branch includes a parent spe-

cies and all its descendant species, while excluding species that did not descend from the parent

(Fig. 5.5). If a subclass of a parent class omits any of the descendants of the parent class, then the parent

class is said to be paraphyletic. If a subclass of a parent class includes organisms that did not descend

from the parent, then the parent class is polyphyletic. A class can be paraphyletic and polyphyletic, if it

excludes organisms that were descendants of the parent and if it includes organisms that did not

descend from the parent. The goal of cladistics is to create a hierarchical classification that consists

exclusively of monophyletic classes (i.e., no paraphyly, no polyphyly). Classifications of the kinds

described in this chapter, are monophyletic.

Classification system versus identification system It is important to distinguish a classification system

from an identification system. An identification system matches an individual organism with its

assigned object name (or species name, in the case of the classification of living organisms). Identi-

fication is based on finding several features that, taken together, can help determine the name of an

organism. For example, if you have a list of characteristic features: large, hairy, strong, African, jungle-

dwelling, knuckle-walking; youmight correctly identify the organisms as a gorilla. These identifiers are

different from the phylogenetic features that were used to classify gorillas within the hierarchy of
FIG. 5.5 Schematic (cladogram) of all the descendant branches of a common ancestor (stem at bottom of image). The

left and the right groups represent clades insofar as they contain all their descendants and exclude classes that are not

descendants of the group root. Themiddle group is not a valid clade because it does not contain all of the descendants

of its group root (i.e., it is paraphyletic). Specifically, it excludes the left-most group in the diagram. FromWikimedia

Commons, author "Life of Riley".
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organisms (Animalia: Chordata: Mammalia: Primates: Hominidae: Homininae: Gorillini: Gorilla). Spe-

cifically, you can identify an animal as a gorilla without knowing that a gorilla is a type ofmammal. You

can classify a gorilla as a member of Class Gorillini without knowing that a gorilla happens to be large.

One of the most common mistakes in science is to confuse an identification system with a classifica-

tion system. The former simply provides a handy way to associate an object with a name; the latter is a

system of relationships among objects.

Classification versus index In practice, an index is an alphabetized listing of the important terms in a

work (e.g., book), with the locations of each term within the work. Ideally, though, an index should

be much more than that. An idealized index is a conceptualization of a corpus of work that enables

users to locate the concepts that are discussed and created within the work. How does an idealized

index differ from a classification? A classification is a way of organizing concepts in classes, wherein

the relationships of the concepts are revealed. The classification can incorporate all of the information

held in an index by encapsulating the concept locations together with the names of the concepts.

Because the relationships among the objects in a classification can be used to draw inferences about

the objects, we can think of a classification as an index that can help us think.

Cluster analysis Clustering algorithms provide away of taking a large set of data objects that seem to have

no relationship to one another, and to produce a visually simple collection of clusters wherein each

cluster member is similar to every other member of the same cluster. The algorithmic methods for

clustering are simple. One of the most popular clustering algorithms is the k-means algorithm, which

assigns any number of data objects to one of k clusters [21]. The number k of clusters is provided by the

user. The algorithm is easy to describe and to understand, but the computational task of completing

the algorithm can be difficult when the number of dimensions in the object (i.e., the number of attri-

butes associated with the object), is large. There are some serious drawbacks to the algorithm: (1) The

final set of clusters will sometimes depend on the initial, random choice of k data objects. This means

that multiple runs of the algorithmmay produce different outcomes; (2) The algorithms are not guar-

anteed to succeed. Sometimes, the algorithm does not converge to a final, stable set of clusters; (3)

When the dimensionality is very high, the distances between data objects (i.e., the square root of

the sum of squares of the measured differences between corresponding attributes of two objects)

can be ridiculously large and of no practical meaning. Computations may bog down, cease altogether,

or produce meaningless results. In this case, the only recourse may require eliminating some of the

attributes (i.e., reducing dimensionality of the data objects); (4) The clustering algorithmmay succeed,

producing a set of clusters of similar objects, but the clusters may have no practical value. They may

miss important relationships among the objects, or they might group together objects whose similar-

ities are totally non-informative. The biggest drawback associated with cluster analyses is that

researchers maymistakenly believe that that the groupings produced by themethod constitute a valid

biological classification. This is not the case because biological entities (genes, proteins, cells, organs,

organisms) may share many properties and still be fundamentally different. For example, two genes

may have the same length and share some sub-sequences, but both genesmay have no homology with

one another (i.e., no shared ancestry) and may have no common or similar expressed products.

Another set of genes may be structurally dissimilar but may belong to the same family. The groupings

produced by cluster analysis should never be equated with a classification. At best, cluster analysis

produces groups that can be used to start piecing together a biological classification.

Combinatorics The analysis of complex data often involves combinatorics; the evaluation, on some

numeric level, of combinations of things. Often, combinatorics involves pairwise comparisons of

all possible combinations of items. When the number of comparisons becomes large, as is the case

with virtually all combinatoric problems involving large data sets, the computational effort becomes

massive. For this reason, combinatorics research has become a subspecialty in applied mathematics

and data science. There are four “hot” areas in combinatorics. The first involves building increasingly

powerful computers capable of solving complex combinatoric problems. The second involves
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developingmethodswhereby combinatoric problems can be broken into smaller problems that can be

distributed to many computers, to provide relatively fast solutions to problems that could not other-

wise be solved in any reasonable length of time The third area of research involves developing new

algorithms for solving combinatoric problems quickly and efficiently. The fourth area, perhaps the

most promising area, involves developing innovative non-combinatoric solutions for traditionally

combinatoric problems, a golden opportunity for experts in the field of data simplification.

Confounder Unanticipated or ignored factor that alters the outcome of a data analysis. Confounders are

particularly important in Big Data analytics, because most analyses are observational; based on col-

lected parameters from large numbers of data records, and there is very little control over confounders.

Confounders are less of a problem in controlled prospective experiments, in which a control group and

a treated group are alike, to every extent feasible; only differing in their treatment. Differences between

the control group and the treated group are presumed to be caused by the treatment, as all of the con-

founders have been eliminated. One of the greatest challenges of Big Data analytics involves develop-

ing new analytic protocols that reduce the effect of confounders in observational studies.

Data scientist Anyone who practices data science and who has some expertise in a field subsumed by

data science (i.e., informatics, statistics, data analysis, programming, and computer science).

Exe file Short for executable file and also known as application file. A file containing a program, in binary

code, that can be executed when the name of the file is invoked on the command line.

Heterogeneous data Sets of data that are dissimilar with regard to content, purpose, format, organization,

and annotations. One of the purposes of Big Data is to discover relationships among heterogeneous

data sources. For example, epidemiologic data sets may be of service to molecular biologists who have

gene sequence data on diverse human populations. The epidemiologic data is likely to contain differ-

ent types of data values, annotated and formatted in a manner that is completely different from the

data and annotations in a gene sequence database. The two types of related data, epidemiologic and

genetic, have dissimilar content; hence they are heterogeneous to one another.

Inheritance The method by which a child is endowed with features of the parent. In object oriented pro-

gramming, inheritance is passed from parent class to child class, meaning that the child class has

access to all of the methods and properties that are held in the parent class.

Intransitive property One of the criteria for a classification is that every object (sometimes referred to as

member or as instance) belongs to exactly one class. From this criteria comes the intransitive property

of classifications; namely, an object cannot change its class. Otherwise an object would belong tomore

than one class at different times. It is easy to apply the intransitive rule under most circumstances.

A cat cannot become a dog and a horse cannot become a sheep. What do we do when a caterpillar

becomes a butterfly? In this case, we must recognize that caterpillar and butterfly represent phases

in the development of one particular instance of a species, and do not belong to separate classes.

Iterator Iterators are simple programming shortcuts that call functions that operate on consecutive

members of a data structure, such as a list, or a block of code. Typically, complex iterators can be

expressed in a single line of code. Perl, Python and Ruby all have iterator methods. In Ruby, the iterator

methods are each, find, collect, and inject. In Python, there are types of objects that are iterable (not to

be confused with “irritable”), and these objects accept implicit or scripted iteration methods.

KISS Acronym for Keep It Simple Stupid. With respect to Big Data, there are basically two schools of

thought. This first is that reality is quite complex, and the advent of powerful computers and enormous

data collections allows us to tackle important problems, despite their inherent size and complexity.

KISS represents a second school of thought; that Big Problems are just small problems that are waiting

to be simplified.

Metaprogramming Ametaprogram is a program that creates or modifies other programs. Metaprogram-

ming is a particularly powerful feature of languages that are modifiable at runtime. Perl, Python, and

Ruby are all metaprogramming languages. There are several techniques that facilitate metaprogram-

ming features, including introspection and reflection.
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Method Roughly equivalent to functions, subroutines, or code blocks. In object-oriented languages, a

method is a subroutine available to an object (class or instance). In Ruby and Python, instance

methods are declared with a “def” declaration followed by the name of the method, in lowercase. Here

is an example, in Ruby, for the “hello” method, is written for the Salutations class.

class Salutations

def hello

puts "hello there"

end

end

Multiclass classification A misnomer imported from the field of machine translation, and indicating the

assignment of an instance tomore than one class. Classifications, as defined in this book, impose one-

class classification (i.e., an instance can be assigned to one and only one class). It is tempting to think

that a ball should be included in class “toy” and in class “spheroids,” butmulticlass assignments create

unnecessary classes of inscrutable provenance, and taxonomies of enormous size, consisting largely of

replicate items.

Multiclass inheritance In ontologies, multiclass inheritance occurs when a child class hasmore than one

parent class. For example, a member of Class Housemay have two different parent classes: Class Shel-

ter, and Class Property. Multiclass inheritance is generally permitted in ontologies but is forbidden in

classifications that restrict inheritance to a single parent class (i.e., each class can have at most one

parent class, though it may have multiple child classes). When an object-oriented program language

permits multiparental inheritance (e.g., Perl and Python programming languages), data objects may

have many different ancestral classes spread horizontally and vertically through the class libraries.

There are many drawbacks to multi-class inheritance in object oriented programming languages

and these have been discussed at some length in the computer science literature [22]. Medical taxon-

omists should understand that when multi-class inheritance is permitted, a class may be an ancestor

of a child class that is an ancestor of its parent class (e.g., a single class might be a grandfather and a

grandson to the same class). An instance of a class might be an instance of two classes, at once. The

combinatorics and the recursive options can become computationally difficult or impossible. Those

who use taxonomies that permit multiclass inheritance will readily acknowledge that they have cre-

ated a system that is complex. Ontology experts justify the use of multiclass inheritance on the obser-

vation that such ontologies provide accurate models of nature and that faithful models of reality

cannot be created with simple, uniparental classification. Taxonomists who rely on simple, uniparen-

tal classifications base their model on epistemological grounds; on the nature of objects. They hold

that an object can have only one nature and can belong to only one defining class, and can be derived

from exactly one parent class. Taxonomists who insist upon uniparental class inheritance believe that

assigningmore than one parental class to an object indicates that you have failed to grasp the essential

nature of the object [22–24].
Negative classifier One of themost commonmistakes committed by ontologists involves classification by

negative attribute. A negative classifier is a feature whose absence is used to define a class. An example

is found in the Collembola, popularly known as springtails, a ubiquitous member of Class Hexapoda,

and readily found under just about any rock. These organisms look like fleas (same size, same shape)

and were formerly misclassified among the class of true fleas (Class Siphonaptera). Like fleas, spring-

tails are wingless, and it was assumed that springtails, like fleas, lost their wings somewhere in

evolution’s murky past. However, true fleas lost their wings when they became parasitic. Springtails

never had wings, an important taxonomic distinction separating springtails from fleas. Today, spring-

tails (Collembola) are assigned to Class Entognatha, a separate subclass of Class Hexapoda. Alter-

nately, taxonomists may be deceived by a feature whose absence is falsely conceived to be a
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fundamental property of a class of organisms. For example, all species of Class Fungi were believed to

have a characteristic absence of a flagellum. Based on the absence of a flagellum, the fungi were

excluded from Class Opisthokonta and were put in Class Plantae, which they superficially resembled.

However, the chytrids, which have a flagellum, were have been shown to be a primitive member of

Class Fungi. This finding places fungi among the true descendants of Class Opisthokonta (fromwhich

Class Animalia descended). This means that fungi are much more closely related to people than to

plants, a shocking revelation [13]!

Non-living organism Herein, viruses and prions are referred to as non-living organisms. Viruses lack key

features that distinguish life from non-life. They depend entirely on host cells for replication; they do

not partake in metabolism, and do not yield energy; they cannot adjust to changes in their environ-

ment (i.e., no homeostasis), nor can they respond to stimuli. Most scientists consider viruses to be

mobile genetic elements that can travel between cells (much as transposons are considered mobile

genetic elements that travel within a cell). All viruses have a mechanism that permits them to infect

cells and to use the host cell machinery to replicate. At minimum, viruses consist of a small RNA or

DNA genome, encased by a protective protein coat, called a capsid. Class Mimiviridae, discovered

in 1992, occupies a niche that seems to span the biological gulf separating living organisms from

viruses. Members of Class Mimiviridae are complex, larger than some bacteria, with enormous

genomes (by viral standards), exceeding a million base pairs and encoding upwards of 1000 proteins.

The large size and complexity of Class Mimiviridae exemplifies the advantage of a double-stranded

DNA genome. Class Megaviridae is a newly reported (October, 2011) class of viruses, related to Class

Mimiviridae, but even larger [25]. Biologically, the life of a mimivirus is not very different from that of

obligate intracellular bacteria (e.g., Rickettsia). The discovery of Class Mimiviridae inspires biologists

to reconsider the “non-living” status relegated to viruses and compels taxonomists to examine the

placement of viruses within the phylogenetic development of prokaryotic and eukaryotic

organisms [13].

Nonphylogenetic property Properties that do not hold true for a class; hence, cannot be used by ontol-

ogists to create a classification. For example, we do not classify animals by height, or weight because

animals of greatly different heights and weights may occupy the same biological class. Similarly, ani-

mals within a classmay have widely ranging geographic habitats; hence, we cannot classify animals by

locality. Case in point: penguins can be found virtually anywhere in the southern hemisphere, includ-

ing hot and cold climates. Hence, we cannot classify penguins as animals that live in Antarctica or that

prefer a cold climate. Scientists commonly encounter properties, once thought to be class-specific that

prove to be uninformative, for classification purposes. Formany decades, all bacteria were assumed to

be small; much smaller than animal cells. However, the bacterium Epulopiscium fishelsoni grows to

about 600microns by 80microns,much larger than the typical animal epithelial cell (about 35microns

in diameter) [26]. Thiomargarita namibiensis, an ocean-dwelling bacterium, can reach a size of

0.75mm, visible to the unaided eye. What do these admittedly obscure facts teach us about the art

of classification? Superficial properties, such as size, seldom inform us how to classify objects. The

ontologist must think very deeply to find the essential defining features of classes.

Object rank A generalization of Page rank, the indexing method employed by Google. Object ranking

involves providing objects with a quantitative score that provides some clue to the relevance or the

popularity of an object. For the typical object ranking project, objects take the form of a key word

phrase.

Observational data Data obtained by measuring existing things or things that occurred without the help

of the scientist. Observational data needs to be distinguished from experimental data. In general,

experimental data can be described with a Gaussian curve, because the experimenter is trying to

measure what happens when a controlled process is performed on every member of a uniform pop-

ulation. Such experiments typically produce Gaussian (i.e., bell-shaped or normal) curves for the

control population and the test population. The statistical analysis of experiments reduces to the chore
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of deciding whether the resulting Gaussian curves are different from one another. In observational

studies, data is collected on categories of things, and the resulting data sets often follow a Zipf distri-

bution, wherein a few types of data objects account for the majority of observations For this reason,

many of the assumptions that apply to experimental data (i.e., the utility of parametric statistical

descriptors including average, standard deviation and p-values), will not necessarily apply to obser-

vational data sets [24].

Parent class The immediate ancestor, or the next-higher class (i.e., the direct superclass) of a class.

For example, in the classification of living organisms, Class Vertebrata is the parent class of Class

Gnathostomata. Class Gnathostomata is the parent class of Class Teleostomi. In a classification, which

imposes single class inheritance, each child class has exactly one parent class; whereas one parent

class may have several different child classes. Furthermore, some classes, in particular the bottom

class in the lineage, have no child classes (i.e., a class need not always be a superclass of other classes).

A class can be defined by its properties, itsmembership (i.e., the instances that belong to the class), and

by the name of its parent class. When we list all of the classes in a classification, in any order, we can

always reconstruct the complete class lineage, in their correct lineage and branchings, if we know the

name of each class’s parent class [13].

Phenetics The classification of organisms by feature similarity, rather than through relationships. Starting

with a set of feature data on a collection of organisms, you can write a computer program that will

cluster the organisms into classes, according to their similarities. In theory, one computer program,

executing over a large dataset containing measurements for every earthly organism, could create a

complete biological classification. The status of a species is thereby reduced from a fundamental

biological entity, to a mathematical construction.

There are a host of problems consequent to computational methods for classification. First, there

are many different mathematical algorithms that cluster objects by similarity. Depending on the cho-

sen algorithm, the assignment of organisms to one species or another would change. Secondly, math-

ematical algorithms do not copewell with species convergence. Convergence occurs when two species

independently acquire identical or similar traits through adaptation; not through inheritance from a

shared ancestor. Examples are: the wing of a bat and the wing of a bird; the opposable thumb of

opossums and of primates; the beak of a platypus and the beak of a bird. Unrelated species frequently

converge upon similar morphologic adaptations to common environmental conditions or shared

physiological imperatives. Algorithms that cluster organisms based on similarity are likely to group

divergent organisms under the same species.

It is often assumed that computational classification, based on morphologic feature similarities,

will improve when we acquire whole-genome sequence data for many different species. Imagine

an experiment wherein you take DNA samples from every organism you encounter: bacterial colonies

cultured from a river, unicellular non-bacterial organisms found in a pond, small multicellular organ-

isms found in soil, crawling creatures dwelling under rocks, and so on. You own a powerful sequencing

machine, that produces the full-length sequence for each sampled organism, and you have a powerful

computer that sorts and clusters every sequence. At the end, the computer prints out a huge graph,

wherein all the samples are ordered and groups with the greatest sequence similarities are clustered

together. You may think you have created a useful classification, but you have not really, because you

do not know anything about the organisms that are clustered together. You do not know whether each

cluster represents a species, or a class (a collection of related species), or whether a cluster may be

contaminated by organisms that share some of the same gene sequences, but are phylogenetically

unrelated (i.e., the sequence similarities result from chance or from convergence, but not by descent

from a common ancestor). The sequences do not tell you very much about the biological properties of

specific organisms, and you cannot infer which biological properties characterize the classes of clus-

tered organisms. You have no certain knowledge whether the members of any given cluster of organ-

isms can be characterized by any particular gene sequence (i.e., you do not know the characterizing
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gene sequences for classes of organisms). You do not know the genus or species names of the organ-

isms included in the clusters, because you began your experiment without a presumptive taxonomy.

Basically, you simply know what you knew before you started; that individual organisms have unique

gene sequences that can be grouped by sequence similarity.

Taxonomists, who have long held that a species is a natural unit of biological life, and that the

nature of a species is revealed through the intellectual process of building a consistent taxonomy

[27], are opposed to the process of phenetics-based classification [27,13]. In the realmof big data, com-

putational phenetics may create a complex web of self-perpetuating nonsense that cannot be sensibly

analyzed. Over the next decade or two, the brilliance or the folly of computational phenetics will most

likely be revealed.

Properties versus classes When creating classifications, the most common mistake is to assign class

status to a property. When a property is inappropriately assigned as a class, then the entire classifica-

tion is ruined. Hence, it is important to be very clear on the difference between these two concepts, and

to understand why it is human nature to confuse one with the other. A class is a holder of related

objects (e.g., items, records, categorized things). A property is a feature or trait that can be assigned

to an item. When inclusion in a class requires items to have a specific property, we often name the

class by its defining property. For example Class Rodentia, which includes rats, mice, squirrels, and

gophers, are all gnawing mammals. The word rodent derives from the Latin roots rodentem, rodens,

from rodere, “to gnaw.” Although all rodents gnaw, we know that gnawing is not unique to rodents.

Rabbits (Class Lagormorpha) also gnaw.

Objects from many different classes may have some of the same properties. Here’s another

example. Normal human anatomy includes two legs. This being the case, is “leg” a subclass of

“human.” The answer is no. A leg is not a type of human. Having a leg is just one of many properties

associated with normal human anatomy. You would be surprised howmany people can be tricked into

thinking that a leg, which is itself an object, should be assigned as a subclass of the organisms towhich

it is attached. Some of this confusion comes from the way that we think about relationships between

objects and properties. We say “He is hungry,” using a term of equality, “is” to describe the relationship

between “He” and “hungry.” Technically, the sentence, “He is hungry” asserts that “He” and “hungry”

are equivalent objects. We never bother to say “He has hunger,” but other languages are more fastid-

ious. A German might say “Ich habe Hunger,” indicating that he has hunger, and avoiding any infer-

ence that he and hunger are equivalent terms (i.e., never “Ich bin Hunger”). It may seem like a trivial

point, but mistaking classes for properties is a common error that nearly always leads to disaster.

RDF Resource Description Framework (RDF) is a syntax in XML notation that formally expresses asser-

tions as triples. The RDF triple consists of a uniquely identified subject plus a metadata descriptor for

the data plus a data element. Triples are necessary and sufficient to create statements that convey

meaning. Triples can be aggregated with other triples from the same data set or from other data sets,

so long as each triple pertains to a unique subject that is identified equivalently through the data sets.

Enormous data sets of RDF triples can be merged or functionally integrated with other massive or

complex data resources.

RDF Ontology A term that, in common usage, refers to the class definitions and relationships included in

an RDF Schema document. The classes in an RDF Schema need not comprise a complete ontology. In

fact, a complete ontology could be distributed over multiple RDF Schema documents.

Representation bias Occurswhen thepopulation sampleddoesnot represent thepopulation intended for

study. For example, the population for which the normal range of prostate specific antigen (PSA) was

based,was selected fromacounty in the state ofMinnesota.Themalepopulationunder study consisted

almost exclusively of white men (i.e., virtually no African-Americans, Asians, Hispanics, etc.). It may

have been assumed that PSA levels would not vary with race. It was eventually determined that the

normal PSA ranges varied greatly by race [28]. TheMinnesota data, though plentiful, did not represent

racial subpopulations. A sharp distinction must drawn between Big-ness and Whole-ness [29].
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Superclass Any of the ancestral classes of a subclass. For example, in the classification of living organisms,

the class of vertebrates is a superclass of the class of mammals. The immediate superclass of a class

is its parent class. In common parlance, when we speak of the superclass of a class, we are usually

referring to its parent class.

System call Refers to a command, within a running script, that calls the operating system into action,

momentarily bypassing the programming interpreter for the script. A system call can do essentially

anything the operating system can do via a command line.

Triple In computer semantics, a triple is an identified data object associated with a data element and the

description of the data element. In theory, all Big Data resources can be composed as collections of

triples. When the data and metadata held in sets of triples are organized into ontologies consisting

of classes of objects and associated properties (metadata), the resource can potentially provide intro-

spection (the ability of a data object to be self-descriptive). An in-depth discussion of triples is found in

Chapter 4, “Metadata, Semantics, and Triples.”

Triplestore A list or database composed entirely of triples (statements consisting of an item identifier plus

the metadata describing the item plus an item of data. The triples in a triplestore need not be saved in

any particular order, and any triplestore can be merged with any other triplestore; the basic semantic

meaning of the contained triples is unaffected. Additional discussion of triplestores can be found in

Section 6.5, “Case Study: A Visit to the TripleStore.”

Turtle Another syntax for expressing triples. From RDF came a simplified syntax for triples, known as

Notation 3 or N3 [30]. From N3 came Turtle, thought to fit more closely to RDF. From Turtle came

an even more simplified form, known as N-Triples.

Unclassifiable objects Classifications create a class for every object and taxonomies assign each and

every object to its correct class. Thismeans that a classification is not permitted to contain unclassified

objects; a condition that puts fussy taxonomists in an untenable position. Suppose you have an object,

and you simply do not know enough about the object to confidently assign it to a class. Or, suppose you

have an object that seems to fit more than one class, and you can’t decide which class is the correct

class. What do you do?

Historically, scientists have resorted to creating a “miscellaneous” class into which otherwise

unclassifiable objects are given a temporary home, until more suitable accommodations can be pro-

vided. I have spoken with numerous data managers, and everyone seems to be of a mind that

“miscellaneous” classes, created as a stopgap measure, serve a useful purpose. Not so. Historically,

the promiscuous application of “miscellaneous” classes has proven to be a huge impediment to the

advancement of science. In the case of the classification of living organisms, the class of protozoans

stands as a case in point. Ernst Haeckel, a leading biological taxonomist in his time, created the King-

dom Protista (i.e., protozoans), in 1866, to accommodate a wide variety of simple organisms with

superficial commonalities. Haeckel himself understood that the protists were a blended class that

included unrelated organisms, but he believed that further study would resolve the confusion. In a

sense, he was right, but the process took much longer than he had anticipated; occupying generations

of taxonomists over the following 150 years.

Today, Kingdom Protista no longer exists. Its members have been reassigned to positions among

the animals, plants, and fungi. Nonetheless, textbooks of microbiology still describe the protozoans,

just as though this name continued to occupy a legitimate place among terrestrial organisms. In the

meantime, therapeutic opportunities for eradicating so-called protozoal infections, using class-

targeted agents, have no doubt been missed [13].

Youmight think that the creation of a class of living organisms, with no established scientific rela-

tion to the real world, was a rare and ancient event in the annals of biology, having little or no chance

of being repeated. Not so. A special pseudoclass of fungi, deuteromyctetes (spelled with a lowercase

“d,” signifying its questionable validity as a true biologic class) has been created to hold fungi of
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indeterminate speciation. At present, there are several thousand such fungi, sitting in a taxonomic

limbo, waiting to be placed into a definitive taxonomic class [16,13].
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Section 6.1. Knowledge of Self

All science is description and not explanation.
Karl Pearson [1]

Not very long ago a cancer researcher sent me one of his published papers. For his study,

he used a publicly available collection of gene micro-array data collected on tumors. He

knew that I was a long-time proponent of open access scientific data sets and that I had

been encouraging my colleagues to use these available data sources for various analytic

projects. I read the paper with admiration, but the “methods” section of the paper did not

providemuch description of the human lung cancer tissues that were used to generate the

micro-array data. [Glossary Open access]

I called the researcher and asked, perhaps a bit undiplomatically, the following ques-

tion: “The methods section indicates that data on 12 lung cancer tissues, provided by the

repository, were studied. How do you distinguish whether these were 12 lung cancer

samples from 12 different patients, or 12 samples of tissue all taken from one lung cancer,

in one patient?” If it were the former (12 lung cancers from each of 12 patients), his study

conclusions would have applied to a sampling of different tumors and might reasonably

apply to lung cancers in general. If it were the latter (12 samples of one tumor), then his

generalized conclusion was unjustified.

Therewas a pause on the line, and Iwas told that he had neglected to include that infor-

mation in the manuscript, but the paper included a link to the repository Web site, where

the detailed sample information was stored.

After our conversation, I visited the Web site, and found that there was very little infor-

mation describing the samples included in the database. There was a sample number,

followed by the name of a type of cancer (lung cancer, in this case), and then there was
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the raw gene-array data. Were the multiple samples taken frommultiple patients, or were

all those samples taken fromone tumor, in one patient?We could not say, because the data

would not tell us.

I contacted the researcher again and reiterated the problem.He agreed that the people at

the repository should have been more attentive to data annotation. It has been my

experience that some data analysts believe that their professional responsibility begins with

the received data. In their opinion, pre-analytic issues, such as those described above, do

not fall under their professional jurisdiction. This approach to Big Data analysis is an invi-

tation for disaster. Studies emanating from Big Data resources have no scientific value and

the Big Data resources are all a waste of time andmoney, if data analysts cannot uncover all

the information that fully describes their data.

The aforementioned story serves as an introduction to the concept of introspection, a

term that is not commonly applied to Big Data resources; but should be. Introspection is a

term taken from the field of object oriented programming, and it refers to the ability of

data objects to describe themselves, when called upon. In object oriented programming

languages, everything is objectified. Variables are objects, parameters are objects,

methods are objects, and so on. Every object carries around its own data values, as well

as an identifier, and self-descriptive information, including its class assignment (i.e., the

name of the class of objects to which it belongs). An object can have its own methods

(similar to subroutines), and it has access to a library of methods built for its class

(i.e., class methods) and from the ancestor classes in its lineage (i.e., superclass methods).

Most object oriented programming languages have methods that can call an object to

describe itself. To illustrate, let us see how Ruby, a popular object oriented programming

language, implements introspection.

First, let us create a new object, “x”; we will assign “hello world” to the object.

x = "hello world" yields "hello world"

Ruby knows that “hello world” is a string and automatically assigns “x” to Class String. We

can check any object to see determine its class by sending the “class”method to the object,

as shown.

x.class yields String

When we send the “class” method to x, Ruby outputs its class assignment, “String.” Every

class (except the top level class in the hierarchy) has a single parent class, also known as a

superclass. We can learn the name of the superclass of Class String, by sending the super-

class method, as shown.

x.class.superclass yields Object

Ruby tells us that the superclass of Class String is Class Object.

Ruby assigns a unique identifier to every created object. We can find the object

identifier by sending “x” the object_id method.

x.object_id yields 22502910
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The unique object identifier for “x” is 22502910.

If we ever need to learn the contents of “x,” we can send the inspectmethod to the object.

x.inspect yields "hello world"

Ruby reminds us that “x” contains the string, “hello world.”

Every data object in Ruby inherits dozens of class methods. We can generate a list of

methods available to “x” by sending it the “methods” method.

x.methods

Ruby yields a list of dozens of methods, including a few that we can try out here: “length”,

“is_a?”, “upcase”, “downcase”, “capitalize”, and “reverse.”

x.length yields 11

The length method, sent to “x” yields the number of characters in “hello world.”

x.is_a?(String) yields true

When Ruby uses the is_a? method to determine if x is a member of Class String, it yields

“true.”

x.is_a?(Integer) yields false

When Ruby uses the is_a? method to determine if x is a member of Class Integer, it yields

“false.”

x.upcase yields "HELLO WORLD"
x.downcase yields "hello world"

x.capitalize yields "Hello world"
x.reverse yields "dlrow olleh"

String methods sent to the “x” object return appropriate values, as shown above.

What happens when we send “x” a method from a library of methods built for some

other class?

The “nonzero?” method tests to see whether an object of Class Integer is zero. This

method is useful to avoid division by zero.

Let us see what happens when we send “x” the “nonzero?” method.

x.nonzero? Yields NoMethodError: undefined method `nonzero?'
for "hello world":String

Ruby sends us an errormessage, indicating that “nonzero?” is an undefinedmethod for an

object of Class String.

How does introspection, a feature of object oriented programming languages, apply to

Big Data? In principle, Big Data resources must have the same features of introspection

that are automatically provided by object oriented programming languages. Specifically,

all data pertaining to the object must be encapsulated within data objects to include the

raw data, a description for the raw data (the so-called metadata), the name of the class to
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which the data object belongs, and a unique identifier that distinguishes the data object

from all other data objects.

I must admit that most Big Data resources lack introspection. Indeed, most Big Data

managers are unfamiliar with the concept of introspection as it applies to Big Data. When

you speak to the people who manage and use these resources, you may be surprised to

learn that they are happy, even ecstatic, about their introspection-free resource. As far

as they are concerned, their resource functions just fine, without introspection. When

pressed on the subject of data introspection, data managers may confess that their Big

Data resources may fall short of perfection, but their users have accommodated them-

selves to minor deficiencies.

There is always a price to paywhen Big Data resources lack introspection. Symptoms of

an introspection-free Big Data resource include:

– The resource is used for a narrow range of activities, somewhat less than was originally

proposed when the resource was initiated.

– The resource is used by a small number of domain experts; to all others, the resource is

inscrutable.

– The data records for the resource cannot be verified. It is impossible to eliminate the

possibility that records may have been duplicated or that data may have been

mistakenly inserted into the wrong records (i.e., the data records may have been

corrupted).

– The resource cannot merge its data with data contained in other Big Data resources.

– The resource cannot match its record identifiers with record identifiers from

other resources. For example, if each of two Big Data resources has a record on

the same individual, the resources cannot sensibly combine the two records into

a single record.

– The resource cannot add legacy data, collected by their own institution on older

software system, into the current Big Data resource.

– Despite employing a crew of professionals for the resource, only one individual seems

to be privy to the properties of data objects in the largely undocumented system.When

he is absent, the system tends to crash.

Introspection is not a feature that you can attach to a Big Data resource, as an after-

thought. Introspection is a foundational component of any well-designed data resource.

Most Big Data resources will never attain the level of introspection available in object ori-

ented programming languages, but some introspective features would seem essential.
Section 6.2. Data Objects: The Essential Ingredient of Every Big
Data Collection

Computer Science is no more about computers than astronomy is about telescopes.
Edsger W. Dijkstra
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If you have been following the computer science literature, youmay have noticed that the

term “data object” has been slowly replacing the shorter, simpler, and more understand-

able term “data.” Do we really need to clutter our minds with yet another example of

dispensable technojargon?

Yes, we must. Despite every intention to minimize the use of jargon in this book, the

term “data object” has already insinuated itself into this book dozens of times. Back in

Section 3.1, we offered a loose definition of data object as “a collection of data that

contains self-describing information, and one ormore data values.” In this section, wewill

expand the definition to indicate the role of data objects in Big Data construction and

analyses.

Like everything else in this fledgling field of Big Data, there is no canonical definition

for “data object.” As youmight expect, practitioners of subdisciplines of computer science

provide definitions of data object that coincide with the way they happen to employ data

objects in their work. For example, someone who works exclusively with relational data-

bases will refer to data tables, indexes, and views as data objects. A programmer who uses

assembly language might refer to a data object as any data that can be referenced from a

particular address in memory. A programmer who works with a typed language, such as

Ada, might think of a data object as being data that has been assigned a particular type

(e.g., string, integer, float).

We can try to find a reasonable definition for data object that serves the imperatives of

Big Data, but before we do, let us look at a few triples.

75898039563441 name G. Willikers
75898039563441 gender male

75898039563441 age 35
75898039563441 is_a_class_member human

These triples tell us a few things about a 35-year-old male named G. Willikers, who is a

human. Without losing any information, we can rearrange this collection of triples under

its identifier, as shown here:

75898039563441
name G. Willikers

gender male
age 35
is_a_class_member human

Now, we can begin to see how a collection of triples, all having the same identifier, might

compose a single data object. What we have is one identifier followed by all the available

meta/data data pairs that bind to the same identifier. Someone who prefers working with

spreadsheets might interpret this as a row (with “75898039563441” as its key); having

metadata as its column headers, and having the data as the contents of the row’s cells.

We can guess that the relational database programmer would recognize this as a table.
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The assembly language programmer would look at the same collection and surmise that

it represents the data culled from a referenced address in memory.

For our purposes, let us try to think of the collection as a data object, defined as an

object identifier along with all of the data/metadata pairs that rightly belong to the object

identifier, and that includes one data/metadata pair that tells us the object’s class

(i.e., “human” in this example).

By adding a triple that provides class membership, the data object immediately gains all

of the properties associated with its class “Human,” and this might include a birth date, a

social securitynumber, and anaddress. If a programmerwere towrite a set of computational

methods for the class “Human,” then every member of class “Human,” including instance

75898039563441, would be qualified to access those methods. In the next section, we will

describe how programmers use the information available within data objects to understand

and to utilize the relationships among data objects. Before proceeding, there are a few prop-

erties of data objects that we should examine. Notice that there is no special order for the

data/metadata pairs encapsulated within the data object. We could shuffle the data/meta-

data pairs any way we please. Furthermore, if each data/metadata pair was attached to its

identifier (75898039563441, in this case), as a triple, then therewould beno special reason to

store the components of the data object in one particular memory location.

The following triple could be stored in a server in California:

75898039563441 name G. Willikers

The next triple could be stored in a server in Iceland:

75898039563441 gender male

The triples that compose the data object may exist anywhere and everywhere (i.e., stored

as replicates), and we might have no knowledge of the number of object’s data/metadata

pairs that exist at any moment of time. Wherever the pieces of the data object may reside,

they will forever have the same unique identifier, and will always belong to the same data

object. It is best to think of a data object as an abstraction that is made practical by

software created by programmers. Object oriented programming languages are designed

to create data objects assigned to classes, and provide them with useful computational

methods.
Section 6.3. How Big Data Uses Introspection

“Si sol deficit, respicit me nemo” (“If the sun’s gone, nobody looks at me”)
Latin motto

Let us look at howdata objects are used to understand and explore BigData. First, wemust

understand a few new concepts that have been developed for Object-Oriented program-

ming languages, but which apply to all data that supports introspection: encapsulation,

inheritance, polymorphism, and reflection.
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Encapsulation refers to general property of a data object to contain the data pertaining

to itself (i.e., its identifier and its data/metadata pairs). When we say “contain,” we are not

referring to a physical container. We are indicating that there is some way by which a

programmer can access an object’s identifier and its data/metadata pairs, through

methods provided by a programming language. The data can be scattered on servers

throughout the globe. So long as there aremethods for retrieving the data/metadata pairs,

and ascertaining that these pairs belong to a unique data object, and to no other data

object, then we say that the data object encapsulates its data.

Inheritance refers to the ability of a data object to respond appropriately to methods

created for its class, and for all of its ancestral classes. For example, all members of Class

Document can respond to methods created for its class, such as a “screen_display”

method, or a “printer_print” or a “copy_me” method. Furthermore, since all documents

are composed of strings of alphanumeric sequences, we know that Class Document is

a descendant of Class String. Hence,members of Class Document will inherit themethods

created for Class String, such as a “lowercase” method, a “concatenate” method, or a

“find_substring” method.

This object oriented concept of inheritance fits nicely with the concept of inheritance,

as known to zoologists: every animal inherits the properties of its ancestors. For example,

humans are descendants of the class of animals known as the vertebrates (i.e., Class Ver-

tebrata). Thismeans that every human, like all animal classes that descend fromClass Ver-

tebrata, contains a vertebra, and all such animals have shared properties inherited from

their common ancestor (e.g., they all have anatomic structures derived from gill arches

that appear in embryologic development and they all share genes and proteins that were

included in the vertebrates from which they descended).

The key thing to understand, whether you are a computer programmer or a zoologist, is

that inheritance only helps us if we have created a sensible classification (see the princi-

ples of classification in Section 5.2).

Polymorphism is the ability of an object to respond to a named method in a manner

that is appropriate for its own class. For example, if I sent a “double” method to an object

belonging to Class Integer, I might expect it to multiply its contained integer by itself

(e.g., 5 * 2 ¼ 10). If I sent the “double” method to an object belonging to Class String,

I might expect it to simply concatenate the contained string to itself (e.g., “3y228hw”

would become “3y228hw3y228hw”).

How does a data object know how to respond polymorphically (i.e., in amanner appro-

priate for its class) to a method? In object oriented programming, classes have methods

that apply to every instance (i.e., member) belonging to the class. When you send the

“double” method to an integer object the integer object knows the name of its own class

and will look inside its class object for a class method named “double.” If it finds the

method, it will do whatever its class method tells it to do; in this case, it will multiply

its integer contents by two. If the double method were sent to a member of Class String,

the data object would pull the “double” method written for objects of the String class,

and would respond appropriately; by concatenating its contained string to itself.
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Polymorphism is achieved by having objects respond to differentmethods, written for dif-

ferent classes. The differentmethodsmay happen to have the same name (i.e., “double” in

this example), but each data object only has access to the “double” method that was writ-

ten for its class.

Now, suppose the data object looks within the collection of methods available to its

class, and fails to find what it’s looking for. In that case, it will look at the methods con-

tained in the parent class of Class String. Remember, in a good classification, every class

contains the name of its parent class; hence the ancestral lineage of any class object can be

computationally traced, up to the root class of the classification. This means that a class

object can search its entire ancestry, if need be, looking for a “double” method. When it

finds the method, it stops and does whatever the method instructs it to perform. This

is known as inheritance polymorphism.

Underlying all these methods (encapsulation, inheritance, and polymorphism) is a

technique known as abstraction. Abstraction encompasses all techniques wherein data

objects are unencumbered by the details of their operational repertoires. For example,

the programmer who sends a method to an object does not need to create the program

by which the method operates. Object methods can be chosen from class libraries. The

object that receives the method does not need to contain the instructions for executing

the method. The object simply needs to know the class to which it has been assigned

membership. Objects will always pull the methods that are appropriate for their own clas-

ses. In object oriented languages, the class libraries subsume the nitty-gritty of program-

ming, and the burden of holding all the information required by data objects is abstracted

into the class structure of the data domain. Not surprisingly, programs written in object

oriented programming languages are famously short, consisting mostly of one-word

methods, sent to one-word names for complex data objects.

There is one more concept that we must discuss: reflection. If you were to take

introspective data gleaned on-the-fly during the execution of a program and you used

that data to modify the run-time instructions of the same program, then you would be

achieving reflection. There are many situations when reflection might come in handy.

For example, you might use introspection to determine that a data object was created

prior to 2010; and then exclude that data object from subsequent computations

intended to show the average value of measurements performed from 2010 to the

present.

What are the benefits of these object-oriented concepts. For the purposes of Big Data,

object-oriented approaches drive down the complexity of the system. Once the classi-

fication has been created, and all of the data objects are assigned to one and only one

class within the classification, all of the wonderful concepts of object-oriented program-

ming (encapsulation, inheritance, polymorphism, and reflection) come to us gratis. The

methods in the class libraries can be written without knowing anything about the

individual class objects. The instances of class objects can exist unencumbered by

any information pertaining to the classification, other than the name of the class in

which they belong.
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Section 6.4. Case Study: Time Stamping Data

People change and forget to tell each other.
Lillian Hellman, playwright (1905–1984)

Consider the following assertions:

Alexander Goodboy, 34 inches height
Alexander Goodboy, 42 inches height

Alexander Goodboy, 46 inches height
Alexander Goodboy, 52 inches height

At first glance these assertions seem contradictory. How can Alexander Goodboy be 34, 42,

46, and 52 inches tall? The confusion is lifted whenwe add some timing information to the

assertions:

Alexander Goodboy, age 3 years, 34 inches height

Alexander Goodboy, age 5 years, 42 inches height
Alexander Goodboy, age 7 years, 46 inches height
Alexander Goodboy, age 9 years, 52 inches height

All events, measurements and transactions occur at a particular time, and it is essential to

annotate data objects with their moment of creation and with every moment when addi-

tional data is added to the data object (i.e., event times) [2]. It is best to think of data

objects as chronicles of a temporal sequence of immutable versions of the object. In

the case of Alexander Goodboy, the boy changes in height as he grows, but each annotated

version of Alexander Goodboy (e.g., Alexander Goodboy, age 3 years, height 34 inches) is

eternal and immutable. [Glossary Immutability]

Time stamping is nothing new. Ancient scribes were fastidious time stampers. It would

be an unusual Sumerian, Egyptian, or Mayan document that lacked an inscribed date. In

contrast, it is easy to find modern, Web-based news reports that lack any clue to the date

that the Web page was created. Likewise, it is a shameful fact that most spreadsheet data

lacks time stamps for individual data cells. Data sets that lack time stamps, unique iden-

tifiers, and metadata have limited value to anyone other than the individual who created

the data and who happens to have personal knowledge of how the data was created and

what the data means.

Fortunately, all computers have an internal clock. This means that all computer events

can be time stamped. Most programming languages have a method for generating the

epoch time; the number of seconds that have elapsed since a particular moment in time.

On most systems the epoch is the first second of January 1, 1970. Perl, Python, and Ruby

have methods for producing epoch time. For trivia-sake, we must observe that the UUID

time stamp is generated for an epoch time representing the number of seconds elapsed

since the first second of Friday, October 15, 1582 (See Section 5.1, “Unique Identifiers”).

This moment marks the beginning of the Gregorian calendar. The end of the Julian
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calendar occurred on October 4, 1582. The 11 days intervening, from the end of the Julian

calendar to the start of the Gregorian calendar, are lost somewhere in time and space.

From Python’s interactive environment:

import time

print(time.time())
output:

1442353742.456994

if you would like the GMT (Greenwich Mean Time), try this gmtime.py script:

import time

print(time.gmtime())
output:

time.struct_time(tm_year=2017, tm_mon=10, tm_mday=12, tm_hour=14,
tm_min=3, tm_sec=0, tm_wday=3, tm_yday=285, tm_isdst=0)

It is very important to understand that country-specific styles for representing the

date are a nightmare for data scientists. As an example, consider: “2/4/97.” This

date signifies February 4, 1997 in America; and April 2, 1997 in Great Britain and

much of the world. There basically is no way of distinguishing with certainty 2/4/97

and 4/2/97.

It is not surprising that an international standard, the ISO-8601, has been created

for representing date and time [3]. The international format for date and time is: YYYY-

MM-DD hh:mm:ss.

The value “hh” is the number of complete hours that have passed since midnight. The

upper value of hh is 24 (midnight). If hh¼ 24, then the minute and second values must be

zero (think about it). An example of and ISO-8601-compliant data and time is:

1995-02-04 22:45:00

An alternate form, likewise ISO-8601-compliant, is:

1995-02-04T22:45:00Z

In the alternate form, a “T” replaces the space left between the date and the time, indicat-

ing that time follows date. A “Z” is appended to the string indicating that the time and date

are computed for UTC (Coordinated Universal Time, formerly known as GreenwichMean

Time, and popularly known as Zulu time, hence the “Z”).

Here is a Python script, format_time.py, that generates the date and time, compliant

with ISO-8601.

import time, datetime
timenow = time.time()

print(datetime.datetime.fromtimestamp(timenow).strftime('%Y-%m-%d
%H:%M:%S'))
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Here is the output of the format_time.py script:

2015-09-16 07:44:09

It is sometimes necessary to establish, beyond doubt, that a time stamp is accurate and

has not been modified. Through the centuries, a great many protocols have been devised

to prove that a time stamp is trustworthy. One common implementation of a trusted time

stamp protocol involves sending a message digest (i.e., a one-way hash) of a confidential

document to a time stamp authority. The timestamp authority adds a date to the received

message digest and returns a time-annotated message, encrypted with the time stamp

authority’s private key, containing the original one-way hash plus the trusted date. The

received message can be decrypted with the timestamp authority’s public key to reveal

the date/time and the message digest that is unique for the original document. It might

seem as though the trusted time stamp process is a lot of work, but regular users of these

services can routinely process hundreds of documents in seconds.Wewill be revisiting the

subject of time stamps in Chapter 8, Immutability and Immortality. [Glossary Message

digest, Symmetric key, Trusted time stamp]
Section 6.5. Case Study: A Visit to the TripleStore

Before I speak, I have something important to say.
Groucho Marx

Enormous benefits follow when data objects are expressed as triples and assigned to

defined classes. All of the attributes of object oriented programming languages (i.e., inher-

itance, encapsulation, abstraction, and polymorphism) are available to well-organized

collections of triples. Furthermore, desirable features in any set of data, including integra-

tion, interoperability, portability, and introspection are available to data scientists who

analyze triplestore data. Most importantly, when triples are collected as a triplestore, a

simple analysis of the triplestore yields all the relations among data objects, and all the

information needed to assemble every data object,

Here is a small example of a triplestore:

9f0ebdf2̂ ^object_namê ^Class

9f0ebdf2̂ ^propertŷ ^subclass_of
9f0ebdf2̂ ^propertŷ ^property
9f0ebdf2̂ ^propertŷ ^definition

9f0ebdf2̂ ^propertŷ ^object_name
9f0ebdf2̂ ^propertŷ ^instance_of

9f0ebdf2̂ ^subclass_of̂ ^Class
9f0ebdf2̂ ^instance_of̂ ^Class

701cb7ed̂ ^object_namê ^Property
701cb7ed̂ ^subclass_of̂ ^Class
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701cb7ed̂ ^definition̂ ^̂ ^the metadata class
77cb79d5̂ ^object_namê ^instance_of

77cb79d5̂ ^instance_of̂ ^Property
77cb79d5̂ ^definition̂ ^the name of the class to which the object is an

instance
a03fbc3b̂ ^object_namê ^object_name

a03fbc3b̂ ^instance_of̂ ^Property
a03fbc3b̂ ^definition̂ ^word equivalent of its predicate identifying

sequence
de0e5aa1̂ ^object_namê ^subclass_of
de0e5aa1̂ ^instance_of̂ ^Property

de0e5aa1̂ ^definition̂ ^the name of the parent class of the referred object
4b675067̂ ^object_namê ^property

4b675067̂ ^instance_of̂ ^Property
4b675067̂ ^definition̂ ^an identifier a for class property

c37529c5̂ ^object_namê ^definition
c37529c5̂ ^instance_of̂ ^Property

c37529c5̂ ^definition̂ ^the meaning of the referred object
a29c59c0̂ ^object_namê ^dob
a29c59c0̂ ^instance_of̂ ^Property

a29c59c0̂ ^definition̂ ^date of birth, as Day, Month, Year
a34a1e35̂ ^object_namê ^glucose_at_time

a34a1e35̂ ^instance_of̂ ^Property
a34a1e35̂ ^definition̂ ^glucose level in mg/Dl at time drawn (GMT)

03cc6948̂ ^object_namê ^Organism
03cc6948̂ ^subclass_of̂ ^Class

7d7ff42b̂ ^object_namê ^Hominidae
7d7ff42b̂ ^subclass_of̂ ^Organism

7d7ff42b̂ ^propertŷ ^dob
a0ce8ec6̂ ^object_namê ^Homo
a0ce8ec6̂ ^subclass_of̂ ^Hominidae

a0ce8ec6̂ ^propertŷ ^glucose_at_time
a1648579̂ ^object_namê ^Homo sapiens

a1648579̂ ^subclass_of̂ ^Homo
98495efĉ ^object_namê ^Andy Muzeack

98495efĉ ^instance_of̂ ^Homo sapiens
98495efĉ ^dob̂ ^1 January, 2001

98495efĉ ^glucose_at_timê ^87, 02-12-2014 17:33:09

Perusal of the triples provides the following observations:

1. Individual triples are easy to understand, consisting only of a unique

identifier followed by a metadata/data pair. We could have used any
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separator, but in this example, we chose to separate the parts of the triple by a

double caret, “̂ ^”.
7d7ff42b̂ ^subclass_of̂ ^Organism

As noted, the individual parts of the triple are:

7d7ff42b is the identifier
subclass_of is the metadata

Organism is the data

Notice that these triples are expressed in a format different from RDF, Notation3, or Turtle.

Dowe care? Not at all. We know that with a few lines of code, we could convert our triples-

tore into any alternate format we might prefer. Furthermore, our triplestore could be con-

verted into a spreadsheet, in which the identifiers are record keys, the metadata are

column headings, and the data occupy cells.We could also port our triples into a database,

if we so desired.

2. Using triples, we have defined various classes and properties. For example:
03cc6948̂ ^object_namê ^Organism
03cc6948̂ ^subclass_of̂ ^Class
With one triple, we create a new object, with name Organism, and we associate it with a

unique identifier (03cc6948). With another triple, we establish that the Organism object is

a class that happens to be the child class of the root class, Class. Because Organism is a

subclass of Class, it will inherit all of the properties of its parent class.

Let’s skip down to the bottom of the file:

98495efĉ ^object_namê ^Andy Muzeack

98495efĉ ^instance_of̂ ^Homo sapiens
98495efĉ ^dob̂ ^1 January, 2001

98495efĉ ^glucose_at_timê ^87, 02-12-2014 17:33:09

Here we create a few triples that provide information about a person named Andy

Muzeack. First, we assign a unique identifier to our new object, named Andy Muzeack.

We learn, from the next triple that Andy Muzeack is a member of class Homo Sapiens.

As such, we infer that Andy Muzeack inherits all the properties contained in class Homo

(the parent class of class Homo Sapiens) and all the ancestors of class Homo, leading to the

top, or root ancestor, class Class. We learn that Andy Muzeack has a “dob” of January 1,

2001. By ascending the list of triples, we learn that “dob” is a property, with a unique

identifier (a29c59c0), and a definition, “date of birth, asDay,Month, Year.” Finally, we learn

that Andy Muzeack has a glucose_at_time of “87, 02-12-2014 17:33:09.” Elsewhere in the

triplestore, we find that the “glucose_at_time” metadata is defined as the glucose level in

mg/Dl at time drawn, in Greenwich Mean Time.

If we wished, we could simply concatenate our triplestore with other triplestores that

contain triples relevant to AndyMuzeack. It would notmake any difference how the triples

are ordered. If AndyMuzeack’s identifier is reconcilable, themetadata is defined, and each
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triple is assigned to a class, then we will be able to fully understand and analyze the data

held in the triplestore. [Glossary Reconciliation]

Of course, when we havemillions and billions of triples, we could not perform our ana-

lyses by reading through the file. We would need scripts and/or a database application.

Here is a simple Python script, nested.py, that loads a triplestore into a nested dictionary,

and reads the dictionary items:

import collections, sys, re, string, os
from collections import defaultdict

def make_dictionary():
return defaultdict(make_dictionary)

tripledictionary=defaultdict(make_dictionary)
triple_file = open("triple_2.txt", "r")

for line in triple_file:
line = line.rstrip()
triple_items = line.split("̂ ^")

tripledictionary[triple_items[0]][triple_items[1]][triple_items
[2]] = ""

triple_file.close()
def iter_all(tripledictionary,depth=0):

for key,value in tripledictionary.items():
if (depth == 0):

print("\nidentifier " + key)
else:

print("-"*(depth) + key)

if type(value) is defaultdict:
iter_all(value,depth+1)

iter_all(tripledictionary)

Here is the partial output of the nested.py script:

identifier a34a1e35

-definition
--glucose level in mg/Dl at time drawn (GMT)

-object_name
--glucose_at_time
-instance_of

--Property
identifier a29c59c0

-definition
--date of birth, as Day, Month, Year

-object_name
--dob
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-instance_of
--Property

identifier 7d7ff42b
-object_name

--Hominidae
-subclass_of

--Organism
-property

--dob
identifier a0ce8ec6
-object_name

--Homo
-subclass_of

--Hominidae
-property

--glucose_at_time
identifier 98495efc

-object_name
--Andy Muzeack
-instance_of

--Homo sapiens
-glucose_at_time

--87, 02-12-2014 17:33:09
-dob

--1 January, 2001

The first listed data object, followed by its nested metadata/data pairs, is “a34a1e35.”

identifier a34a1e35

-definition
--glucose level in mg/Dl at time drawn (GMT)

-object_name
--glucose_at_time

-instance_of
--Property

The triples belonging to “a34a1e35” tell us that the data object is a Property. The property’s

name is “glucose_at_time,” and the object is defined as the “glucose level inmg/Dl at time

drawn (GMT).” Had we examined all of the output of the nested.py script, we would have

learned that “glucose_at_time” is a property of Class Homo, the subclass of Class

Hominidae.

The last listed data object is “98495efc.”
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identifier 98495efc
-object_name

--Andy Muzeack
-instance_of

--Homo sapiens
-glucose_at_time

--87, 02-12-2014 17:33:09
-dob

--1 January, 2001

Thetriplesare tellinguswhatwehavepreviously learned; that“98495efc” isamemberofClass

Homo sapiens, namedAndyMuzeack, and that he has a glucose_at_time of 87mg/Dl drawn

at December 2, 2014, at 5:33 Greenwhich Mean Time. He was born on January 1, 2001.

Triplestores can be difficult to understand, at first, owing to the seemingly convoluted

self-definitions of the highest-level classes and properties. For example, must we really

know that a property is a member of Class Property and that Class Property is a subclass

of Class Class? Yes and no. These preliminary triples must exist somewhere, but they need

not appear in every triplestore. Ideally, the high level triples would be stored, for reference,

in an upper level ontology. Most triplestores would have the appearance of a list of

spreadsheet cells with row and column headers attached. The power of a well-designed

triplestore comes from the ease with which they can be merged, integrated, and

introspected.
Section 6.6. Case Study (Advanced): Proof That Big Data
Must Be Object-Oriented

The worst form of inequality is to try to make unequal things equal.
Aristotle

Everyone knows what the meaning of the following equation (or do we?):

x=y

Does it mean that x and y are the same thing? Certainly, if x is equal to zero, and x equals y,

then y must also equal zero. But what if x is the truck blocking my view in traffic? Must

I assume that y is the same truck, also blocking my view in traffic? Or does it mean that

y is the same kind of truck as x, but not blocking my view?

Perhaps the equation is an assignment function, indicating that the value of y is being

assigned to x. In this case, if y is 5, then x is assigned the value of 5. In that case, what hap-

pens when y is incremented by 1, to become y + 1, or 6. Does x, being equal to y, also

become equal to 6, or does it keep its assigned value of 5?

Suppose x is a global variable (i.e., a variable that persists for the life of the executing

program) and y is a local variable (a variable that persists only for the life of the subroutine

in which it is created). Then what happens to x when y’s subroutine ends?
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Maybe the equivalency between x and y indicates that x and y happen to contain the

same types and quantities of data objects. For example x is equivalent to y if x contains an

orange and an apple and y contains an orange and an apple. If y gives x its apple and its

orange, then does x become 2x? If so, then how do we describe the result of a transaction

where y gives x its apple but retains its orange. Do we then have 1.5x and 0.5y. Have we

become guilty of falsely comparing apples and oranges?

What is the point of all this annoying sophistry? The “¼” sign is an example of a poly-

morphic method. Equality can indicate the assignment of a variable, the establishment of

identity, a property of belonging to sets of objects, or any number of alternate meanings.

Each meaning of “¼” is determined by the class of objects it operates upon.

You can see that if the simple “¼” sign is polymorphic, then othermethods that operate

on objects of different types can also be polymorphic. For example, a “rounding” method

applied to a geometric object would be quite different from a “rounding” method applied

to a floating point number.

How does this relate to Big Data? Remember that Big Data is complex, meaning that it

contains heterogeneous data types. When Big Data contains may different types of data

(i.e., may different classes of data objects), we must be prepared to accommodate poly-

morphic methods. The only way to accommodate polymorphic methods is with

object-oriented rules. Doing so guarantees that an object will respond to a method based

on the method’s defined functionality within the object’s class.

Hence, Big Data must be object oriented.
Glossary
Immutability Immutability is the principle that data collected in a Big Data resource is permanent, and

can never bemodified. At first thought, it would seem that immutability is a ridiculous and impossible

constraint. In the real world, mistakes aremade, information changes, and themethods for describing

information changes. This is all true, but the astute Big Data manager knows how to accrue informa-

tion into data objects without changing the pre-existing data. Methods for achieving this seemingly

impossible trick are described in Chapter 8.

Message digest Within the context of this book, “message digest”, “digest”, “HMAC”, and “one-way hash”

are equivalent terms.

Open access A document is open access if its complete contents are available to the public. Open access

applies to documents in the same manner as open source applies to software.

Reconciliation Usually refers to identifiers, and involves verifying an object that is assigned a particular

identifier in one information system will be provided the same identifier in some other system. For

example, if you were assigned identifier 967bc9e7-fea0-4b09-92e7-d9327c405d78 in a legacy record

system, you should like to be assigned the same identifier in the new record system. If that were

the case, your records in both systems could be combined. If you were assigned an identifier in

one system that is different from your assigned identifier in another system, then the two identifiers

must be reconciled to determine that they both refer to the same unique data object (i.e., yourself ).

This may involve creating a link between the two identifiers. Despite claims to the contrary, there is no

possible way by which information systems with poor identifier systems can be sensibly reconciled.

Consider this example. A hospital has two separate registry systems: one for dermatology cases and

another for psychiatry cases. The hospital would like to merge records from the two services.

Because of sloppy identifier and registration protocols, a single patient has been registered 10 times
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in the dermatology system, and 6 times in the psychiatry system, each time with different addresses,

social security numbers, birthdates and spellings of the name. A reconciliation algorithm is applied,

and one of the identifiers from the dermatology service ismatched positively against one of the records

from the psychiatry service. Performance studies on the algorithm indicate that the merged records

have a 99.8% chance of belonging to the same patient. So what? Though the two merged identifiers

correctly point to the same patient, there are 14 (9 + 5) residual identifiers for the patient still

unmatched. The patient’s merged record will not contain his complete clinical history. Furthermore,

in this hypothetical instance, analyses of patient population data will mistakenly attribute one

patient’s clinical findings to as many as 15 different patients, and the set of 15 records in the corrupted

deidentified dataset may contain mixed-in information from an indeterminate number of additional

patients! If the preceding analysis seems harsh, consider thesewords, from theHealthcare Information

and Management Systems Society, “A local system with a poorly maintained or ‘dirty’ master person

index (MPI) will only proliferate and contaminate all of the other systems to which it links” [4].

Symmetric key A key (i.e., a password) that can be used to encrypt and decrypt the same file. AES is an

encryption/decryption algorithm that employs a symmetric key.

For example, you may wish to use the AES protocol to encrypt the file myfile.txt, using the following com-

mand line code:

openssl.exe aes128 -in myfile.txt -out myfile.aes -pass pass:12345

In this example, the encrypted output file is myfile.aes, and the password is “12345”.

To decrypt the encrypted file, you would use the same password that you used to encrypt the file, and

a decrypt instruction (“-d” in this case):

openssl aes128 -d -in myfile.aes -out myfiledecrypted.txt -pass pass:12345

Trusted time stamp It is sometimes necessary to establish, beyond doubt, that a time stamp is accurate

and has not beenmodified. Through the centuries, a great many protocols have been devised to prove

that a time stamp is trustworthy. One of the simplest methods, employed in the late twentieth century,

involved creating a digest of a document (e.g., a concatenated sequence consisting of the first letter of

each line in the document) and sending the sequence to a newspaper for publication in the

“Classifieds” section. After publication of the newspaper, anyone in possession of the original docu-

ment could extract the same sequence from the document, thus proving that the document had

existed on the date that the sequence appeared in the newspaper’s classified advertisements.

Near the end of the twentieth century, one-way hash values become the sequences of choice for trusted

time stampprotocols. Today, newspapers are seldomused to establish trust in time stamps.More com-

monly, a message digest of a confidential document is sent to a time stamp authority that adds a date

to the digest and returns a message, encrypted with the time stamp authority’s private key, containing

the original one-way hash plus the trusted date. The receivedmessage can be decrypted with the time

stamp authority’s public key, to reveal the data/time and themessage digest that is unique for the orig-

inal document. It seems like themodern trusted time stampprotocol is a lot of work, but those who use

these services can quickly and automatically process huge batches of documents.

References
[1] Pearson K. The grammar of science. London: Adam and Black; 1900.

[2] ReedDP.Naming and synchronization in adecentralized computer system.Doctoral Thesis,MIT; 1978.

[3] Klyne G. Newman C. Date and time on the Internet: time stamps. Network Working Group Request for
CommentsRFC:3339, Available from: http://tools.ietf.org/html/rfc3339 [viewedonSeptember 15, 2015].

[4] Patient Identity Integrity. A White Paper by the HIMSS Patient Identity Integrity Work Group.
Available from: http://www.himss.org/content/files/PrivacySecurity/PIIWhitePaper.pdf; December
2009 [viewed September 19, 2012].

http://refhub.elsevier.com/B978-0-12-815609-4.00006-6/rf0010
http://refhub.elsevier.com/B978-0-12-815609-4.00006-6/rf0015
http://tools.ietf.org/html/rfc3339
http://www.himss.org/content/files/PrivacySecurity/PIIWhitePaper.pdf


7
Standards and Data Integration
OUTLINE
Section 7.1. Standards ................................................................................................................. 155

Section 7.2. Specifications Versus Standards ............................................................................. 160

Section 7.3. Versioning ................................................................................................................ 162

Section 7.4. Compliance Issues .................................................................................................... 164

Section 7.5. Case Study: Standardizing the Chocolate Teapot ................................................. 165

Glossary ......................................................................................................................................... 166

References ..................................................................................................................................... 167

Section 7.1. Standards

The nice thing about standards is that you have so many to choose from.
Andrew S. Tanenbaum

Everyone is taught, at an early age, the standard composition of a written letter. You start

with the date, then you include the name and address of your correspondent, then you

write a salutation (e.g., “Dear Abby,”), then comes the body of the letter, followed by a clos-

ing (e.g., “Best wishes,”) and your name and signature on the next lines. It is all rather rigid

and anyone can recognize a page of correspondence, from across the room, just by the

configuration of lines and paragraphs on the page.

Now, consider the reminder notes that you leave for yourself. You might jot a thought

down on a Post-it and hang your Post-it notes on your refrigerator, you might use a small

paper notepad, or youmight write something on your computer or your smartphone. You

might carry a little voice recorder for this purpose. The point is that there are an endless

variety ofmethods whereby people leave notes for themselves, yet there is only one format

for writing a letter to a friend.

The reason for this disparity in available options relates to the important distinction

between self and non-self. When you write a note to yourself, you are free to do as you

please. When you write a note to another person, you must conform to a standard.

The entire concept of data integration, and software interoperability draws from the

same basic rule. If you intend to create your own data to serve your own purposes, then

you need not be concerned with data integration and software interoperability. Everyone

else must toe the line.

Until the last decade or two, most data systems were created for use within one orga-

nization or corporation. The last thing on anyone’s minds was providing access to out-

siders. All this has changed. Today, data means very little if it cannot be integrated with
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related data sources. Today’s software protocols operate with standard application pro-

gramming interfaces thatmediate the interchange of data over operating systems and net-

works. [Glossary Data interfaces]

In small data projects, a single standard will often support the successful interchange

of data. In a Big Data project, data integration and system interoperability might involve

the use of multiple standards with data conforming to multiple versions of each standard.

Sharing the data across networks may involve the use of many different interchange pro-

tocols. The purpose of this chapter is familiarize data managers with standards issues that

are important to Big Data resources.

Standards are sometimes touted as the solution to every data integration issue [1].

When implemented as intended, they can support the exchange of data between hetero-

geneous systems [2]. Such exchanges may involve non-equivalent databases (i.e., data-

bases with different data models, different software holding different types of data).

Exchanges may also involve information transfer between humans and databases, or

between software agents and mechanical devices. Any exchanges between one data

source and another data source can benefit from standards for describing the data and

standards for transferring the data.

Whereas a single, all-purpose, unchanging, and perpetual standard is a blessing for Big

Data managers, an assortment of incompatible standards can be a curse. The utility of

data standards has been undermined by the proliferation of standards, the frequent ver-

sioning of data standards, the intellectual property encumbrances placed upon standards,

the tendency for standards to increase in complexity over time, the abandonment of

unpopular standards, and the idiosyncratic ways in which standards are implemented

by data managers.

Look at the field of information science and the growing role of Big Data in science and

society; it is tempting to believe that the profusion of standards that we see today is the

result of rapid growth in a new field. As the field matures, there will be a filtering-out pro-

cess wherein the weaker standards are replaced by the strongest, most useful standards,

until we reach a point when a few tested and stable standards dominate. This scenariowill

probably never happen. To the contrary, there is every indication that the number of stan-

dards will increase, that the newly created standards will not serve their intended pur-

poses, and that future revisions of these early and inadequate standards will be more

complex and less useful than their inadequate predecessors.

Of course, the future need not be so dreary, but it is worth taking a look at some of the

scientific, economic, legal, and social forces that push us to create more and more stan-

dards of lower and lower quality.

1. There is no guiding force that has either the authority or the popular support to

limit the flood of new standards. They just keep coming

Today, there are thousands of organizations that develop standards; these are called

Standards Development Organizations (SDOs). The development of standards has

become part of the established culture of technology. SDOs may become members of a

Standards Activities Organization, such as the American National Standards Institute



Chapter 7 • Standards and Data Integration 157
(ANSI), which coordinates between Standards Development Organizations and Standards

Organizations, providing guidance and procedures to attain certified new standards.

Above the Standards Activities Organizations are the standards certifying agencies. The

two most important are ISO (International Organization for Standardization) and IEC

(International Electrochemical Commission).

Aside from SDOs, there are independent-minded groups that create their own stan-

dards without following the aforementioned route. These groups often develop standards

for their members of for their own private consumption. They see no reason to make the

effort to follow a path to the ISO or the IEC. There is no way to count the number of inde-

pendent standards that are being created.

In addition to the standards produced by SDOs and independent groups, there are the

de facto standards that seem to arise out of thin air and rapidly gain in popularity. These

represent the “better mousetraps” that somebody builds and to which the world beats a

path. In the long run, de facto standards such as TCP/IP, QWERTY keyboards, PDF files,

andMicrosoft Word DOC documents, will have a much greater influence than any official

standards.

2. Standards can be easy to create, especially if they are narrowly focused.

Many standards are created for a niche audience. When the topic is very narrow, a stan-

dard can be developed in under a month, through the part-time efforts of a fewmotivated

individuals. The time-consuming component of the standards process is vetting; getting

your committee members and your user community to read, understand, approve, sup-

port, and use the finished product. For the technically-minded, the vetting process can be

an insurmountable obstacle. The creators of the standard may not have the stamina,

social skills, money, or influence to produce a popular and widely implemented standard.

Nonetheless, it is relatively easy to write a standards document and publish it as a journal

article or as a Web posting, vetted or not.

3. Standards are highly profitable, with many potential revenue streams.

When there is no industry standard for data representation, then each vendormay prepare

his or her own proprietary datamodel to establish “vendor lock-in.” The customer’s data is

held in the format provided by the vendor. Because the format is proprietary, competing

vendors cannot appropriate the format in their own hardware and software. The customer

becomes locked into the vendor’s original system, upgrades, and add-ons. Proprietary sys-

tems provide vendors with an opportunity to gain customer loyalty, without necessarily

producing a superior product.

One of the purposes of industry-wide standards is to abolish proprietary systems. The

hope is that if every vendor’s software, hardware and data models were equivalent, then

buyers could break away from locked-in systems; the free market would prevail.

Who sits on standards development committees? Who has the time to invest in the

vetting process? Who has the expertise to write a standard? Who can afford to send

representatives across the globe to attend committee meetings? Vendors; vendors write

the standards, vendors vet the standards, and vendors implement the standards.
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Large corporations can afford to send a delegation of standards experts to a standards

committee. Furthermore, the corporation that sends delegates will pay for membership

in the committee. Consequently, the standards committee becomes dependent on corpo-

rations that finance the standards process, and this dependence strengthens the corpora-

tion’s influence. The corporation will work to create a standard that can be technically

supported by the products in place or under development. The standards-making corpo-

rations secure an advantage over competitors who do not participate in the standards

committee meetings and who cannot anticipate the outcome of the standards process

or who cannot comply with finalized rulings for reasons of system incompatibility or sim-

ply because the proposed standard is technically beyond the capacity of their staff.

It is one of the great ironies of informatics that standards are written by the very

same people who are the standard’s intended targets of restraint. Vendors are clever

and have learned to benefit from the standards-making process. In some cases, a mem-

ber of a standards committee may knowingly insert a fragment of patented property

into the standard. After the standard is released and implemented in many different

vendor systems, the patent holder rises to assert the hidden patent. In this case, all

those who implemented the standard may find themselves required to pay a royalty

for the use of some intellectual property sequestered within the standard. The practice

of hiding intellectual property within a standard or device is known as patent farming

or patent ambushing [3]. The patent farmer plants seeds in the standard and harvests

his crop when the standard has grown to maturity; a rustic metaphor for some highly

sophisticated and cynical behavior.

Savvy standards committees take measures to reduce patent farming. This often

takes the form of an agreement, signed by all members of the standards committee,

to refrain from asserting patent claims on the users of the standards. There are several

ways to circumvent these agreements. If a corporation holds patents on components

of a standard, the corporation can sell their patents to a third party. The third party

would be a so-called patent holding company that buys patents in selected technol-

ogies with the intention of eventually asserting patents over an array of related activ-

ities [4]. If the patent holder asserts the patent, the corporation might profit from

patent farming, through their sale of the patent, without actually breaking the agree-

ment. [Glossary Patent farming]

Corporations can profit from standards indirectly by obtaining patents on the uses

of the standard; not on the patent itself. For example, an open standard may have been

created that can be obtained at no cost, is popular among its intended users, and

contains no hidden intellectual property. An interested corporation or individual

may discover a use for the standard that is non-obvious, novel, and useful; these are

the three criteria for awarding patents. The corporation or individual can patent the

use of the standard, without needing to patent the standard itself. The patent holder

will have the legal right to assert the patent over anyone who uses the standard for

the purpose claimed by the patent. This patent protection will apply even when the

standard is free and open.



Chapter 7 • Standards and Data Integration 159
The world of standards is a very strange place. Big Datamanagers are particularly vulner-

able to the legal trappings associatedwith standards becauseBigData is complex anddiverse

and requires different standards for different types of data and for different types of software.

4. Standards are popular (everyone wants one of their own).

Having your own standard is somewhat of a status symbol. Whenever a team of scientists

develops a newmethod, a variant of an oldmethod, and an organizedway of collecting the

data produced by the method, there will be a natural urge to legitimize and aggrandize

their efforts with a new standard. The standard will dictate how the method is used,

and how the data is collected, labeled, and stored. In the late 1990s the most favored

way to represent data was through a new markup language; basically a list of specialized

XML tags and a Schema that dictated the nesting hierarchy of the tags. In almost every

case, these niche markup languages were self-contained constructs that did not re-use

tags from relatedmarkup languages. For example, many different markup languages con-

tained an equivalent tag that described the sample name or the sample identifier, but

these mark-up languages did not refer to pre-existing equivalent tags in other Schemas

(i.e., they did not make use of established namespaces). Consequently, a Babel of markup

languages sprang into existence, with no attempt at harmonizing the languages or sharing

content among the different languages. Thankfully, the markup language fad has passed,

but a basic problem persists. Deep down, scientists believe that their way of organizing

their own data should be the standard for the entire world. This irrational belief accounts

for much of the unchecked proliferation of personalized standards.

5. Most standards are created for reasons that applied in the past, but which

do not apply in the Big Data era.

For the last half century the purpose of a standard was to ensure that everyone who

created a particular type of object (e.g., a physical object, or a document, or a collection

of a specific type of information) would do so in the sameway, so that the objects could be

compared and categorized.

For example, imagine an international standard for death certificates. You would

naturally want each certificate to contain the same information, including the name of

the deceased, identifying information (e.g., date of birth, gender, race), causes of death

and contributing factors, all coded in accordance with a standard nomenclature. With

the cause of death, you would want to find details of the circumstances of the death

(e.g., date and time of death, time at which the certificate was signed). Regarding format,

youmight want every country to list the contents of the document in the same order, num-

bered identically, so that item 4 in a Portuguese death certificate would correspond to item

4 in an Australian certificate. You may want the layout of the documents to be identical

(e.g., name of deceased in the upper left, date of birth of deceased in the upper right).

These restrictions are intended to facilitate comparisons among death certificates world-

wide. This detailed approach to layout is terribly outdated and largely irrelevant to the

purposes of standards in Big Data resources.
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In the Big Data universe the purpose of a standard is not to compare one document

with another document of the same kind; the purpose of a standard is to enable data ana-

lysts to relate data objects within a document to data objects contained in documents of a

different kind.

This last point is the most difficult for people to accept, particularly those people who

have been supporters of data standards and who have used them to good effect in their

work. It is a near-impossible task to convince someone to abandon a paradigm that has

served him or her well. But it is worth a try!

Let us reexamine the role of the standard death certificate in Big Data analysis. The

“cause of death” section will contain the primary cause of death plus any diseases that

contributed to the primary cause of death. Another database, in a hospital information

system, might list various diseases that co-exist in living patients. By comparing data in

the database of death certificates with data in a hospital information system, it may be

possible to find sets of diseases that co-occur with a high risk of death. By comparing

the average age at which a particular disease is associated with death, it may be possible

to predict when a disease under treatment is likely to lead to death. The occurrence of dis-

eases in particular racial groups included in death certificate data may lead to disparities

found in the occurrence of the same diseases in a living population. These are extremely

simple exampleswherein data values included in one standard data set (death certificates)

are compared with data values in another standard data set (Electronic Health Records).

The comparisons are made between selected data values in heterogeneous data sets; the

comparisons are not made between two documents that conform to the same standard.

The phenomenon of data integration over heterogeneous sources is repeated in virtu-

ally every Big Data effort. A real estate property with a known address is matched against

crime statistics collected for its listed zip code. A planting chart based on a list of popular

flowers and vegetableswithin a locality ismatched against a climate zone datasetmatched

to geographic region. A data set of personal buying preferences for a population of indi-

viduals is matched against a list of previously sold items, and their features, and a list of

items-for-sale and their features. In each case, the comparisons are made for data values

held in heterogeneous data sets.

In an earlier era, standards served to create data homogeneity. In the Big Data era,

standards should help us find the data relationships in heterogeneous data sources.
Section 7.2. Specifications Versus Standards

Good specifications will always improve programmer productivity far better than

any programming tool or technique.
Milt Bryce

The two terms, “standards” and “specifications” are used interchangeably in the informat-

ics literature, but they are different from one another in very important ways. A “standard”

is a set of construction rules that tells you how to represent a required set of information.
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For a given subject (i.e., an image, a movie, a legal certificate, a programming language),

the standard tells you exactly how the contents must be organized, from top to bottom,

and the contents that must be included, and how those contents are expressed. For a stan-

dard to have value, it generally requires approval from a standards-certifying organization

(such as the ISO), or from some large and influential industry group.

A specification is a general way of describing objects (i.e., physical objects such as

nuts and bolts or symbolic objects such as numbers) so that anyone can fully under-

stand your intended meaning. Specifications do not force you to include specific types

of information, and do not impose a specific order on the data contained in the docu-

ment. Specifications are not generally certified by a standards organization. Their legit-

imacy depends on their popularity. Examples of specifications are RDF (Resource

Description Framework) produced by the W3C (WorldWide Web Consortium), and

TCP/IP (Transfer Control Protocol/Internet Protocol), maintained by the Internet Engi-

neering Task Force.

The strength of a standard is that it imposes uniformity; the weakness of a standard is

that it has no flexibility and impedes innovation. An engineer might want to manufacture

a cup with a very wide bottom rim and a narrow top rim; or with no handle; or with three

handles; or with an attached computer chip. If the standard prohibits the bottom rim

diameter to exceed the top rim diameter, or requires exactly one handle, or has nomethod

for describing ancillary attachments, then the innovator cannot complywith the standard.

The strength of the specification is that it is highly flexible; the weakness of the spec-

ification that its flexibility allows designers to omit some of the information required to

fully specify the object. In practice, proper implementation of specifications is ensured

by usability tests. If everyone seems to understand your implementation of a specification,

and if your implementation functions adequately, and operates with other systems with-

out problems, then the specification has served its intended purpose.

Both standards and specifications suffer from the following:

1. New versions may appear, without much notice, and the new versions may not

be fully compatible with older versions.

For example, Python 3.x has a somewhat different syntax than Python 2.x. Your Python 2.x

programs will not necessarily run in a Python 3.x environment, and your Python 3.x pro-

grams may not run in a Python 2.x environment. Incompatible programs may run for a

while, and then stop when a conflict arises. Because the glitch is caused by a language

incompatibility, not a programming error, you may find the debugging process

exasperating.

2. Both standards and specifications may be overly complex.

It is easy for a standards committee to create a complex standard or for an organization to

develop a specification language that contains thousands of metadata tags. A complex

standard or specification can easily exceed human comprehension. Data managers

may be hesitant to stake their resource on tools that they cannot understand.
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3. There are too many standards and specifications from which to choose.

Big Data managers would like to stay in conformance with industry standards. The prob-

lem is that Big Data serves many different purposes andmust comply withmany different

standards, all at the same time.

After a standard has been created, there follows a Darwinian struggle for supremacy.

Standards committees sometimes display group behavior that can be described as anti-

social or even sociopathic. They want their standard to be the only standard used in a data

domain. If there are other standards in the data domain, they sometimes use coercive

methods to force everyone to use their standard.

The most common coercive argument involves threatening colleagues with the

inflated claim that everyone will be using the standard; failing to switch to the standard

will result in loss of business opportunities. The proponents of a standard may suggest

that those who fail to adopt the standard will be ostracized and marginalized by their col-

leagues. I have personally heard coercive arguments from some of my colleagues who, in

every other respect, are decent and altruistic individuals. The reason for their nastiness

often comes down to economics. Vendors and Big Data managers select a standard in

the full knowledge that a poor choice may bring financial ruin. If the vendor builds a data

model to fit a standard, and their market does not adapt the standard, then they will not be

able to sell their software. If a Big Data manager annotates terabytes of data in confor-

mance with an ontology that is soon-to-be-abandoned by its user community, then the

value of the resource will plummet. Nevertheless, there can be no excuses for bad behav-

ior; coercion should not be tolerated.

A few commonsense measures might help the data manager:

– Learn how to decompose the standard document into an organized collection of

data objects that can be merged with other data object collections or inserted

into a preferred data model.

– If feasible, avoid using any standard as your data object model for the resource. It is

often best tomodel your own data in a simple but flexible format that can be ported

into any selected standard, as needed.

– Know the standards you use. Read the license agreements. Keep your legal staff

apprised of your pending decisions.

– Try your best to use standards that are open source or that belong to the public

domain. [Glossary Public domain]
Section 7.3. Versioning

I visited the Sage of reverend fame

And thoughtful left more burden’d than I came.

I went- - and ere I left his humble door

The busy World had quite forgot his name.
Ecclesiastes
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In the year 2000 I attended a workshop in San Diego whose purpose was to introduce

pathologists to new, standardized protocols for describing different types of cancer spec-

imens (e.g., cancer of the adrenal gland, cancer of the prostate, cancer of the lung, etc.)

This was not the first such standardization effort. Over the past decade, several groups

had been pushing for standards that would ensure that pathology reports prepared in

any United States hospital would contain the same kind of information for a given type

of specimen. Having a reporting standard seemed like a good idea, but as I looked at

the protocols I saw lots of problems. Lists of required items seemed incomplete andmany

of the descriptors were poorly defined. Some of the descriptors were non-qualitative and

required subjective data. The final reports would not be highly reproducible between lab-

oratories or within a single laboratory. These deficiencies are par for the course in any

standards effort. I asked the chairman how she planned to deal with producing and con-

trolling new versions of the standard. She replied that because the standards had been pre-

pared by experts and thoroughly tested by a panel of implementers, there would be no

need to develop new versions of the standard. She was telling me that the new standard

had been born perfect! Eighteen years have passed, during which time the standards have

been subjected to unceasing modifications. [Glossary Reproducibility]

For most types of standards and specifications, versioning is a requirement. Nomen-

clatures in every area of science and technology are constantly being updated. Every year,

the Medical Subject Headings comes out with an updated version. Some nomenclatures

are actually named according to the version (e.g., ICD-10 is the tenth version of the Inter-

national Classification of Diseases). New versions of nomenclatures are not simple expan-

sions of older versions. Aside from the addition of new terms, old terms must be retired,

and new coding sequences are sometimes created. The relationships among terms (i.e.,

the class or classes to which a term belongs) might change.

Without exception, all large nomenclatures are unstable. Changes in a nomenclature

may have a ripple effect, changing the meaning of terms that are not included in the

nomenclature. Here is an example from the world of mycology (the study of fungi). When

the name of a fungus changes, so must the name of the associated infection. Consider

“Allescheria boydii,” People infected with this organisms were said to suffer from the dis-

ease known as allescheriasis. When the organism’s name was changed to Petriellidium

boydii, the disease name was changed to petriellidosis. When the fungal name was chan-

ged, once more, to Pseudallescheria boydii, the disease name was changed to pseudal-

lescheriasis [5]. All three names appear in the literature (past and present). In this case,

changes in the fungal nomenclature necessitate reciprocal changes in every disease

nomenclature. Such changes may require months, years, and even decades to adjudicate

and finalize in the newer version of the nomenclature. Within this period, the term may

change again and the corrected version of the disease nomenclature may be obsolete on

its release date.

We discussed classifications and ontologies in Chapter 5. Classifications have a very

strong advantage over ontologies with regard to the ease of versioning. Because each class

in a classification is restricted to a single parent, the hierarchical tree of a classification is
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simple. When a class needs to be repositioned in the classification tree, it is a simple mat-

ter tomove the class, with its intact branches, to another node on the tree. We do this from

time to time with the classification of living organisms.

Unlike the case with uniparental classifications, it is virtually impossible to make

sweeping changes in multiparental ontologies. In every complex ontology, we can expect

to encounter class branches insinuated across multiple classes. A class cannot simply be

cut and repositioned elsewhere. The more complex the ontology, the more difficult it is to

modify its structure.
Section 7.4. Compliance Issues

It’s not worth doing something unless someone, somewhere, would much rather you

weren’t doing it.
Terry Pratchett.

When it comes to complex standards, compliance is in the eye of the beholder.

One vendor’s concept of standard-compliant software might be entirely different

from another vendor’s concept. Standards organizations seldom have the time, man-

power, money, or energy to ensure compliance with their standards; consequently, the

implementations of standards are often non-standard and incompatible with one

another.

In large part, non-compliance is caused by the instability of modern standards. As we

have seen, standards themselves may contain flaws related to the complexity of the tech-

nologies theymodel. When a technology outpaces the standard built for the technology, it

may be impossible for businesses to adequately model all of their data and processes

within the standard.

Small businesses may not have the manpower to keep abreast of every change in a

complex standard. Large businesses may have the staff and the expertise to stay compli-

ant; but they may lack the incentive. If they produce a product that works well, and is

believed, wrongly or not, to be compliant with a standard, then it may be in the best inter-

est of the business to purposefully introduce a bit of non-compliance. The expectation

being that small deviations from the standard will create incompatibilities between their

products and their competitors; thus achieving vendor lock-in. Their customers will be

loath to switch to another vendor’s products if they fear that their original system will

not support software or hardware produced by rival companies.

Compliance with specifications is, in general, much easier than compliance with stan-

dards. Data specifications provide a syntax and a general method for describing data

objects, without demanding much in the way of structuring the data. In most cases, it

is relatively easy to produce a program that determines whether a file conforms to a

specification.

When a file conforms to the syntax of a specification, it is said to be well formed. When

a file conforms to a document that describes how certain types of objects should be
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annotated (e.g., which tags should be used, the relationships among tags, the data value

properties that can be assigned to tags, the inclusion of all required tags), then the file is

said to be valid. A file that is fully compliant with a specification is said to be well formed

and valid.

In the case of RDF (as discussed in Section 4.5), a well-formed documentwould comply

with RDF syntax rules. A valid file would conform to the classes and properties found in

the RDF Schemas linked from within the RDF statements contained in the file.
Section 7.5. Case Study: Standardizing the Chocolate Teapot

History doesn’t repeat itself, but it rhymes.
Attributed variously to Mark Twain and to Joseph Anthony Wittreich

MalcolmDuncan has posted an insightful and funny essay entitled “The Chocolate Teapot

(Version 2.3)” [6]. In this essay, he shows how new versions of nomenclatures may unin-

tentionally alter the meanings of classes of terms contained in earlier versions, making it

impossible to compare or sensibly aggregate and interpret terms and concepts contained

in any of the versions. The essay is a must-read for anyone seriously interested in termi-

nologies, but we can examine a few of the points raised by Duncan.

Suppose you have a cooking-ware terminology with a single “teapot” item. We will call

this Version 1.0. Early teapots were made of porcelain and porcelain came in two colors;

white and blue. Version 2 of the terminology might accommodate the two sub-types: blue

teapot and white teapot. If a teapot were neither blue nor white, it would presumably

be coded under the parent term, “teapot.” Suppose version 3 expands to accommodate

some new additions to the teapot pantheon: chocolate teapot, ornamental teapot, china

teapot, and industrial teapot. Now the teapot world is shaken by a tempest ofmonumental

proportions. The white and the blue teapots, implicitly considered to be made of porce-

lain, like all china teapots, stand divided across the subtypes. How does one deal with a

white porcelain teapot that is not a china teapot? If we had previously assumed that a tea-

pot was an item in which tea is made, how do we adjust, conceptually, to the new term

“ornamental teapot?” If the teapot is ornamental, then it has no tea-making functionality,

and if it cannot be used to make tea, how can it be a teapot? Must we change our concept

of the teapot to include anything that looks like a teapot? If so, how can we deal with the

new term “industrial teapot,” which is likely to be a big stainless steal vat that has more in

common, structurally, with a microbrewery fermenter than with an ornamental teapot?

What is the meaning of a chocolate teapot? Is it something made of chocolate, is it

chocolate-colored, or does it brew chocolate-flavored tea? Suddenly we have lost the abil-

ity to map terms in version 3 to terms in versions 1 and 2. We no longer understand the

classes of objects (i.e., teapots) in the various versions of our cookware nomenclature.

We cannot unambiguously attach nomenclature terms to objects in our data collection

(e.g., blue china teapot). We no longer have a precise definition of a teapot or of the sub-

types of teapot.
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Glossary
Data interfaces Interfaces to Big Data resources often come in one of several types including:

Direct user interfaces. These interfaces permit individuals to submit simple queries, constructed within a

narrow range of options, producing an output that is truncated to produce a manageable visual dis-

play. Google is an example. You never knowwhat information is excluded from the indexed resource, or

exactly how the search is conducted, and the outputmay ormay not have the results you actually need.

Regarding the actual query, it is limited to words and phrases entered into a box, and although it per-

mits some innovative methods to specify the query, it does not permit you to enter hundreds of items

at once, or to search based on a user-invented algorithms, or to download the entire search output into

a file. Basically, Google gives users the opportunity to enter a query according to a set of Google-

specified query rules, and Google provides an output. What happens in the very short moment that

begins when the query has been launched, and ends when the reply is displayed, is something that

only Google fully understands. For most users, the Google reply may as well be conjured by magic.

Programmer or software interfaces. These are standard commands and instructions that a data service

releases to the public, and that individual developers can use to link to and interact with the service.

The usual term applied to these interfaces is API (Application Programming Interface), but other

related terms, including SaaS (Software as a Service) might also apply. Amazon is an example of a com-

pany that provides an API. Web developers can use the Amazon API to link to information related to

specific Amazon products. Current information for the product can be displayed on the third party

Web site, and a buyer’s link can broker a purchase. The API enables transactions to be completed

through interactions between the developer’s software and the company’s software.

Autonomous agent interfaces. These are programs that are launched into a network of communicating

computers, carrying a query. The program contains communication and interface protocols that

enable it to interrogate various databases. The response from a database is stored and examined.

Depending on the information received, the autonomous agent might proceed to another database

or may modify its interrogation of the first database. The agent continues to collect and process infor-

mation, traveling to different networked databases in the process. At some point, the software program

returns to the client (the user who initiated the query) with its collected output. Web crawlers, familiar

to anyone who reviews Internet server logs, are somewhat primitive examples of partly autonomous

software agents. They use an interface (Internet protocols) to visit servers, conducting an inventory of

the contents, and visiting other servers based on the addresses of links listed on Web pages. If a Big

Data resource opens its data to programs that employ a compatible communications protocol (such

as a Web services language), then the problem of constructing a software agent becomes relatively

straightforward. Opening a system to autonomous agents comes with risk. The consequences of open-

ing a system to complex interactions with innumerable agents, each operating under its own set of

instructions, is difficult, or impossible, to predict and control [7].

Patent farming Also known as patent ambushing [3]. The practice of hiding intellectual property within a

standard or device, at the time of its creation, is known as patent farming. After the property is mar-

keted, the patent farmer announces the presence of his or her hidden patentedmaterial and presses for

royalties; metaphorically harvesting his crop.

Public domain Data that is not owned by an entity. Public domain materials include documents whose

copyright terms have expired, materials produced by the federal government, materials that contain

no creative content (i.e., materials that cannot be copyrighted), or materials donated to the public

domain by the entity that holds copyright. Public domain data can be accessed, copied, and

re-distributed without violating piracy laws. It is important to note that plagiarism laws and rules

of ethics apply to public domain data. You must properly attribute authorship to public domain doc-

uments. If you fail to attribute authorship or if you purposefully and falsely attribute authorship to the

wrong person (e.g., yourself ), then this would be an unethical act and an act of plagiarism.
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Reproducibility Reproducibility is achieved when repeat studies produce the same results, over and over.

Reproducibility is closely related to validation, which is achieved when you draw the same conclu-

sions, from the data, over and over again. Implicit in the concept of “reproducibility” is that the original

research must somehow convey the means by which the study can be reproduced. This usually

requires the careful recording of methods, algorithms, and materials. In some cases, reproducibility

requires access to the data produced in the original studies. If there is no feasible way for scientists

to undertake a reconstruction of the original study, or if the results obtained in the original study can-

not be obtained in subsequent attempts, then the study is irreproducible. If the work is reproduced,

but the results and the conclusions cannot be repeated, then the study is considered invalid.
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Section 8.1. The Importance of Data That Cannot Change

Cheese is milk’s leap toward immortality
Clifton Fadiman (editor of Mathematical Magpie)

Immutability is one of those issues, like identifiers and introspection, that seem unimpor-

tant, until something goes terribly wrong. Then, in the midst of the problem, you realize

that your entire information system was designed incorrectly, and there really is nothing

you can do to cope.

Here is an example of a immutability problem. You are a pathologist working in a uni-

versity hospital that has just installed a new, $600million information system. On Tuesday,

you released a report on a surgical biopsy, indicating that it contained cancer. On Friday

morning, you showed the same biopsy to your colleagues, who all agreed that the biopsy

was not malignant, and contained a benign condition that simulated malignancy (looked

a little like a cancer, but was not). Your original diagnosis was wrong, and now you must

rectify the error. You return to the computer, and access the prior report, changing the

wording of the diagnosis to indicate that the biopsy is benign. You can do this, because

pathologists are granted “edit” access for pathology reports. Now, everything seems to

have been set right. The report has been corrected, and the final report in the computer

is the official diagnosis.

Unknown to you, the patient’s doctor read the incorrect report on Wednesday, the day

after the incorrect report was issued, and two days before the correct report replaced the

incorrect report. Major surgery was scheduled for the followingWednesday (five days after

the corrected report was issued). Most of the patient’s liver was removed. No cancer was
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found in the excised liver. Eventually, the surgeon and patient learned that the original

report had been altered. The patient sued the surgeon, the pathologist, and the hospital.

You, the pathologist, argued in court that the computer held one report issued by the

pathologist (following the deletion of the earlier, incorrect report) and that report was cor-

rect and available to the surgeon prior to the surgery date. Therefore, you said, you made

no error. The patient’s lawyer had access to a medical chart in which paper versions of the

diagnosis had been kept. The lawyer produced, for the edification of the jury, two reports

from the same pathologist, on the same biopsy: one positive for cancer, the other negative

for cancer. The hospital, conceding that they had no credible defense, settled out of

court for a very large quantity of money. Meanwhile, back in the hospital, a fastidious

intern is deleting an erroneous diagnosis, and substituting her improved rendition.

One of the most important features of serious Big Data resources (such as the data col-

lected in hospital information systems) is immutability. The rule is simple. Data is immor-

tal and cannot change. You can add data to the system, but you can never alter data and

you can never erase data. Immutability is counterintuitive to most people, including most

data analysts. If a patient has a glucose level of 100 onMonday, and the same patient has a

glucose level of 115 on Tuesday, then it would seem obvious that his glucose level changed

betweenMonday and Tuesday. Not so. Monday’s glucose level remains at 100. For the end

of time, Monday’s glucose level will always be 100. On Tuesday, another glucose level was

added to the record for the patient. Nothing that existed prior to Tuesday was changed.

[Glossary Serious Big Data]
Section 8.2. Immutability and Identifiers

People change and forget to tell each other.
Lillian Hellman

Immutability applies to identifiers. In a serious Big Data resource, data objects never

change their identity (i.e., their identifier sequences). Individuals never change their

names. A person might add a married name, but the married name does not change

the maiden name. The addition of a married name might occur as follows:

18843056488 is_a patient

18843056488 has_a maiden_name
18843056488 has_a married_name
9937564783 is_a maiden_name

4401835284 is_a married_name
18843056488 maiden_name Karen Sally Smith

18843056488 married_name Karen Sally Smythe

Here, we have a woman named Karen Sally Smith. She has a unique, immutable identifier,

“18843056488.” Her patient record has various metadata/data pairs associated with her

unique identifier. Karen is a patient, Karen has a maiden name, and Karen has a married



Chapter 8 • Immutability and Immortality 171
name. The metadata tags that describe the data that is associated with Karen include

“maiden_name” and “married_name.” These metadata tags are themselves data objects.

Hence, they must be provided with unique, immutable identifiers. Though metadata tags

are themselves unique data objects, each metadata tag can be applied to many other data

objects. In the following example, the unique maiden_name and married_name tags are

associated with two different patients.

9937564783 is_a maiden_name
4401835284 is_a married_name

18843056488 is_a patient
18843056488 has_a maiden_name

18843056488 has_a married_name
18843056488 maiden_name Karen Sally Smith

18843056488 married_name Karen Sally Smythe
73994611839 is_a patient
73994611839 has_a maiden_name

73994611839 has_a married_name
73994611839 maiden_name Barbara Hay Wire

73994611839 married_name Barbara Haywire

The point here is that patients may acquire any number of names over the course of their

lives, but the Big Data resource must have a method for storing, and describing each of

those names and associating them with the same unique patient identifier. Everyone

who uses a Big Data resource must be confident that all the data objects in the resource

are unique, identified, and immutable.

By now, you should be comfortable with the problem confronted by the pathologist

who changed his mind. Rather than simply replacing one report with another, the pathol-

ogist might have issued a modification report, indicating that the new report supercedes

the earlier report. In this case, the information system does not destroy or replace the ear-

lier report, but creates a companion report. As a further precaution the information sys-

temmight flag the early report with a link to the ensuant entry. Alternately, the information

systemmight allow the pathologist to issue an addendum (i.e., add-on text) to the original

report. The addendum could have clarified that the original diagnosis is incorrect, stating

the final diagnosis is the diagnosis in the addendum. Another addendum might indicate

that the staff involved in the patient’s care was notified of the updated diagnosis. The parts

of the report (including any addenda) could be dated and authenticated with the elec-

tronic signature of the pathologist. Not one byte in the original report is ever changed.

Had these procedures been implemented, the unnecessary surgery, the harm inflicted

on the patient, the lawsuit, and the settlement,might have all been avoided. [GlossaryDig-

ital signature]

The problem of updating diagnoses may seem like a problem that is specific for the

healthcare industry. It is not. The content of Big Data resources is constantly changing;

the trick is to accommodate all changes by the addition of data, not by the deletion or
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modification of data. For example, suppose a resource uses an industry standard for cat-

alog order numbers assigned to parts of an automobile. These 7-digit numbers are used

whenever a part needs to be purchased. The resource may inventory millions of different

parts, each with an order number annotation. What happens when the standard suddenly

changes, and 12-digit numbers replace all of the existing 7-digit numbers? A well-

managed resource will preserve all of the currently held information, including the meta-

data tag that describe the 7-digit standard and the 7-digit order number for each part in

the resource inventory. The new standard, containing 12-digit numbers, will have a differ-

entmetadata tag from the prior standard, and the newmetadata/data pair will be attached

to the internal identifier for the part. This operation will work if the resource maintains its

own unique identifiers for every data object held in the resource and if the data objects in

the resource are associated with metadata/data pairs. All of these actions involve adding

information to data objects, not deleting information.

In the days of small data, this was not much of a problem. The typical small data sce-

nario would involve creating a set of data, all at once, followed soon thereafter by a

sweeping analytic procedure applied against the set of data, culminating in a report that

summarized the conclusions. If there was some problem with the study, a correction

would be made, and everything would be repeated. A second analysis would be per-

formed in the new and improved data set. It was all so simple.

A procedure for replicative annotations to accommodate the introduction of new

standards and nomenclatures as well as new versions of old standards and nomen-

clatures is one of the more onerous jobs of the Big Data curator. Over the years,

dozens of new or additional annotations could be required. It should be stressed that

replicative annotations for nomenclatures and standards can be avoided if the data

objects in the resource are not tied to any specific standard. If the data objects are

well specified (i.e., providing adequate and uniform descriptions), queries can be

matched against any standard nomenclature on-the-fly (i.e., as needed, in response

to queries), as previously discussed in Section 2.5, “Autocoding” [1]. [Glossary

Curator]

Why is it always bad to change the data objects held in a Big Data resource? Though

there are many possible negative repercussions to deleting and modifying data, most of

the problems come down to data verification, and time stamping. All Big Data resources

must be able to verify that the data held in the resource conforms to a set of protocols for

preparing data objects and measuring data values. When you change pre-existing data,

all of your efforts at resource verification are wasted, because the resource that you once

verified no longer exists. The resource has become something else. Aside fromproducing

an unverifiable resource, you put the resource user into the untenable position of decid-

ing which data to believe; the old data or the new data. Time stamping is another com-

ponent of data objects. Events (e.g., a part purchased, a report issued, a file opened) have

no meaning unless you know when they occurred. Timestamps applied to data objects

must be unique and immutable. A single event cannot occur at two different times.

[Glossary Time stamp, Verification and validation]
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– Immortal Data Objects

In Section 6.2, we defined the term “data object.” To review, a data object is a collection of

triples that have the same identifier. A respectable data object should always encapsulate

two very specific triples: one that tells us the class to which the data object holds mem-

bership, and another that tells us the name of the parent class from which the data object

descends. When these two triples are included in the data object, we can apply the logic

and the methods of object-oriented programming to Big Data objects.

In addition, we should note that if the identifier and the associatedmetadata/data pairs

held by the data object are immutable (as theymust be, vida supra), and if all the data held

in the Big Data resource is preserved indefinitely (as it should be), then the data objects

achieve immortality. If every data object has metadata/data pairs specifying its class and

parent class, then all of the relationships among every data object in the Big Data resource

will apply forever. In addition, all the class-specific methods can be applied to objects

belonging to its class and its subclass descendants, can always be applied; and all of

the encapsulated data can always be reconstructed. This would hold true, even if the data

objects were reduced to their individual triples, scattered across the planet, and deposited

into countless data clouds. The triples could, in theory, reassemble into data objects under

their immortal identifier.

Big Data should be designed to last forever. Hence, Big Data managers must do what

seems to be impossible; they must learn how to modify data without altering the original

content. The rewards are great.
Section 8.3. Coping With the Data That Data Creates

The chief problem in historical honesty isn’t outright lying. It is omission or

de-emphasis of important data.
Howard Zinn

Imagine this scenario. A data analyst extracts a large set of data from a Big Data resource.

After subjecting the data to several cycles of the usual operations (data cleaning, data

reduction, data filtering, data transformation, and the creation of customized data met-

rics), the data analyst is left with a new set of data, derived from the original set. The data

analyst has imbued this new set of data with some added value, not apparent in the orig-

inal set of data.

The question becomes, “How does the data analyst insert her new set of derived

data back into the original Big Data resource, without violating immutability?” The

answer is simple but disappointing; re-inserting the derived data is impossible,

and should not be attempted. The transformed data set is not a collection of original

measurements; the data manager of the Big Data Resource can seldom verify it. Data

derived from other data (e.g., age-adjustments, normalized data, averaged data

values, and filtered data) will not sensibly fit into the data object model upon which
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the resource was created. There simply is no substitute for the original and

primary data.

The data analyst should make her methods and her transformed data available for

review by others. Every step involved in creating the new data set needs to be carefully

recorded and explained, but the transformed set of data should not be absorbed back into

the resource. The Big Data resource may provide a link to sources that hold the modified

data sets. Doing so provides the public with an information trail leading from the original

data to the transformed data prepared by the data analyst. [Glossary Raw data]
Section 8.4. Reconciling Identifiers Across Institutions

Mathematics is the art of giving the same name to different things.
Henri Poincare

In math, we are taught that variables are named “x” or “y,” or sometimes “n,” (if you are

sure the variable is an integer). Using other variable names, such as “h” or “s,” is just asking

for trouble. Computer scientists have enlarged their list of familiar variables to include

“foo” and “bar.” A long program with hundreds of different local variables, all named

“foo” is unreadable, even to the person who wrote the code. The sloppiness with which

mathematicians and programmers assign names has carried over into the realm of Big

Data. Sometimes, it seems that data professionals just don’t care much about how we

name our data records, just so long as we have lots of them to play with. Consequently,

we must deal with the annoying problem that arises when multiple data records, for

one unique object, are assigned different identifiers (e.g., when identifier x and identifier

y and identifier foo all refer to the same unique data object). The process of resolving iden-

tifier replications is known as reconciliation. [Glossary Metasyntactic variable]

In many cases, the biggest obstacle to achieving Big Data immutability is data record

reconciliation [2].When different institutionsmerge their data systems, it is crucial that no

data is lost, and all identifiers are sensibly preserved. Cross-institutional identifier recon-

ciliation is the process whereby institutions determine which data objects, held in differ-

ent resources, are identical (i.e., the same data object). The data held in reconciled

identical data objects can be combined in search results, and the identical data objects

themselves can be merged (i.e., all of the encapsulated data can be combined into one

data object), when Big Data resources are integrated, or when legacy data is absorbed into

a Big data resource.

In the absence of successful reconciliation, there is no way to determine the unique

identity of records (i.e., duplicate data objects may exist across institutions and data

users will be unable to rationally analyze data that relates to or is dependent upon

the distinctions among objects in a data set). For all practical purposes, without data

object reconciliation, there is noway to understand data received frommultiple sources.
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Reconciliation is particularly important for healthcare agencies. Some countries

provide citizens with a personal medical identifier that is used in every medical facility

in the nation. Hospital A can send a query to Hospital B for medical records pertaining

to a patient sitting Hospital A’s emergency room. The national patient identifier insures

that the cross-institutional query will yield all of Hospital B’s data on the patient, and will

not include data on other patients. [Glossary National Patient Identifier]

Consider the common problem of two institutions trying to reconcile personal

records (e.g., banking records, medical charts, dating service records, credit card infor-

mation). When both institutions are using the same identifiers for individuals in their

resources, then reconciliation is effortless. Searches on an identifier will retrieve all

the information attached to the identifier, if the search query is granted access to

the information systems in both institutions. However, universal identifier systems

are rare. If any of the institutions lack an adequate identifier system, the data from

the systems cannot be sensibly reconciled. Data pertaining to a single individual may

be unattached to any identifier, attached to one or more of several different identifiers,

or mixed into the records of other individuals. The merging process would fail, at

this point.

Assuming both institutions have adequate identifiers, then the two institutions must

devise a method whereby a new identifier is created, for each record, that will be identical

to the new identifier created for the same individual’s record, in the other institution. For

example, suppose each institution happens to store biometric data (e.g., retinal scan, DNA

sequences, fingerprints), then the institutionsmight agree on a way to create a new identifier

validated against these uniquemarkers.With some testing, they could determinewhether the

new identifier works as specified (i.e., either institution will always create the same identifier

for the same individual, and the identifier will never apply to any other individual). Once test-

ing is finished, the new identifiers can be used for cross-institutional searches.

Lacking a unique biometric for individuals, reconciliation between institutions is

feasible, but difficult. Some combination of identifiers (e.g., date of birth, social secu-

rity number, name)might be developed. Producing an identifier from a combination of

imperfect attributes has its limitations (as discussed in detail in Section 3.4, “Really

Bad Identifier Methods”), but it has the advantage that if all the pre-conditions of

the identifier are met, errors in reconciliation will be uncommon. In this case, both

institutions will need to decide how they will handle the set of records for which there

is no identifier match in the other institution. They may assume that some individuals

will have records in both institutions, but their records were not successfully

reconciled by the new identifier. They may also assume that unmatched group

contains individuals that actually have no records in the other institution. Dealing with

unreconciled records is a nasty problem. In most cases, it requires a curator to slog

through individual records, using additional data from records or new data supplied

by individuals, to make adjustments, as needed. This issue will be explored further,

in Section 18.5, “Case Study: Personal Identifiers.”
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Section 8.5. Case Study: The Trusted Timestamp

Time is what keeps everything from happening at once.
Ray Cummings in his 1922 novel, “The Girl in the Golden Atom”

Time stamps are not tamper-proof. In many instances, changing a recorded time resid-

ing in a file or data set requires nothing more than viewing the data on your computer

screen and substituting one date and time for another. Dates that are automatically

recorded, by your computer system, can also be altered. Operating systems permit users

to reset the system date and time. Because the timing of events can be altered, scrupu-

lous data managers employ a trusted timestamp protocol by which a timestamp can be

verified.

Here is a description of how a trusted time stamp protocol might work. You have

just created a message, and you need to document that the message existed on the

current date. You create a one-way hash on the message (a fixed-length sequence of

seemingly random alphanumeric characters). You send the one-way hash sequence

to your city’s newspaper, with instructions to publish the sequence in the classified

section of that day’s late edition. You are done. Anyone questioning whether the mes-

sage really existed on that particular date can perform their own one-way hash on the

message and compare the sequence with the sequence that was published in the city

newspaper on that date. The sequences will be identical to each other. [Glossary One-

way hash]

Today, newspapers are seldom used in trusted time stamp protocols. A time authority

typically receives the one-way hash value on the document, appends a time, and encrypts

a message containing the one-way hash value and the appended time, using a private key.

Anyone receiving this encrypted message can decrypt it using the time authority’s public

key. The onlymessages that can be decryptedwith the time authority’s public key aremes-

sages that were encrypted using the time authority’s private key; hence establishing that

the message had been sent by the time authority. The decrypted message will contain the

one-way hash (specific for the document) and the time that the authority received the

document. This time stamp protocol does not tell you when the message was created;

it tells you when the message was stamped.
Section 8.6. Case Study: Blockchains and Distributed Ledgers

It’s worse than tulip bulbs.
JP Morgan CEO Jamie Dimon, referring to Bitcoin, a currency exchange system based on

blockchains

Today, no book on the subject of Big Data would be complete without some mention of

blockchains, which are likely to play an important role in the documentation and

management of data transactions for at least the next decade, or until something better



Chapter 8 • Immutability and Immortality 177
comes along. Fortunately, blockchains are built with two data structures that we have

already introduced: one-way hashes and triples. All else is mere detail, determined by

the user’s choice of implementation.

At its simplest, a blockchain is a collection of short data records, with each record con-

sisting of some variation on the following:

<head>-<message>-<tail>

Here are the conditions that the blockchain must accommodate:

1. The head (i.e., first field) in each blockchain record consists of the tail of the preceding

data record.

2. The tail of each data record consists of a one-way hash of the head of the record

concatenated with the record message.

3. Live copies of the blockchain (i.e., a copy that grows as additional blocks are added) are

maintained on multiple servers.

4. A mechanism is put in place to ensure that every copy of the blockchain is

equivalent to one another, and that when a blockchain record is added, it is added to

every copy of the blockchain, in the same sequential order, and with the same

record contents.

We will soon see that conditions 1 through 3 are easy to achieve. Condition 4 can be prob-

lematic, and numerous protocols have been devised, with varying degrees of success, to

ensure that the blockchain is updated identically, at every site. Most malicious attacks on

blockchains are targeted against condition 4, which is considered to be the most vulner-

able point in every blockchain enterprise.

By convention, records are real-time transactions, acquired sequentially, so that we can

usually assume that the nth recordwas created at amoment in time prior to the creation of

the n+1th record.

Let us assume that the string that lies between the head and the tail of each record is a

triple. This assumption is justified because all meaningful information can be represented

as a triple or as a collection of triples.

Here is our list of triples that we will be blockchaining.

a0ce8ec6̂ ^object_namê ^Homo

a0ce8ec6̂ ^subclass_of̂ ^Hominidae
a0ce8ec6̂ ^propertŷ ^glucose_at_time
a1648579̂ ^object_namê ^Homo sapiens

a1648579̂ ^subclass_of̂ ^Homo
98495efĉ ^object_namê ^Andy Muzeack

98495efĉ ^instance_of̂ ^Homo sapiens
98495efĉ ^dob̂ ^1 January, 2001

98495efĉ ^glucose_at_timê ^87, 02-12-2014 17:33:09

Let us create our own blockchain using these nine triples as our messages.
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Each blockchain record will be of the form:

<tail of prior blockchain link——the current record's triple——md5 hash
of the current triple concatenated with the header>

For example, to compute the tail of the second link, we would perform an md5 hash on:

ufxOaEaKfw7QBrgsmDYtIw——a0ce8ec6̂ ^subclass_of̂ ^Hominidae

Which yields:

=> PhjBvwGf6dk9oUK/+yxrCA

The resulting blockchain is shown here.

a0ce8ec6̂ ^object_namê ^Homo——ufxOaEaKfw7QBrgsmDYtIw

ufxOaEaKfw7QBrgsmDYtIw——a0ce8ec6̂ ^subclass_of̂ ^Hominidae——
PhjBvwGf6dk9oUK/+yxrCA
PhjBvwGf6dk9oUK/+yxrCA——a0ce8ec6̂ ^propertŷ ^glucose_at_time——

P40p5GHp4hE1gsstKbrFPQ
P40p5GHp4hE1gsstKbrFPQ——a1648579̂ ^object_namê ^Homo sapiens——

2wAF1kWPFi35f6jnGOecYw
2wAF1kWPFi35f6jnGOecYw——a1648579̂ ^subclass_of̂ ^Homo——

N2y3fZgiOgRcqfx86rcpwg
N2y3fZgiOgRcqfx86rcpwg——98495efĉ ^object_namê ^Andy Muzeack——

UXSrchXFR457g4JreErKiA
UXSrchXFR457g4JreErKiA——98495efĉ ^instance_of̂ ^Homo sapiens——
5wDuJUTLWBJjQIu0Av1guw

5wDuJUTLWBJjQIu0Av1guw——98495efĉ ^glucose_at_timê ^87, 02-12-2014
17:33:09——Y1jCYB7YyRBVIhm4PUUbaA

Whether you begin with a list of triples that you would like to convert into a blockchain

data structure, or whether you are creating a blockchain one record at a time, through

transactions that occur over time, it is easy to write a short script that will generate the

one-way hashes and attach them to the end of the nth triple and the beginning of the

n+1th triple, as needed.

Looking back at our blockchain, we can instantly spot an anomaly, in the header of the

very first record. The header to the record is missing. Whenever we begin to construct a

new blockchain, the first record will have no antecedent record from which a header can

be extracted. This poses another computational bootstrap paradox. In this instance, we

cannot begin until there is a beginning. The bootstrap paradox is typically resolved with

the construction of a root record (record 0). The root record is permitted to break the rules.

Now that we have a small blockchain, what have we achieved? Here are the properties

of a blockchain

– Every blockchain header is built from the values in the entire succession of preceding

blockchain links
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– The blockchain is immutable. Changing any of the messages contained in any of the

blockchain links, would produce a totally different blockchain. Dropping any of the

links of the blockchain or inserting any new links (anywhere other than as an

attachment to the last validated link) will produce an invalid blockchain.

– The blockchain is recomputable. Given the same message content, the entire

blockchain, with all its headers and tails, can be rebuilt. If it cannot recompute, then

the blockchain is invalid.

– The blockchain, in its simplest form, is a trusted “relative time” stamp. Our blockchain

does not tell us the exact time that a record was created, but it gives its relative time of

creation compared with the preceding and succeeding records.

With a little imagination, we can see that a blockchain can be used as a true time stamp

authority, if the exact time were appended to each of the records in the container at the

moment when the record was added to the blockchain. Themessages contained in block-

chain records could be authenticated by including data encrypted with a private key. Tam-

pering of the blockchain data records could be prevented by having multiple copies of the

blockchain at multiple sites, and routinely checking for discrepancies among the different

copies of the data.

We might also see that the blockchain could be used as a trusted record of documents,

legal transactions (e.g., property deals), monetary exchanges (e.g., Bitcoin). Blockchains

may also be used for authenticating voters, casting votes, and verifying the count. The

potential value of blockchains in the era of Big Data is enormous, but the devil hides in

the details. Every implementation of a blockchain comes with its own vulnerabilities

and much has been written on this subject [3,4].

Section 8.7. Case Study (Advanced): Zero-Knowledge
Reconciliation

Experience is what you have after you’ve forgotten her name.
Milton Berle

Though record reconciliation across institutions is always difficult, the task becomes truly

Herculean when it must be done blindly, without directly comparing records. This awk-

ward situation occurs quite commonly whenever confidential data records from different

institutions must be checked to see if they belong to the same person. In this case, neither

institution is permitted to learn anything about the contents of records in the other insti-

tutions. Reconciliation, if it is to occur, must implement a zero-knowledge protocol; a pro-

tocol that does not reveal any information concerning the reconciled records [5].

We will be describing a protocol for reconciling identifiers without exchanging infor-

mation about the contents of data records. Because the protocol is somewhat abstract and

unintuitive, a physical analogy may clarify the methodology. Imagine two people each

holding a box containing an item. Neither person knows the contents of the box that they

are holding or of the box that the other person is holding. They want to determine whether
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they are holding identical items, but they don’t want to know anything about the items.

They work together to create two identical imprint stamps, each covered by a complex

random collection of raised ridges. With eyes closed, each one pushes his imprint stamp

against his item. By doing so, the randomly placed ridges in the stamp are compressed in a

manner characteristic of the object’s surface. The stamps are next examined to determine

if the compressionmarks on the ridges are distributed identically in both stamps. If so, the

items in the two boxes, whatever theymay be, are considered to be identical. Not all of the

random ridges need to be examined-just enough of them to reach a high level of certainty.

It is theoretically possible for two different items to produce the same pattern of compres-

sion marks, but it is highly unlikely. After the comparison is made, the stamps are

discarded.

The physical analogy demonstrates the power of a zero-knowledge protocol. Neither

party knows the identity of his own item. Neither party learns anything about his item

or the other party’s item during the transaction. Yet, somehow, the parties can determine

whether the two items are identical.

Here is how the zero-knowledge protocol to reconcile confidential records across insti-

tutions [5]:

1. Both institutions generate a random number of a pre-determined length and each

institution sends the random number to the other institution.

2. Each institution sums their own random number with the random number provided

by the other institution. We will refer to this number as Random_A. In this way, both

institutions have the same final random number and neither institution has actually

transmitted this final random number. The splitting of the random number was

arranged as a security precaution.

3. Both institutions agree to create a composite representation of information contained

in the record that could establish the human subject of the record. The composite

might be a concatenation of the social security number, the date of birth, the first initial

of the surname.

4. Both institutions create a program that automatically creates the composite numeric

representation of the record (which we will refer to as the record signature) and

immediately sums the signature with Random_A, the random number that was

negotiated between the two institutions (steps 1 and 2). The sum of the composite

representation of the record plus Random_A is a random number that we will call

Random_B.

5. If the two records being compared across institutions belong to the same human

subject, then Random_B will the identical in both institutions. At this point, the two

institutions must compare their respective versions of Random_B in such a way that

they do not actually transmit Random_B to the other institution. If they were to

transmit Random_B to the other institution, then the receiving institution could

subtract Random_A fromRandomBand produce the signature string for a confidential

record contained in the other institution. This would be a violation of the requirement

to share zero knowledge during the transaction.
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6. The institutions take turns sending consecutive characters of their versions of

Random_B. For example, the first institution sends the first character to the second

institution. The second institution sends the second character to the first institution.

The first institution sends the third character to the second institution. The exchange of

characters proceeds until the first discrepancy occurs, or until the first 8 characters of

the string match successfully. If any of the characters do not match, both institutions

can assume that the records belong to different human subjects (i.e., reconciliation

failed). If the first 8 characters match, then it is assumed that both institutions are

holding the same Random_B string, and that the records are reconciled.

At the end, both institutions learn whether their respective records belong to the same

individual; but neither institution has learned anything about the records held in the other

institution. Anyone eavesdropping on the exchange would be treated to a succession of

meaningless random numbers.
Glossary
Curator The word “curator” derives from the Latin, “curatus,” and the same root for “curative,” indicating

that curators “take care of” things. A data curator collects, annotates, indexes, updates, archives,

searches, retrieves and distributes data. Curator is another of those somewhat arcane terms (e.g.,

indexer, data archivist, lexicographer) that are being rejuvenated in the newmillennium. It seems that

if we want to enjoy the benefits of a data-centric world, we will need the assistance of curators, trained

in data organization.

Digital signature As it is used in the field of data privacy a digital signature is an alphanumeric sequence

that could only have been produced by a private key owned by one particular person. Operationally, a

message digest (e.g., a one-way hash value) is produced from the document that is to be signed. The

person “signing” the document encrypts the message digest using her private key, and submits the

document and the encrypted message digest to the person who intends to verify that the document

has been signed. This person decrypts the encrypted message digest with her public key (i.e., the pub-

lic key complement to the private key) to produce the original one-way hash value. Next, a one-way

hash is performed on the received document. If the resulting one-way hash is the same as the

decrypted one-way hash, then several statements hold true: the document received is the same doc-

ument as the document that had been “signed.” The signer of the document had access to the private

key that complemented the public key that was used to decrypt the encrypted one-way hash. The

assumption here is that the signer was the only individual with access to the private key. Digital sig-

nature protocols, in general, have a private method for encrypting a hash, and a public method for

verifying the signature. Such protocols operate under the assumption that only one person can encrypt

the hash for the message, and that the name of that person is known; hence, the protocol establishes a

verified signature. It should be emphasized that a digital signature is quite different from a written sig-

nature; the latter usually indicates that the signer wrote the document or somehow attests to agree-

ment with the contents of the document. The digital signaturemerely indicates that the document was

received from a particular person, contingent on the assumption that the private key was available

only to that person. To understand how a digital signature protocol may bemaliciously deployed, ima-

gine the following scenario: I contact you and tell you that I amElvis Presley andwould like you to have

a copy of my public key plus a file that I have encrypted using my private key. You receive the file and

the public key; and you use the public key to decrypt the file. You conclude that the file was indeed sent

by Elvis Presley. You read the decrypted file and learn that Elvis advises you to invest all yourmoney in a
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company that manufactures concrete guitars; which, of course, you do. Elvis knows guitars. The prob-

lem here is that the signature was valid, but the valid signature was not authentic.

Metasyntactic variable A variable name that imports no specific meaning. Popular metasyntactic vari-

ables are x, y, n, foo, bar, foobar, spam, eggs, norf, wubble, and blah. Dummy variables are often used

in iterating loops. For example:

for($i=0;$i<1000;$i++)

Good form dictates against the liberal use of metasyntactic variables. In most cases, programmers

should create variable names that describe the purpose of the variable (e.g., time_of_day, column_sum,

current_line_from_file).

National Patient Identifier Many countries employ a National Patient Identifier (NPI) system. In these

cases, when a citizen receives treatment at any medical facility in the country, the transaction is

recorded under the same permanent and unique identifier. Doing so enables the data collected

on individuals, from multiple hospitals, to be merged. Hence, physicians can retrieve patient data

that was collected anywhere in the nation. In countries with NPIs, data scientists have access to com-

plete patient records and can perform healthcare studies that would be impossible to perform in

countries that lack NPI systems. In the United States, where a system of NPIs has not been adopted,

there is a perception that such a system would constitute an invasion of privacy and would harm

citizens.

One-way hash A one-way hash is an algorithm that transforms one string into another string (a fixed-

length sequence of seemingly random characters) in such a way that the original string cannot be cal-

culated by operations on the one-way hash value (i.e., the calculation is one-way only). One-way hash

values can be calculated for any string, including a person’s name, a document, or an image. For any

given input string, the resultant one-way hash will always be the same. If a single byte of the input

string is modified, the resulting one-way hash will be changed, and will have a totally different

sequence than the one-way hash sequence calculated for the unmodified string.

Most modern programming languages have several methods for generating one-way hash values. Regard-

less of the language we choose to implement a one-way hash algorithm (e.g., md5, SHA), the output

value will be identical. One-way hash values are designed to produce long fixed-length output strings

(e.g., 256 bits in length). When the output of a one-way hash algorithm is very long, the chance of a

hash string collision (i.e., the occurrence of two different input strings generating the same one-way

hash output value) is negligible. Clever variations on one-way hash algorithms have been repurposed

as identifier systems [6–9]. A detailed discussion of one-way hash algorithms can be found in

Section 3.9, “Case Study: One-Way Hashes.”

Raw data Raw data is the unprocessed, original data measurement, coming straight from the instrument

to the database, with no intervening interference or modification. In reality, scientists seldom, if ever,

work with raw data. When an instrument registers the amount of fluorescence emitted by a hybridi-

zation spot on a gene array, or the concentration of sodium in the blood, or virtually any of the mea-

surements that we receive as numeric quantities, an algorithm executed by the measurement

instrument produces the output. Pre-processing of data is commonplace in the universe of Big Data,

and data managers should not labor under the false impression that the data received is “raw,” simply

because the data has not been modified by the person who submits the data.

Serious Big Data 3 V’s (data volume, data variety and data velocity) plus “seriousness.” Seriousness is a

tongue-in-cheek term that the author applies to Big Data resources whose objects are providedwith an

adequate identifier and a trusted timestamp and provide data users with introspection, including

pointers to the protocols that produced the data objects. The metadata in Big Data resources are

appended with namespaces. Serious Big Data resources can be merged with other serious Big Data

resources. In the opinion of the author, Big Data resources that lack seriousness should not be used

in science, legal work, banking, and in the realm of public policy.
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Time stamp Many data objects are temporal events and all temporal events must be given a time stamp

indicating the time that the event occurred, using a standard measurement for time. The time stamp

must be accurate, persistent, and immutable. The Unix epoch time (equivalent to the Posix epoch

time) is available for most operating systems and consists of the number of seconds that have elapsed

since January 1, 1970, midnight, Greenwhichmean time. The Unix epoch time can easily be converted

into any other standard representation of time. The duration of any event can be easily calculated by

subtracting the beginning time from the ending time. Because the timing of events can bemaliciously

altered, scrupulous datamanagers employ a trusted time stampprotocol bywhich a time stamp can be

verified. A trusted time stamp must be accurate, persistent, and immutable. Trusted time stamp pro-

tocols are discussed in Section 8.5, “Case Study: The Trusted Time stamp.”

Verification and validation As applied to data resources, verification is the process that ensures that data

conforms to a set of specifications. Validation is the process that checks whether the data can be

applied in a manner that fulfills its intended purpose. This often involves showing that correct con-

clusions can be obtained from a competent analysis of the data. For example, a Big Data resource

might contain position, velocity, direction, and mass data for the earth and for a meteor that is trav-

eling sunwards. The data may meet all specifications for measurement, error tolerance, data typing,

and data completeness. A competent analysis of the data indicates that the meteor will miss the earth

by a safe 50,000 miles, plus or minus 10,000 miles. If the asteroid smashes into the earth, destroying all

planetary life, then an extraterrestrial observer might conclude that the data was verified, but not

validated.
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Section 9.1. Looking at the Data

discovery is “.....seeing what others have seen, but thinking what others have not.”
Albert Szent-Gyorgyi

Big Data must not be a Big Waste of time. Looking at the data will tell you immediately

if you can use the data. Moving forward with calculations before looking at the data is

inexcusable. Before you choose and apply analyticmethods to data sets, you should spend

time studying your raw data. The following steps may be helpful:

1. Find a free ASCII editor.

When I encounter a large data file, in plain ASCII format, the first thing I do is open the file

and take a look at its contents. Unless the file is small (i.e., under about 20 megabytes),

most commercial word processors will fail at this task. They simply cannot open really

large files (in the Gigabyte range). You will want to use an editor designed to work with

large ASCII files. Two of the more popular, freely available editors are Emacs and vi (also

available under the name vim). Downloadable versions are available for Linux, Windows,

andMacintosh systems. Onmost computers, these editors will open files in the range of a

Gigabyte. For even larger files, there are operating system utilities that can do the job.

These will be discussed in Section 9.4, “Case Study: Utilities for Viewing and Searching

Large Files.” [Glossary Text editor]
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00009-1
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2. Download and study the “readme” or index files, or their equivalent.

In prior decades, large collections of data were often assembled as files within subdirec-

tories and these files could be downloaded in part or in toto, via ftp (file transfer protocol).

Traditionally, a “readme” file would be included with the files, and the “readme” file would

explain the purpose, contents, and organization of all the files. In some cases, an index file

might be available, providing a list of terms covered in the files and their locations in the

various files. When such files are prepared thoughtfully, they are of great value to the data

analyst. It is always worth a fewminutes time to open and browse the “readme” file. I think

of “readme” files as treasure maps. The data files contain great treasure, but you are

unlikely to find anything of value unless you study and follow the map.

In the past few years, data resources have grown in size and complexity. Today, Big

Data resources are often collections of resources, housed on multiple servers. New and

innovative access protocols are continually being developed, tested, released, updated,

and replaced. Still, some things remain the same. There will always be documents to

explain how the Big Data resource “works” for the user. It behooves the data analyst

to take the time to read and understand this prepared material. If there is no prepared

material, or if the prepared material is unhelpful, then you may want to reconsider using

the resource.

3. Assess the number of records in the Big Data resource.

There is a tendency among some data managers to withhold information related to the

number of records held in the resource. In many cases, the number of records says a

lot about the inadequacies of the resource. If the total number of records is much smaller

than the typical user might have expected or desired, then the user might seek their data

elsewhere. Data managers, unlike data users, sometimes dwell in a perpetual future that

never merges into the here and now. They think in terms of the number of records they

will acquire in the next 24 hours, the next year, or the next decade. To the data manager,

limitations in the present are often irrelevant.

Data managers may be reluctant to divulge the number of records held in the Big Data

resource when the number is so large as to defy credibility. Consider this example. There

are about 5700 hospitals in the United States serving a population of about 313 million

people. If each hospital served a specific subset of the population with no overlap in

service between neighboring hospitals, then each would provide care for about 54,000

people. In practice, there is always some overlap in catchment population and a popular

estimate for the average (overlapping) catchment for United States hospitals is 100,000.

The catchment population for any particular hospital can be estimated by factoring in

a parameter related to its size. For example, if a hospital hosts twice the number of beds

than the average United States hospital, then one would guess that its catchment popu-

lation would be about 200,000. The catchment population represents the approximate

number of electronic medical records for living patients served by the hospital (one living

individual, one hospital record). If you are informed that a hospital, of average size,
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contains 10 million records (when you are expecting about 100,000), then you can infer

that something is very wrong. Most likely, the hospital is creating multiple records

for individual patients. In general, institutions do not voluntarily provide users with

information that casts doubt on the quality of their information systems. Hence, the data

analyst, ignorant of the total number of records in the system, might proceed under the

false assumption that each patient is assigned one and only one hospital record. Suffice it

to say that the data user must know the number of records available in a resource, and the

manner in which records are identified and internally organized.

A related issue of particular importance is the sample number/sample dimension

dichotomy. Some resources with enormous amounts of data may have very few data

records. This occurs when individual records contain mountains of data (e.g., sequences,

molecular species, images), but the number of individual records is woefully low (e.g.,

hundreds or thousands). This problem, falling under the curse of dimensionality, will

be further discussed in Section 14.6, “Case Study (Advanced): Curse of Dimensionality.”

4. Determine how data objects are identified and classified.

As discussed in previous chapters, if you know the identifier for a data object, then you can

collect all of the information associated with the object, regardless of its location in the

resource. If other Big Data resources use the same identifier for the data object, you

can integrate all of the data associated with the data object, regardless of its location in

external resources. Furthermore, if you know the class that holds a data object, you

can combine objects of a class and study all of the members of the class. Consider the

following example.

Big Data resource 1

75898039563441 name G. Willikers

75898039563441 gender male

Big Data resource 2

75898039563441 age 35
75898039563441 is_a_class_member cowboy

94590439540089 name Hopalong Tagalong
94590439540089 is_a_class_member cowboy

Merged Big Data Resource 1 + 2

75898039563441 name G. Willikers
75898039563441 gender male

75898039563441 is_a_class_member cowboy
75898039563441 age 35

94590439540089 name Hopalong Tagalong
94590439540089 is_a_class_member cowboy
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The merge of two Big Data resources combines data related to identifier 75898039563441

from both resources. We now know a few things about this data object that we did not

know before the merge. The merge also tells us that the two data objects identified as

75898039563441 and 94590439540089 are both members of class cowboy. We now have

two instance members from the same class, and this gives us information related to

the types of instances contained in the class.

The consistent application of standard methods for object identification and for class

assignments, using a standard classification or ontology, greatly enhances the value of

a Big Data resource. A savvy data analyst will quickly determine whether the resource

provides these important features. [Glossary Identification]

5. Determine whether data objects contain self-descriptive information.

Data objects should be well specified. All values should be described with metadata,

all metadata should be defined, and the definitions for the metadata should be found

documents whose unique names and locations are provided. The data should be linked

to protocols describing how the data was obtained andmeasured. [Glossary ISOmetadata

standard]

6. Assess whether the data is complete and representative.

You must be prepared to spend hours reading through the records; otherwise, you will

never really understand the data. After you have spent a few weeks of your life browsing

through Big Data resources, you will start to appreciate the value of the process. Nothing

comes easy. Just as the best musicians spend thousands of hours practicing and rehears-

ing their music, the best data analysts must devote thousands of hours to studying their

data sources. It is always possible to run sets of data through analytic routines that summa-

rize the data, but drawing insightful observations from the data requires thoughtful study.

An immense BigData resourcemay contain spotty data. On one occasion, I was given a

large hospital-based data set, with assurances that the data was complete (i.e., containing

all necessary data relevant to the project). After determining how the records and the fields

were structured, I looked at the distribution frequency of diagnostic entities contained

in the data set. Within a few minutes I had the frequencies of occurrence of the different

diseases, categorized under broad diagnostic categories. I spent another few hours brows-

ing through the list, and before long I noticed that there were very few skin diseases

included in the data. I am not a dermatologist, but I knew that skin diseases are among

the most common conditions encountered in medical clinics. Where were the missing

skin diseases? I asked one of the staff clinicians assigned to the project. He explained that

the skin clinic operated somewhat autonomously from the other hospital departments.

The dermatologists maintained their own information system, and their cases were not

integrated into the general disease data set. I inquired as to why I had been assured that

the data set was complete, when everyone other than myself knew full well that the data

set lacked skin cases. Apparently, the staff had become so accustomed to ignoring the field

of dermatology that it never crossed their minds to mention the matter.
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It is a quirk of human nature to ignore anything outside one’s own zone of comfort

andexperience.Otherwise fastidious individualswillblithelyomit relevant information from

Big Data resources if they consider the information to be inconsequential, irrelevant, or

insubstantial. I have had conversations with groups of clinicians who requested that the

free-text information in radiology and pathology reports (the part of the report containing

descriptions of findings and other comments) be omitted from the compiled electronic

records on the grounds that it is all unnecessary junk. Aside from the fact that “junk” text

can serve as important analytic clues (e.g., measurements of accuracy, thoroughness,

methodological trends), the systematic removal of parts of data records produces a biased

and incomplete Big Data resource. In general, data managers should not censor data. It is

the job of the data analyst to determine what data should be included or excluded from

analysis; and to justify his or her decision. If the data is not available to the data analyst, then

there is no opportunity to reach a thoughtful and justifiable determination.

On another occasion, I was given an anonymized set of clinical data from an undi-

sclosed hospital. As I always do, I looked at the frequency distributions of items on the

reports. In a few minutes, I noticed that germ cell tumors, rare tumors that arise from

a cell lineage that includes oocytes and spermatocytes, were occurring in high numbers.

At first, I thought that I might have discovered an epidemic of germ cell tumors in the

hospital’s catchment population. When I looked more closely at the data, I noticed that

the increased incidence occurred in virtually every type of germ cell tumor, and there

did not seem to be any particular increase associatedwith gender, age, or ethnicity. Cancer

epidemics raise the incidence of one or maybe two types of cancer and may involve a

particular at-risk population. A cancer epidemic would not be expected to raise the

incidence of all types of germ cell tumors, across ages and genders. It seemed more likely

that the high numbers of germ cell tumors were explained by a physician or specialized

care unit that concentrated on treating patients with germ cell tumors, receiving referrals

from across the nation. Based on the demographics of the data set (the numbers of

patients of different ethnicities), I could guess the geographic region of the hospital. With

this information and knowing that the institution probably had a prestigious germ cell

clinic, I guessed the name of the “undisclosed” hospital. My suspicions were eventually

confirmed. [Glossary Anonymization versus deidentification]

It sometimes helps to compare the distribution of data in a new collection against the

distribution in data in a known and trusted population. For example, you may want to

stratify data records by the age of individuals and compare it with the distribution of ages

in a control or normal population of individuals. Youmight also create a word list or index

of terms extracted from the data to determine if the frequency of occurrences of the

included words or terms are similar to what you have come to expect from comparable

data sets. If you find that there are too many kinds of data that are missing from your

new collection of data, then you may need to abandon the project. You may find that

the information contained in the new collection is similar in kind, but dissimilar in

frequency to other populations. For example, if you encounter a population of men

and women of all ages, but with a woman:male ration of 5:1 and with very few men



190 PRINCIPLES AND PRACTICE OF BIG DATA
over the age of 70 included in the population, then you might want to normalize your

population against a control population. [Glossary Age-adjusted incidence]

The point here is that if you take the time to study raw data, you can spot systemic

deficiencies or excesses in the data, if they exist, and you may gain deep insights that

would not be obtained by mathematical techniques.

7. Plot some of the data.

Plotting data is quick, easy, and surprisingly productive. Within minutes, the data analyst

can assess long-term trends, short-term and periodic trends, the general shape of data

distribution and general notions of the kinds of functions that might represent the data

(e.g., linear, exponential, power series). Simply knowing that the data can be expressed

as a graph is immeasurably reassuring to the data analyst.

There are many excellent data visualization tools that are widely available. Without

making any recommendation, I mention that graphs produced for this book were made

with Matplotlib, a plotting library for the Python programming language; and Gnuplot, a

graphing utility available for a variety of operating systems. Both Matplotlib and Gnuplot

are open source applications that can be downloaded, at no cost, and are available at

sourceforge.net. [Glossary Open source]

Gnuplot is extremely easy to use, either as stand-alone scripts containing gnuplot

commands, or from the system command line. Most types of plots can be created with

a single gnuplot command line. Gnuplot can fit a mathematically expressed curve to a

set of data using the nonlinear least-squares Marquardt-Levenberg algorithm [1,2].

Gnuplot can also provide a set of statistical descriptors (e.g., median, mean, and standard

deviation) for plotted sets of data.

Gnuplot operates from data held in tab-delimited ASCII files. Typically, data extracted

from a Big Data resource is ported into a separate ASCII file, with column fields separated

with a tab character, and rows separated by a newline character. In most cases, you will

want to modify your raw data, readying it for plotting. Use your favorite programming

language to normalize, shift, transform, covert, filter, translate, or munge your raw data,

as you see fit. Export the data as a tab-delimited file, named with a .dat suffix.

It takes about a second to generate a plot for 10,000 data points (Fig. 9.1).

One command line in Gnuplot produced the graph, from the data.

splot 'c:\ftp\xyz_rand.dat'

It is very easy to plot data, but one of the most common mistakes of the data analyst is to

assume that the available data actually represents the full range of data that may occur. If

the data under study does not include the full range of the data, the data analyst will often

reach a completely erroneous explanation for the observed data distribution.

Datadistributionswill almostalwaysappear tobe linearat varioussegmentsof their range.

Anoscillatingcurve that reachesequilibriummaylook likeasinewaveearly in itscourse,anda

flat-line lateron. In the largeroscillations, itmayappear linearalong the lengthof ahalf-cycle.

Any of these segmental interpretations of the datawillmiss observations that would lead to a

full explanation of the data (Fig. 9.2).

http://sourceforge.net
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FIG. 9.1 A plot of 10,000 random data points, in three coordinates. The data for this figure was created with a 7 line

script using the Perl programming language, but any scripting language would have been sufficient [3]. Ten

thousand data points were created, with the x, y, and z coordinates for each point produced by a random number

generator. The point coordinates were put into a file named xyz_rand.dat.

FIG. 9.2 An oscillating wave reaching equilibrium. The top graph uses circle-points to emphasize a linear segment for

a half-cycle oscillation. The bottom graph of the same data emphasizes a linear segment occurring at equilibrium.

Chapter 9 • Assessing the Adequacy of a Big Data Resource 191
An adept data analyst can eyeball a data distribution and guess the kind of function

that might model the data. For example, a symmetric bell-shaped curve is probably a

normal or Gaussian distribution. A curve with an early peak and a long, flat tail is often

a power law distribution. Curves that are simple exponential or linear can also be assayed
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by visual inspection. Distributions that may be described by a Fourier series or a power

series, or that can be segmented into several different distributions, can also be assessed.

[Glossary Power law, Power series, Fourier series]

8. Estimate the solution to your multi-million dollar data project, on day 1.

Thismay seem difficult to accept, and there will certainly be exceptions to the rule, but the

solution to almost everymulti-million dollar analytic problem can usually be estimated in

just a few hours, sometimes minutes, at the outset of the project. If an estimate cannot be

attained fairly quickly, then there is a good chance that the project will fail. If you do not

have the data for a quick and dirty estimate, then you will probably not have the data

needed to make a precise determination.

The past several decades have witnessed a profusion of advanced mathematical

techniques for analyzing large data sets. It is important that we have these methods, but

in most cases, newer methods serve to refine and incrementally improve older methods

that do not rely on powerful computational techniques or sophisticated mathematical

algorithms. As someone whowas raised prior to the age of hand-held calculators and per-

sonal computers, Iwas taughtquick-and-dirty estimationmethods for adding, subtracting,

multiplying, and dividing lists of numbers. The purpose of the estimation was to provide a

good idea of the final answer, beforemuch time was spent on a precise solution. If nomis-

take was introduced in either the estimate or the long calculation, then the two numbers

would come close to one another. Conversely, mistakes in the long calculations could be

detected if the two calculations yielded different numbers.

If data analysts go straight to the complex calculations before they perform a simple

estimation, they will find themselves accepting wildly ridiculous calculations. For

comparison purposes, there is nothing quite like a simple, intuitive estimate to pull a

overly-eager analyst back to reality. Often, the simple act of looking at a stripped-down

version of the problem opens a new approach that can drastically reduce computation

time [4]. In some situations, analysts will find that a point is reached when higher refine-

ments in methods yield diminishing returns. When everyone has used their most

advanced algorithms to make an accurate prediction, they may sometimes find that their

best effort offers little improvement over a simple estimator.
Section 9.2. The Minimal Necessary Properties of Big Data

In God we trust, all others bring data.
William Edwards Deming (1900–1993)

Many of today’s statisticians and scientists came of age in the world of small data. When

you are working with a few hundred measurements, most of the issues discussed in this

book have almost no relevance. Small data does not need to be dressed upwith identifiers

and metadata. Scientists did not worry very much about creating self-explanatory data;

each scientist understood their own data, and that was usually good enough.
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Big Data, with its volume, complexity, velocity, and permanence, requires a remarkable

amount of annotation and curation. For the most part, the issues raised in this book are

unknown to the bulk of individuals who collect Big Data. Hence, most of the Big Data that

has been collected and stored has no scientific value; it is simply incomprehensible and

unusable [5–8]. This may seem like an outrageous claim, particularly when you consider

howmuch of the world’s activities are data-driven. If you speak with scientists who collect

and analyze data, and that would include just about every scientist you are likely to

encounter, you will hear them tell you that their data is just fine, and perfectly suitable

for their own scientific studies. The point that must be made is that the scientists who

collected and analyzed the data cannot judge the value of scientific data. The true value

of datamust be assessed by the scientists who verify, validate, and re-analyze the data that

was collected by other scientists. If the original data cannot be obtained and analyzed by

the scientific community, now and in the future, then the original assertions cannot be

confirmed, and the data cannot be usefully merged with other data sets, extended, and

repurposed. [Glossary Abandonware, Dark data, Universal and perpetual, Data versus

datum, Identifier, Data repurposing]

For data to be useful to the scientific community, it must have a set of basic properties,

and, unfortunately, these properties are seldom taught or utilized. Here are the universal

properties of good data that has lasting scientific value.

– Data that has been annotated with metadata

– Data that establishes uniqueness or identity

– Time stamped data that accrues over time [Glossary Time, Time stamp]

– Data that resides within a data object

– Data that has membership in a defined class

– Introspective data—data that explains itself

– Immutable data

– Data that has been simplified

Let us take a moment to examine each of these data features:

– Data that has been annotated with metadata

Metadata, the data that explains data, was discussed in Sections 4.1 through 4.3. The

modern specification for metadata is the eXtensible Markup Language (XML). The

importance of XML to data scientists cannot be overstated. As a data-organizing

technology, it is as important as the invention of written language (circa 3000 bc) or the

appearance of mass-printed books (circa 1450 ad). Markup allows us to convey any mes-

sageasXML(apathology report, a radiology image, agenomedatabase, aworkflowprocess,

a software program, or an e-mail). [Glossary Data annotation, Annotation, Data sharing]

– Data that establishes uniqueness or identity

The most useful data establishes the identity of objects. In many cases, objects have

their own, natural identifiers that come very close to establishing uniqueness.
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Examples include fingerprints, iris patterns, and the sequence of nucleotides in an

organism’s genetic material.

In regard to identifying data objects, we need not depend on each data object

having its own naturally occurring identifier. As discussed in Section 3.1, we can simply

generate and assign unique identifiers to our data objects [3,8–10]. Identifiers are

data simplifiers, when implemented properly. They allow us to collect all of the data

associated with a unique object, while ensuring that we exclude that data that should

be associated with some other object.

– Time stamped data that accrues over time

When a data set contains data records that collect over time, it becomes possible to

measure how the attributes of data records may change as the data accumulates. Signals

analysts use the term time series to refer to attributemeasurements that change over time.

The shape of the time series can be periodic (i.e., repeating over specific intervals), linear,

non-linear, Gaussian, or multimodal (i.e., having multiple peaks and troughs), or chaotic.

A large part of data science is devoted to finding trends in data, determining simple

functions that model the variation of data over time, or predicting how data will change

in the future. All these analytic activities require data that is annotated with the time that a

measurement is made, or the time that a record is prepared, or the time that an event has

occurred. [Glossary Data science, Waveform]

You may be shocked to learn that many, if not most, web pages lack a time stamp to

signify the date and time when the page’s textual content was created. This oversight

applies to news reports, announcements from organizations and governments, and even

scientific papers; all being instances for which a time stampwould seem to be an absolute

necessity. When a scientist publishes an undated manuscript, how would anyone know if

the results are novel? If a news article describes an undated event, how would anyone

knowwhether the report is current? For the purposes of data analysis, undated documents

and data records are useless [5].

Whereas undated documents have very little value, all transactions, statements,

documents and data points that are annotated with reliable time stamps will always have

some value, particularly if the information continues to collect over time. Today, anyone

with a computer can easily time stamp his or her data, with the date and the time, accurate

to within a second. As discussed in Section 6.4, “Case Study: Time stamping Data,” every

operating system and every programming language has access to the time, and can easily

annotate any data point with the time that it was created. Time data can be formatted in

any of dozens of ways, all of which can be instantly converted to an international

standard [11].

It’s human nature to value newly collected data and to dismiss old data as being

outdated or irrelevant. Nothing could be further from the truth. New data, in the absence

of old data, has little value. All historical events develop through time, and the observa-

tions made at any given moment in time are always influenced by events that transpired

at earlier times. Whenever we speak of “new” data, alternately known as prospectively

acquired data, we must think in terms that relate the new data to the “old” data that
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preceded it. Old data can be used to analyze trends over time and to predict the data values

into the future. Essentially, old data provides the opportunity to see the past, the present,

and the future. The dependence of new data on old data can be approached computation-

ally. The autocorrelation function is a method for producing a type of measurement

indicating the dependence of data elements on prior data elements. Long-range depen-

dence occurs when a value is dependent onmany prior values. Long-range dependence is

determined when the serial correlation (i.e., the autocorrelation over multiple data

elements) is high when the number of sequential elements is large [12]. These are nifty

tools for data analysis, but they cannot be employed if the data is not time stamped

[6]. [Glossary Correlation distance]

– Data that is held in a data object

In Section 6.2, “Data Objects: The Essential Ingredient of Every Big Data Collection,”

we defined a data object as an object identifier plus all of the data/metadata pairs that

rightly belong to the object identifier, including a data/metadata pair that tells us the

object’s class. Lucky for us, some of the most common data creations (e.g., emails and

photographic images) are automatically composed as data objects by our software (i.e.,

email clients and digital cameras).

When you send a message, your email client automatically creates a data object

that holds the contents of your message, descriptive information about the message, a

message identifier, and a time stamp. Here is a sample email header, obtained by selecting

the email client’s long or detailed version of the message. The actual message contents

would normally follow, but are omitted here for brevity.

– MIME-Version: 1.0

– Received: by 10.36.165.75 with HTTP; Tue, 2 May 2017 14:46:47 -0700
(PDT)

– Date: Tue, 2 May 2017 17:46:47 -0400
– Delivered-To: you@gmail.com

– Message-ID: <CALVNVe-
kk7fqYJ82MfsV6a4kFKW4v57c4y9BLp0UYf1cBHq9pQ@mail.gmail.com>

– Subject: tiny fasts
– From: Anybody <me@gmail.com>

– To: Anybody Else <you@gmail.com>
– Content-Type: multipart/alternative;

boundary=94eb2c07ab4c054062054e917a03

Notice that each line of the header consists of a colon “:” flanked to the right by metadata

(e.g., Subject, From, To) and on the left by the described data. There is a line for a time

stamp and a line for an identifier assigned by the email client.

– Date: Tue, 2 May 2017 17:46:47 -0400
– Message-ID: <CALVNVe-

kk7fqYJ82MfsV6a4kFKW4v57c4y9BLp0UYf1cBHq9pQ@mail.gmail.com>
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Email messages are an example of data objects that are automatically created when

you push the “send” button. When we read about the remarkable results achieved by

forensic data analysts, who gather time stamped, immutable, and identified evidence

from millions of stored messages, we must give credit to the power of data objects.

– Data that has membership in a defined class

In Chapter 5, we discussed classifications and ontologies and explained the importance of

assigning instances (e.g., diseases, trucks, investments) to classes wherein every instance

shares a set of features typical of the class. All good classifications have a feature that

is known as competence; the ability to draw inferences about data objects, and their

relationships to other data objects, based on class definitions. Data that is unclassified

may have some immediate observational or experimental value to scientists, but such

data cannot be used to draw inferences from classes of data objects obtained from Big

Data resources.

– Introspective data (data that explains itself )

Introspection, as previously discussed in Chapter 6, refers to the ability of data (e.g., data

records, documents, and all types of data objects) to describe itself when interrogated.

Introspection gives data users the opportunity to see relationships among the individual

data records that are distributed in different data sets, and is one of the most useful

features of data objects, when implemented properly.

Modern programming languages allow us to interrogate data, and learn everything

there is to know about the information contained in data objects. Information about data

objects, acquired during the execution of a program, can be used to modify a program’s

instructions, during run-time, a useful feature known as “reflection”. Detailed information

about every piece of data in a data set (e.g., the identifier associated with the data object,

the class of objects towhich the data object belongs, themetadata and the data values that

are associated with the data object), permit data scientists to integrate data objects

collected from multiple Big Data resources.

It should be noted that the ability to perform introspection is not limited to object

oriented programming languages. Introspection is provided by the data, and any

programming language will suffice, so long as the data itself is organized as data objects

assigned to classes within a sensibly structured classification.

– Immutable data

When you are permitted to change preexisting data, all of your collected data becomes

tainted. None of the analyses performed on the data in the database can be verified,

because the data that was originally analyzed no longer exists. It has become something

else, which you cannot fully understand. Aside from producing an unverifiable data

collection, you put the data analyst in the impossible position of deciding which data

to believe; the old data or the new data.
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– Data that has been simplified

Big Data is complex data, and complex data is difficult to understand and analyze.

As it happens, all of the properties that we consider the minimal necessary for Big Data

preparation happen to be simplifying. Metadata, identifiers, data objects, and classifica-

tions all work to drive down the complexity of data and render the data understandable to

man or machine.

It is easy for data managers to shrug off the data requirements described in this section

as high-tech nuisances. Big Data requires an enormous amount of fussy work that was

simply not necessary when data was small. Nonetheless, it is necessary, if we hope to

use more than an insignificant fraction of the data that is being collected every day.
Section 9.3. Data That Comes With Conditions

This site has been moved.

We’d tell you where, but then we’d

have to delete you.
Computer-inspired haiku by Charles Matthews

I was involved in one project where the data holders could not be deterred from instituting

a security policy wherein data access would be restricted to pre-approved users. Anyone

wishing to query the database would first submit an application, which would include

detailed information about themselves and their employer. The application required users

to explain how they intended to use the resource, providing a description of their data

project. Supplying this information was a warm-up exercise for the next step.

A screening committee composed primarily of members of the Big Data team would

review the submitted application. A statistician would be consulted to determine if the

applicant’s plan was feasible. The committee would present their findings to an executive

committee that would compare each application’s merits against those of the other appli-

cants. The very best applications would be approved for data access.

Thedata teamcouldnot seem to restrain their enthusiasm for adding layers of complex-

ity to the security system. They decided that access to data would be tiered. Some users

would be given less access to data than other users. No users would be given free access

to the entire set of data. No user would have access to individual deidentified records; only

aggregate views of record data would be released. A system would be designed to identify

users and to restrict data access based on the identity and assigned access status.

These security measures were unnecessary. The data in the system had been rendered

harmless via deidentification and could be distributed without posing any risk to the

data subjects or to the data providers. The team seemed oblivious to the complexities

engendered by a tiered access system. Bruce Schneier, a widely cited security expert, wrote

an essay entitled, “A plea for simplicity: you can’t secure what you don’t understand” [13].
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In this essay, he explained that as you add complexity to a system, the system becomes

increasingly difficult to secure. I doubted that the team had the resources or the expertise

to implement a complex, multi-tiered access system for a Big Data resource. I suspected

that if the multi-tiered access system were actually put into place, the complexity of

the system would render the resource particularly vulnerable to attack. In addition, the

difficulty of accessing the system would discourage potential users and diminish the

scientific value of the Big Data resource.

Many data holders believe that their job, as responsible stewards of data, is to deny data

access to undeserving individuals and to ensure that any incorrect conclusions drawn

from their data will never see the light of day. I have seen examples wherein the data

holders require data users to sign an agreement indicating that the results of their analyses

must be submitted back to the data holders before being released to the public in the form

of manuscripts, public announcements, or conference presentations. The data holders

typically reserve the right to forbid releasing results with which they disapprove. It is easy

to see that a less-than-saintly committee might disapprove results that cast their Big Data

resource in a bad light, or results that compete in any way with the products of their own

research, or results that they hold in disfavor for any capricious reason whatsoever.

Aside from putting strict restrictions on who gets access to data, and which results are

permitted to be published, it is commonplace to impose strict restrictions on how the data

can be viewed. Anyone who has visited online databases is familiar with the query

box. The idea is that the user enters a query and waits for some output to appear on

the screen. The assumption here is that the user knows how the query must be composed

to produce themost complete output. Of course, this is never the case. When a user enters

a query, she cannot know, in advance, whether some other query termmight have yielded

a better output. Such query boxes almost never return details about the data set or

the algorithm employed in responding to the query. It is difficult, under these circum-

stances, to imagine any scenario wherein these kinds of queries have any scientific merit.

If Big Data resources are to add significantly to the advancement of science, the kinds

of complex and stingy data sharing practices that have evolved over the past few decades

must face extinction.
Section 9.4. Case Study: Utilities for Viewing and
Searching Large Files

It isn’t that they can’t see the solution. It’s that they can’t see the problem.
G. K. Chesterton

In Section 9.1, we discussed the importance of looking at your data. Several free and open

source text editors were suggested (Open Office, vi, emacs). These text editors can open

immense files (gigabytes in length and longer), but they have their limits. Files much
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larger than a gigabyte may be slow to load, or may actually be unloadable on systems with

small memory capacity. In such cases, your computer’s operating system may offer a

convenient alternative to text editors.

In the Windows operating system, then you can read any text file, one screen at a time,

with the “more” command.

For example, on Windows systems, at the prompt:

c:\>type huge_file.txt jmore

The first lines from the huge_file.txt file will fill the screen, and you can proceed through

the file by pressing and holding the <Enter> key. [Glossary Line]

Using this simple command, you can assess the format and general organization of

any file. For the uninitiated, ASCII data files are inscrutable puzzles. For those who take

a few moments to learn the layout of the record items, ASCII records can be read and

understood, much like any book.

In contrarian Unix and Linux systems the “less” command functions much like the

Windows “more” command, but offers many additional options. At the Unix (or Linux)

system prompt, type the following command (substituting your preferred file for

“huge_file.txt”):

$ less huge_file.txt

This will load a screen-sized chunk of huge_file.txt onto your monitor. By pressing the

“enter” key, or the “arrow down” key, additional lines will scroll onto the monitor, one line

at a time. For fast screen scrolls, keep your finger on the “Page Down” key. The “Page Up”

key lets you back the screens.

The less command accommodates various options.

$ less -S huge_file.txt

the use of the -S switch cuts off line wrap so that the lines are truncated at the edge of the

screen. In general, this speeds up the display.

When you use the Unix “less” command, you will find that the last line at the bottom

of the screen is a “:”. The “:” is a prompt for additional instructions. If you were to enter

a slash character (“/”) followed by a word or phrase or regex pattern, you would immedi-

ately see the line in which the first occurrence of your search term appeared. If you typed

“&” and the pattern, at the “:” prompt, you would see all the lines from the file, in which

your search pattern appears.

The Unix “less” command is a versatile and fast utility for viewing and searching

very large files. If you do not use Unix systems, do not despair. Windows users can

install Cygwin, a free Unix-like interface. Cygwin, and supporting documentation, can

be downloaded from:

http://www.cygwin.com/

http://www.cygwin.com
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Cygwin opens in a window that produces a shell prompt (equivalent to Windows

C prompt) fromwhich Unix programs can be launched. Formyself, I use Cygwin primarily

as a source of Unix and Linux utilities, of which there are hundreds. In addition, Cygwin

comes bundled with some extremely useful applications, such as Perl, Python, OpenSSL,

and Gnuplot.

Windows users are not restricted to launchingUnix and Linux applications fromwithin

the Cygwin shell prompt. A command line from the Windows C prompt will launch

Cygwin utilities. For example:

c:\cygwin64\bin>wc temp.txt
11587 217902 1422378 temp.txt

The command “wc temp.txt,” launched the Unix/Linux word counter utility (“wc”)

from the Windows C prompt, yielding a count of the lines, words, and bytes in the

temp.txt file. Likewise, a system call from a Python script can invoke Cygwin utilities

and applications.

Big Data scientists eventually learn that there are some tasks that are best left to Unix/

Linux. Having Cygwin installed on your Windows system will make life easier for you, and

for your collaborators, who may prefer to work in Linux.
Section 9.5. Case Study: Flattened Data

Everything should be made as simple as possible, but not simpler.
Albert Einstein

Data flattening is a term that is used differently by data analysts, database experts, and

informaticians. Though the precise meaning changes from subfield to subfield, the term

always seems to connote a simplification of the data and the elimination of unnecessary

structural restraints.

In the field of informatics, data flattening is a popular but ultimately counter-

productive method of data organization and data reduction. Data flattening involves

removing data annotations that are not needed for the interpretation of data [5].

Imagine, for the sake of illustration, a drastic option that was seriously considered by

a large medical institution. This institution, that shall remain nameless, had established

an excellent Electronic Medical Record (EMR) system. The EMR assigns a unique and

permanent identifier string to each patient, and attaches the identifier string to every

hospital transaction involving the patient (e.g., biopsy reports, pharmacy reports, nursing

notes, laboratory reports). All of the data relevant to a patient, produced anywhere within

the hospital system is linked by the patient’s unique identifier. The patient’s EMR can be

assembled, instantly, whenever needed, via a database query.

Over time, the patient records in well-designed information systems accrue a huge

number of annotations (e.g., time stamped data elements, object identifiers, linking

elements, metadata). The database manager is saddled with the responsibility of
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maintaining the associations among all of the annotations. For example, an individual

with a particular test, conducted at a particular time, on a particular day, will have anno-

tations that link the test to a test procedure protocol, an instrument identifier, a test code, a

laboratory name, a test sample, a sample accession time, and so on. If data objects could

be stripped of most of their annotations, after some interval of time, then it would reduce

the overall data management burden on the hospital information system. This can be

achieved by composing simplified reports and deleting the internal annotations. For

example, all of the data relevant to a patient’s laboratory test could be reduced to the

patient’s name, the date, the name of the test, and the test result. All of the other annota-

tions can be deleted. This process is called data flattening.

Should amedical center, or any entity that collects data, flatten their data? The positive

result would be a streamlining of the system, with a huge reduction in annotation over-

head. The negative result would be the loss of the information that connects well-defined

data objects (e.g., test result with test protocol, test instrument with test result, name of

laboratory technician with test sample, name of clinician with name of patient). Because

the fundamental activity of the data scientist is to find relationships among data objects,

data flattening will reduce the scope and value of data repurposing projects. Without

annotations and metadata, the data from different information systems cannot be sensi-

bly merged. Furthermore, if there is a desire or a need to reanalyze flattened data, then the

data scientist will not be able to verify the data and validate the conclusions drawn from

the data [5]. [Glossary Verification and validation, Validation]
Glossary
Abandonware Software that that is abandoned (e.g., no longer updated, supported, distributed, or sold)

after its economic value is depleted. In academic circles, the term is often applied to software that is

developed under a research grant. When the grant expires, so does the software.Most of the software in

existence today is abandonware.

Age-adjusted incidence An age-adjusted incidence is the crude incidence of disease occurrence within

an age category (e.g., age 0–10 years, age 70–80 years), weighted against the proportion of persons in

the age groups of a standard population. When we age-adjust incidence, we cancel out the changes

in the incidence of disease occurrence, in different populations, that result from differences in the

proportion of people in different age groups. For example, suppose you were comparing the incidence

of childhood leukemia in two populations. If the first population has a large proportion of children,

then it will likely have a higher number of childhood leukemia in its population, compared with

another population with a low proportion of children. To determine whether the first population

has a true, increased rate of leukemia, we need to adjust for the differences in the proportion of young

people in the two populations [14].

Annotation Annotation involves describing data elements with metadata or attaching supplemental

information to data objects.

Anonymization versus deidentification Anonymization is a process whereby all the links between

an individual and the individual’s data record are irreversibly removed. The difference between

anonymization and deidentification is that anonymization is irreversible. There is no method for

re-establishing the identity of the patient from anonymized records. Deidentified records can, under
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strictly controlled circumstances, be reidentified. Reidentification is typically achieved by entrusting

a third party with a confidential list that maps individuals to deidentified records. Obviously, reiden-

tification opens another opportunity of harming individuals, if the confidentiality of the reidentifica-

tion list is breached. The advantages of reidentification is that suspected errors in a deidentified

database can be found, and corrected, if permission is obtained to reidentify individuals. For example,

if the results of a study based on blood sample measurements indicate that the original samples were

mislabeled, it might be important to reidentify the samples and conduct further tests to resolve the

issue. In a fully anonymized data set, the opportunities for verifying the quality of data are highly

limited.

Correlation distance Also known as correlation score. The correlation distance provides a measure of

similarity between two variables. Two similar variables will rise and fall together [15,16]. The Pearson

correlation score is popular, and can be easily implemented [3,17]. It produces a score that varies from

�1 to 1. A score of 1 indicates perfect correlation; a score of �1 indicates perfect anti-correlation

(i.e., one variable rises while the other falls). A Pearson score of 0 indicates lack of correlation. Other

correlation measures can be applied to Big Data sets [15,16].

Dark data Unstructured and ignored legacy data, presumed to account for most of the data in the

“infoverse”. The term gets its name from “dark matter” which is the invisible stuff that accounts for

most of the gravitational attraction in the physical universe.

Data annotation The process of supplementing data objects with additional data, often providing

descriptive information about the data (i.e., metadata, identifiers, time information, and other forms

of information that enhances the utility of the data object.

Data repurposing Involves using old data in new ways, that were not foreseen by the people who

originally collected the data. Data repurposing comes in the following categories: (1) Using the preex-

isting data to ask and answer questions that were not contemplated by the people who designed and

collected the data; (2) Combining preexisting data with additional data, of the same kind, to produce

aggregate data that suits a new set of questions that could not have been answered with any one of the

component data sources; (3) Reanalyzing data to validate assertions, theories, or conclusions drawn

from the original studies; (4) Reanalyzing the original data set using alternate or improved methods to

attain outcomes of greater precision or reliability than the outcomes produced in the original analysis;

(5) Integrating heterogeneous data sets (i.e., data sets with seemingly unrelated types of information),

for the purpose an answering questions or developing concepts that span diverse scientific disciplines;

(6) Finding subsets in a population once thought to be homogeneous; (7) Seeking new relationships

among data objects; (8) Creating, on-the-fly, novel data sets through data file linkages; (9) Creating new

concepts or ways of thinking about old concepts, based on a reexamination of data; (10) Fine-tuning

existing data models; and (11) Starting over and remodeling systems [5].

Data science A vague term encompassing all aspects of data collection, organization, archiving, distribu-

tion, and analysis. The term has been used to subsume the closely related fields of informatics, statis-

tics, data analysis, programming, and computer science.

Data sharing Providing one’s own data to another person or entity. This process may involve free or

purchased data, and it may be done willingly, or under coercion, as in compliance with regulations,

laws, or court orders.

Data versus datum The singular form of data is datum, but the word “datum” has virtually disappeared

from the computer science literature. The word “data” has assumed both a singular and plural form. In

its singular form, it is a collective noun that refers to a single aggregation of many data points. Hence,

current usage would be “The data is enormous,” rather than “These data are enormous.”

Fourier series Periodic functions (i.e., functions with repeating trends in the data, including waveforms

and periodic time series data) can be represented as the sum of oscillating functions (i.e., functions

involving sines, cosines, or complex exponentials). The summation function is the Fourier series.
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ISOmetadata standard ISO 11179 is the standard produced by the International Standards Organization

(ISO) for defining metadata, such as XML tags. The standard requires that the definitions for metadata

used in XML (the so-called tags) be accessible and should include the following information for each

tag: Name (the label assigned to the tag), Identifier (the unique identifier assigned to the tag), Version

(the version of the tag), Registration Authority (the entity authorized to register the tag), Language

(the language in which the tag is specified), Definition (a statement that clearly represents the concept

and essential nature of the tag), Obligation (indicating whether the tag is required), Datatype (indicat-

ing the type of data that can be represented in the value of the tag), MaximumOccurrence (indicating

any limit to the repeatability of the tag), and Comment (a remark describing how the tag might

be used).

Identification The process of providing a data object with an identifier, or the process of distinguishing

one data object from all other data objects on the basis of its associated identifier.

Identifier A string that is associated with a particular thing (e.g., person, document, transaction, data

object), and not associated with any other thing [18]. In the context of Big Data, identification usually

involves permanently assigning a seemingly random sequence of numeric digits (0–9) and alphabet

characters (a–z and A–Z) to a data object. The data object can be a class of objects.

Line A line in a non-binary file is a sequence of characters that terminate with an end-of-line character.

The end-of-line character may differ among operating systems. For example, the DOS end of line

character is ASCII 13 (i.e., the carriage return character) followed by ASCII 10 (i.e., the line feed

character), simulating the new line movement inmanual typewriters. The Linux end-of-line character

is ASCII 10 (i.e., the line feed character only). When programming in Perl, Python or Ruby, the newline

character is represented by “\n” regardless of which operating system or file system is used. For most

purposes, use of “\n” seamlessly compensates for discrepancies among operating systems with regard

to their preferences for end-of-line characters. Binary files, such as image files or telemetry files, have

no designated end-of-line characters. When a file is opened as a binary file, any end-of-line characters

that happen to be included in the file are simply ignored as such, by the operating system.

Open source Software is open source if the source code is available to anyone who has access to the

software.

Power law A mathematical formula wherein a particular value of some quantity varies as an inverse

power of some other quantity [19,20]. The power law applies to many natural phenomena and

describes the Zipf distribution or Pareto’s principle. The power law is unrelated to the power of a

statistical test.

Power series A power series of a single variable is an infinite sum of increasing powers of x, multiplied by

constants. Power series are very useful because it is easy to calculate the derivative or the integral of a

power series, and because different power series can be added andmultiplied together. When the high

exponent terms of a power series are small, as happens when x is less than one, or when the constants

associated with the higher exponents all equal 0, the series can be approximated by summing

only the first few terms. Many different kinds of distributions can be represented as a power series.

Distributions that cannot be wholly represented by a power series may sometimes by segmented

by ranges of x. Within a segment, the distribution might be representable as a power series.

A power series should not be confused with a power law distribution.

Text editor A text editor (also called ASCII editor) is a software application designed to create, modify, and

display simple unformatted text files. Text editors are different from word processes that are designed

to include style, font, and other formatting symbols. Text editors aremuch faster than word processors

because they display the contents of files without having to interpret and execute formatting instruc-

tions. Unlike word processors, text editors can open files of enormous size (e.g., gigabyte range).

Time A large portion of data analysis is concerned, in one way or another, with the times that events occur

or the times that observations aremade, or the times that signals are sampled. Here are three examples

demonstrate why this is so: (1) most scientific and predictive assertions relate how variables change
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with respect to one another, over time; and (2) a single data object may have many different data

values, over time, and only timing data will tell us how to distinguish one observation from another;

(3) computer transactions are tracked in logs, and logs are composed of time-annotated descriptions

of the transactions. Data objects often lose their significance if they are not associated with an accurate

time measurement. Because modern computers easily capture accurate time data, there is not

annotating all data points with the time when they are measured.

Time stamp Many data objects are temporal events and all temporal events must be given a time stamp

indicating the time that the event occurred, using a standard measurement for time. The time stamp

must be accurate, persistent, and immutable. The Unix epoch time (equivalent to the Posix epoch

time) is available for most operating systems and consists of the number of seconds that have elapsed

since January 1, 1970, midnight, Greenwhichmean time. The Unix epoch time can easily be converted

into any other standard representation of time. The duration of any event can be easily calculated by

subtracting the beginning time from the ending time. Because the timing of events can be maliciously

altered, scrupulous data managers employ a trusted time stamp protocol by which a time stamp can

be verified. A trusted time stamp must be accurate, persistent, and immutable. Trusted time stamp

protocols are discussed in Section 8.5, “Case Study: The Trusted Time Stamp.”

Universal and perpetual Wherein a set of data or methods can be understood and utilized by anyone,

from any discipline, at any time. It is a tall order, but a worthy goal. Much of the data collected over

the centuries of recorded history is of little value because it was never adequately described when it

was recorded (e.g., unknown time of recording, unknown source, unfamiliarmeasurements, unwritten

protocols). Efforts to resuscitate large collections of painstakingly collected data are often abandoned

simply because there is noway of verifying, or even understanding, the original data [5]. Data scientists

whowant their data to serve for posterity should use simple specifications, and should include general

document annotations such as the Dublin Core. The importance of creating permanent data is

discussed elsewhere [6].

Validation Involves demonstrating that the conclusions that come from data analyses fulfill their

intended purpose and are consistent [21]. You validate a conclusion (which my appear in the form

of an hypothesis, or a statement about the value of a new laboratory test, or a therapeutic protocol)

by showing that you draw the same conclusion repeatedly whenever you analyze relevant data sets,

and that the conclusion satisfies some criteria for correctness or suitability. Validation is somewhat

different from reproducibility. Reproducibility involves getting the same measurement over and over

when you perform the test. Validation involves drawing the same conclusion over and over.

Verification and validation As applied to data resources, verification is the process that ensures that

data conforms to a set of specifications. Validation is the process that checks whether the data can

be applied in a manner that fulfills its intended purpose. This often involves showing that correct

conclusions can be obtained from a competent analysis of the data. For example, a Big Data resource

might contain position, velocity, direction, and mass data for the earth and for a meteor that is

traveling sunwards. The data may meet all specifications for measurement, error tolerance,

data typing, and data completeness. A competent analysis of the data indicates that the meteor will

miss the earth by a safe 50,000miles, plus orminus 10,000miles. If the asteroid smashes into the earth,

destroying all planetary life, then an extraterrestrial observermight conclude that the datawas verified,

but not validated.

Waveform A graph showing a signal’s amplitude over time. By convention, the amplitude of the signal

is shown on the y-axis, while the time is shown on the x-axis. A .wav file can be easily graphed as a

waveform, in python.

The waveform.py script graphs a sample .wav vile, alert.wav, but any handy .wav file should suffice

(Fig. 9.3).
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FIG. 9.3 The plotted waveform of a .wav file, alert.wav.
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from scipy.io.wavfile import read

import matplotlib.pyplot as plt

input_data = read("alert.wav")

# returns a two-item tuple with sampling rate as

#the 0th item and audio samples as the 1st item

audio = input_data[1]

# we'll plot the first 4096 samples

plt.plot(audio[0:4096])

plt.xlabel("time (samples) at rate " + str(input_data[0]))

plt.show()
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Section 10.1. Accuracy and Precision

Get your facts first, then you can distort them as you please.
Mark Twain

Precision is the degree of exactitude of ameasurement and is verified by its reproducibility

(i.e., whether repeated measurements of the same quantity produce the same result).

Accuracy measures how close your data comes to being correct. Data can be accurate

but imprecise or precise but inaccurate. If you have a 10-pound object, and you report

its weight as 7.2376 pounds, every time you weigh the object, then your precision is

remarkable, but your accuracy is dismal.

What are the practical limits of precision measurements? Let us stretch our imagina-

tions, for a moment, and pretend that we have just found an artifact left by an alien race

that excelled in the science ofmeasurement. As a sort of time capsule for the universe, their

top scientists decided to collect the history of their civilization, and encoded it in binary.

Their story looked something like “001011011101000...” extended to about 5millionplaces.

Rather than print the sequence out on a piece of paper or a computer disc, these aliens

simply converted the sequence to a decimal length (i.e., .001011011101000...”) andmarked

the lengthonabar composedof a substance thatwouldnever change its size.Todecode the

bar and recover thehistory of the alien race, onewould simplyneed tohave ahighly precise

measuring instrument that would yield the original binary sequence. Computational

linguists could translate the sequence to text, and the recorded history of the alien race

would be revealed!Of course, thewhole concept is built on an impossible premise.Nothing
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can be measured accurately to 5 million places. We live in a universe with practical limits

(i.e., the sizes of atomic particles, the speed of light, the Heisenberg uncertainty principle,

the maximum mass of a star, the second law of thermodynamics, the unpredictability of

highly complex systems). There are many things that we simply cannot do, no matter

how hard we try. The most precise measurement achieved by modern science has been

in the realm of atomic clocks, where accuracy of 18 decimal places has been claimed [1].

Nonetheless, many scientific disasters are caused by our ignorance of our own limitations,

and our persistent gullibility, leading us to believe that precision claimed is precision

obtained.

It is quite common for scientists to pursue precision when they should be seeking

accuracy. For an example, we need look no further than the data-intensive field of

“Precision Medicine” [2]. One of the goals of precision medicine is to determine the

specific genetic alterations that account for human disease. In many cases, this means

finding a change in a single nucleotide (from among the 3 billion nucleotides in the

DNA sequence that accounts for the human genome) responsible for the development

of a disease. Precision Medicine has had tremendous success for a variety of rare diseases

and for rare subtypes of common diseases, but has had less luck with common diseases

such as type 2 diabetes and adult onset hypertension. Why is this? The diagnosis of

diabetes and hypertension are based on a cut-off measurement. Above a certain glucose

level in the blood, the patient is said to have diabetes. Above a certain pressure, the patient

is said to have hypertension. It is not much different from being overweight (i.e., above a

certain weight) or tall (i.e., above a certain height). Theory, strengthened by empiric

observations, informs us that quantitative traits have multiple genetic and environmental

influences, a phenomenon recognized since the early studies of RA Fisher, in 1919 [3–5].
Hence, wewould expect that hypertension and diabetes would not be amenable to precise

diagnosis [2].

At this point, we can determine, with credible accuracy, whether a person is diabetic,

hypertensive, obese, tall, able to hold his breath for a long time, or able to run 100m

in record time. We cannot determine, with any precision, the precise genes that are

necessary for the development of any acquired human traits. Should we be devoting time

and money to attain higher and higher precision in the genetic diagnosis of common,

polygenic diseases, if increasing precision brings us no closer to a practical cure for these

diseases? Put plainly, shouldn’t we be opting for “Accurate Medicine” rather than

“Precision Medicine”?

The conflict between seeking accuracy and seeking precision is a common dilemma in

the universe of Big Data, wherein access to highly precise measurements is ridiculously

abundant.

– Steganography: using imprecision to your advantage

You look at them every day, the ones that others create, and that you create your own, that

you share with your friends or with the world. They are part of your life, and youwould feel

a deep sense of loss if you lost them. I am referring to high resolution digital images.

We love them, but we give them more credit than they deserve. When you download a
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16-megapixel image of your sister’s lasagna, you can be certain that most of the pixel

information is padded with so-called empty resolution; pixel precision that is probably

inaccurate and certainly exceeding the eye’s ability to meaningfully resolve. Most images

in the megabyte size range can safely be reduced to the kilobyte size range, without loss of

visual information. Steganography is an encryption technique that takes advantage of the

empty precision in pixel data by inserting secret text messages into otherwise useless bits

of pseudodata.

Steganography is one of several general techniques in which a message is hidden

within an object, such as a book or a painting. The forerunners of modern steganography

have been around for centuries and were described as early as AD 1500 by Trithemious [6].

Watermarking is closely related to steganography. Digital watermarking is away of secretly

insinuating the name of the owner or creator of a digital object into the object, as a

mechanism of rights management [7]. [Glossary Steghide]
Section 10.2. Data Range

Many an object is not seen, though it falls within the range of our visual ray, because it

does not come within the range of our intellectual ray, i.e., we are not looking for it.

So, in the largest sense, we find only the world we look for.
Henry David Thoreau

Always determine the highest and the lowest observed values in your data collection.

These two numbers are often the most important numbers in any set of data; even more

important than determining the average or the standard deviation. There is always a

compelling reason, relating to the measurement of the data or to the intrinsic properties

of the data set, to explain the high and the low of data.

Here is an example. You are looking at human subject data that includes weights. The

minimumweight isapound(theround-offweightofaviablebutprematurenewborninfant).

You find that the maximum weight in the data set is 300 pounds, exactly. There are many

individuals in the data setwhohave aweight of 300 pounds, but no individualswith aweight

exceeding 300 pounds. You also find that the number of individuals weighing 300 pounds

is much greater than the number of individuals weighting 290 pounds or 280 pounds.

What does this tell you? Obviously, the people included in the data set have been weighed

on a scale that tops off at 300 pounds. Most of the people whose weight was recorded as

300 will have a false weight measurement. Had we not looked for the maximum value in

the data set, we would have assumed, incorrectly, that the weights were always accurate.

It would be useful to get some idea of how weights are distributed in the population

exceeding 300 pounds. One way of estimating the error is to look at the number of people

weighing 295 pounds, 290 pounds, 285 pounds, etc. By observing the trend, and knowing

the total number of individuals whose weight is 300 pounds or higher, you can estimate

the number of people falling into weight categories exceeding 300 pounds.

Here is another example where knowing the maxima for a data set measurement

is useful. You are looking at a collection of data on meteorites. The measurements
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includeweights. You notice that the largestmeteorite in the large collectionweighs 66 tons

(equivalent to about 60,000kg), and has a diameter of about 3m. Small meteorites are

more numerous than large meteorites, but one or more meteorites account for almost

every weight category up to 66 tons. There are no meteorites weighing more than 66 tons.

Why do meteorites have a maximum size of about 66 tons?

A little checking tells you that meteors in space can come in just about any size, from a

speck of dust to a moon-sized rock. Collisions with earth have involved meteorites much

larger than 3m. You check the astronomical records and you find that themeteor that may

have caused the extinction of large dinosaurs about 65 million years ago was estimated at

6–10km (at least 2000 times the diameter of the largest meteorite found on earth).

There is a very simple reason why the largest meteorite found on earth weighs about

66 tons, while the largest meteorites to impact the earth are known to be thousands of

time heavier. When meteorites exceed 66 tons, the impact energy can exceed the energy

produced by an atom bomb blast. Meteorites larger than 66 tons leave an impact crater,

but the meteor itself disintegrates on impact.

As it turns out, much is known about meteorite impacts. The kinetic energy of the

impact is determined by the mass of the meteor and the square of the velocity. The

minimum velocity of a meteor at impact is about 11km/s (equivalent to the minimum

escape velocity for sending an object from earth into space). The fastest impacts occur

at about 70km/s. From this data, the energy released bymeteors, on impact with the earth,

can be easily calculated.

By observing the maximum weight of meteors found on earth we learn a great deal

aboutmeteoric impacts.Whenwe look at the distribution of weights, we can see that small

meteorites are more numerous than larger meteorites. If we develop a simple formula

that relates the size of a meteorite with its frequency of occurrence, we can predict the

likelihood of the arrival of a meteorite on earth, for every weight of meteorite, including

those weighing more than 66 tons, and for any interval of time.

Here is another profound example of the value of knowing the maximum value in a

data distribution. If you look at the distance from the earth to various cosmic objects

(e.g., stars, black holes, nebulae) you will quickly find that there is a limit for the distance

of objects from earth. Of themany thousands of cataloged stars and galaxies, none of them

have a distance that is greater than 13 billion light years. Why? If astronomers could

see a star that is 15 billion light years from earth, the light that is received here on earth

must have traveled 15 billion light years to reach us. The time required for light to travel

15 billion light years is 15 billion years; by definition. The universe was born in a big bang

about 14 billion years ago. This would imply that the light from the star located 15 billion

miles from earth must have begun its journey about a billion years before the universe

came into existence. Impossible!

By looking at the distribution of distances of observed stars and noting that the

distances never exceed about 13 billion years, we can infer that the universe must be at

least 13 billion years old. You can also infer that the universe does not have an infinite

age and size; otherwise, we would see stars at a greater distance than 13 billion light years.
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If you assume that stars popped into the universe not long after its creation, then you can

infer that the universe has an age of about 13 or 14 billion years. All of these deductions,

confirmed independently by theoreticians and cosmologists, were made without statisti-

cal analysis, simply by noting the maximum number in a distribution of numbers.
Section 10.3. Counting

On two occasions I have been asked, ‘If you put into the machine wrong figures, will

the right answers come out?’ I am not able rightly to apprehend the kind of confusion

of ideas that could provoke such a question.
Charles Babbage

For the bulk of Big Data projects, analysis begins with counting. If you cannot count the

data held in a Big Data resource, then you will derive little benefit from the resource.

Systemic counting errors account for irreproducible or misleading results. Surprisingly,

there is very little written about this issue in the Big Data literature. Presumably, the

subject is considered too trivial for serious study. To rectify this oversight, this section

describes, in some depth, the surprising intellectual challenges of Big Data counting.

Most people would agree that the simple act of counting data is something that can be

done accurately and reproducibly, from laboratory to laboratory. Actually, this is not the

case. Counting is fraught with the kinds of errors previously described in this chapter, plus

many other hidden pitfalls. Consider the problem of counting words in a paragraph.

It seems straightforward, until you start asking yourself how you might deal with

hyphenated words. “Deidentified” is certainly one word. “Under-represented” is probably

one word, but sometimes the hyphen is replaced by a space, and then it is certainly two

words. How about the term “military-industrial,” which seems as though it should be

two words? When a hyphen occurs at the end of a line, should we force a concatenation

between the syllables at the end of one line and the start of the next?

Slashes are a tougher nut to crack than hyphens. How should we count terms that

combine two related words by a slash, such as “medical/pharmaceutical”; one word or

two words? If we believe that the slash is a word separator (i.e., slashes mark the end of

one word and the beginning of another), then we would need to parse Web addresses into

individual words. For example:

www.science.com/stuff/neat_stuff/super_neat_stuff/balloons.htm

TheWeb address could be broken into a string of words, if the “.” and “_” characters could

be considered valid word separators. In that case, the single Web address would consist

of 11 words: www, science, com, stuff, neat, stuff, super, neat, stuff, balloons, htm.

If you were only counting words that match entries in a standard dictionary, then the split

Web address would contain 8 words: science, stuff, neat, stuff, super, neat, stuff, balloons.

If we defined a word as a string bounded by a space or a part-of-sentence separator

(e.g., period, comma, colon, semicolon, question mark, exclamation mark, end of line

http://www.science.com/stuff/neat_stuff/super_neat_stuff/balloons.htm
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character), then the unsplit Web address would count as 1 word. If the wordmust match a

dictionary term, then the unsplit Web address would count as zero words. So, which is it:

11 words, 8 words, 1 word, or 0 words?

This is just the start of the problem. How shall we deal with abbreviations [8,9]? Should

all abbreviations be counted as one word, or as the sum of words represented by the

abbreviation? Is “U.S.” One word or two words? Suppose, before counting words, the text

is pre-processed to expand abbreviations. All the abbreviated terms (i.e., every instance of

“U.S.” becomes an instance of United States, and UCLA would count as 4 words). This

would yield an artificial increase in the number of words in the document. How would

aword counter deal with abbreviations that look likewords, such as “mumps”which could

be the name of a viral disease of childhood, or it could be an abbreviation for a computer

language used by medical informaticians and expanded as “Massachusetts General Hos-

pital Utility Multi-Programming System.”

How would we deal with numeric sequences appearing in the text? Should each

numeric sequence be counted as a word? If not, how do we handle Roman numbers?

Should “IV” be counted as a word, because it is composed of alphabetic characters, or

should it be omitted as a word, because it is equivalent to the numeric value, “4”? When

we encounter “IV,” how can we be certain that we are parsing a Roman numeral? Could

“IV,” within the context of our document, represent the abbreviation for “intravenous”?

It is obvious that the number of words in a document will depend on the particular

method used to count the words. If we use a commercial word counting application,

how can we know which word counting rules are applied? In the field of informatics,

the total number of words is an important feature of a document. The total word count

often appears in the denominator of common statistical measurements. Counting words

seems to be a highly specialized task. My favorite estimator of the number of words in any

text file is simply the size of the file divided by 6.5, the average number of characters in a

word plus one separator character.

The point here is that a simple counting task, such asword counting, can easily become

complex. A complex counting task, involving subjective assessments of observations,

seldom yields accurate results. When the criteria for counting change over time, then

results that were merely inaccurate may devolve even further, into irreproducibility. An

example of a counting task that is complex and objective is the counting of hits and errors

in baseball. The rules for counting errors are subjective and based on the scorer’s

judgment of the intended purpose of the hit (e.g., sacrifice fly) and the expected number

of bases reached in the absence of the error. The determination of an error sometimes

depends on the outcome of the play after the presumptive error has occurred (i.e., on

events that are not controlled or influenced by the error). Counting is also complex with

rules covering specific instances of play. For example, passed balls andwild pitches are not

scored as errors; they are assigned to another category of play. Plays involving catchers are

exempt from certain rules for errors that apply to fielders. It would be difficult to find an

example of a counting task that is more complex than counting baseball errors.

Sometimes counting criteria inadvertently exclude categories of items that should be

counted. The diagnoses that appear on death certificates are chosen from a list of causes
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of death included in the International Classification of Diseases (ICD). Diagnoses

collected from all of the death certificates issued in the United States are aggregated by

the CDC (Centers for Disease Control and Prevention) and published in the National Vital

Statistics Report [10]. As it happens, “medical error” is not included as a cause of death in

the ICD; hence, United States casualties of medical errors are not counted as such in the

official records. Official tally notwithstanding, it is estimated that about one of every

six deaths in the United States result from medical error [10].

Big Data is particularly prone to counting errors, as data is typically collected from

multiple sources, each with its own method for annotating data. In addition, Big Data

may extend forwards and backwards in time; constantly adding new data and merging

with legacy data sets. The criteria for counting data may change over time, producing

misleading results. Here are a few examples of counts that changed radically when the

rules for counting changed. [Glossary Meta-analysis]

– Beachy Head is a cliff in England with a straight vertical drop and a beautiful sea-view.

It is a favorite jumping off point for suicides. The suicide rate at Beachy Head dropped

as sharply as the cliff when the medical examiner made a small policy change. From a

certainmoment onward, bodies found at the cliff bottomwould be counted as suicides

only if their post-mortem toxicology screen was negative for alcohol. Intoxicated

subjects were pronounced dead by virtue of accident (i.e., not suicide) [11].

– Sudden Infant Death Syndrome (SIDS, also known as crib death) was formerly

considered to be a disease of unknown etiology that caused infants to stop breathing,

and die, often during sleep. Today, most SIDS deaths are presumed to be due to

unintentional suffocation from bedclothes, often in an overheated environment, and

aggravated by a prone (i.e., face down) sleeping position. Consequently, some infant

deaths that may have been diagnosed as SIDS in past decades are now diagnosed as

unintentional suffocations. This diagnostic switch has resulted in a trend characterized

by increasing numbers of infant suffocations and a decreasing number of SIDS cases

[12]. This trend is, in part, artifactual, arising from changes in reporting criteria.

– In the year 2000, nearly a half-century after the Korean War, the United States

Department of State downsized its long-standing count of United States military war

deaths; to 36,616 down from an earlier figure of about 54,000. The drop of 17,000

deaths resulted from the exclusion of United States military deaths that occurred

during the Korean War, in countries outside Korea [13]. The old numbers reflected

deaths during the Korean War; the newer number reflects deaths occurring due to the

Korean War. Aside from historical interest, the alteration indicates how collected

counts may change retroactively.

– Human life is flanked by two events, birth and death; both events are commemorated

with a certificate. Death certificates are the single most important gauge of public

health. They tell us the ages at which deaths occur, and the causes of those deaths.With

this information, we can determine the most common causes of death in the

population, changes in the frequency of occurrences of the different causes of death,

and the effect of interventions intended to increase overall life expectancy and
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reduce deaths caused by particular causes. Death certificates are collected fromgreater

than 99% of individuals who die in the United States [14]. This data, vital to

the health of every nation, is highly error prone, and the problems encountered in the

U.S. seem to apply everywhere [15,16]. A survey of 49 national and international

health atlases has shown that there is virtually no consistency in theway that death data

are prepared [17]. Within the United States there is little consistency among states in

the manner in which the causes of death are listed [18]. Death data is Big Data, as it is

complex (i.e., containing detailed, non-standard informationwithindeath certificates),

comes from many sources (i.e., every municipality), arrives continually (i.e., deaths

occur every minute), with many records (i.e., everyone dies eventually). The rules for

annotating the data change regularly (i.e., new versions of the International

Classification of Diseases contain different new terms and codes). The consistency

of the data decreases as the BigData grows in size and in time. Our basic understanding

of how humans die, and our ability to measure the effect of potentially life-saving

public health interventions, is jeopardized by our inability to count the causes of death.

– Dealing with Negations

A large portion of Big Data is categorical, not quantitative. Whenever counting categorical

features, you need to know whether a feature is present or absent. Unstructured text has

no specific format for negative assertions (i.e., statements indicating that a feature is

absent or that an assertion is false). Negations in unstructured data come into play during

parsing routines wherein various features need to be counted.

If a computer program is seeking to collect, count, or annotate occurrences of a par-

ticular diagnosis included in a pathology report, or a particular type of “buy” order on a

financial transaction, or the mention of a particular species of frog on a field report, there

should be some way to distinguish a positive occurrence of the term (e.g., Amalgamated

Widget is traded), from a negation statement (e.g., Amalgamated Widget is not traded.”).

Otherwise, counts of the positive occurrences of trades would include cases that are

demonstrably negative. Informaticians have developed a variety of techniques that deal

with negations occurring in textual data [19].

In general, negation techniques rely on finding a negation term (e.g., not present, not

found, not seen) in proximity with an annotation term (e.g., a term that matches some

term in a standard nomenclature, or a term that has been cataloged or otherwise indexed

for the data set, onto which a markup tag is applied). A negated term would not be

collected or counted as a positive occurrence of the annotation.

Examples of negation terms included in sentences are shown here:

– He cannot find evidence for the presence of a black hole.

– We cannot find support for the claim.

– A viral infection is not present.

– No presence of Waldo is noted.

– Bigfoot is not in evidence in this footprint analysis.
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It is easy to exclude terms that are accompanied by an obvious negation term.When terms

are negated or otherwise nullified by terms that are not consistently characterized by a

negative inference, the problem becomes complex.

Here is a short list of implied negations, each lacking an unambiguous negation

term, followed by the re-written sentence that contains an unambiguous negation term

(i.e., “not”).

– “Had this been a tin control processor, the satellite would have failed.”—The satellite

did not fail.

– “There is a complete absence of fungus.”—Fungus is not present

– “We can rule out the presence of invasive cancer.”—Invasive cancer is not present.

– “Hurricanes failed to show.”—Hurricanes did not show.

– “The witness fails to make an appearance.”—The witness did not appear.

– “The diagnosis is incompatible with psoriasis.”—Psoriasis is not present.

– “Drenching rain is inconsistent with drought.”—Drought does not occur with

drenching rain.

– “There is insufficient evidence for a guilty verdict.”—Not guilty.

– “Accidental death is excluded.”—Not an accidental death.

– “A drug overdose is ruled out.”—Not a drug overdose.

– “Neither fish nor foul.”—Not fish. Not foul.

– There is zero evidence for aliens in Hoboken.”—Aliens have not been found in

Hoboken.

In addition to lacking outright negations, sentences may contain purposefully ambiguat-

ing terms, intended to prohibit readers from drawing any conclusion, positive or negative.

For example, “The report is inconclusive for malignancy.” How would this report be

counted? Was a malignancy present, or was it not?

The point here is that, like everything else in the field of Big Data, the individuals who

prepare and use resources must have a deep understanding of the contained data. They

must also have a realistic understanding of the kinds of questions that can be sensibly

asked and answered with the available data. They must have an understanding of the

limits of their own precision.
Section 10.4. Normalizing and Transforming Your Data

Errors have occurred.

We won’t tell you where or why.

Lazy programmers.
Computer-inspired haiku by Charlie Gibbs

When extracting data from multiple sources, recorded at different times, and collected

for different purposes, the data values may not be directly comparable. The Big Data

analyst must contrive a method to normalize or harmonize the data values.
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– Adjusting for population differences.

Epidemiologists are constantly reviewing large data sets on large populations (e.g., local,

national, and global data). If epidemiologists did not normalize their data, they would be

in a constant state of panic. Suppose you are following long-term data on the incidence

of a rare childhood disease in a state population. You notice that the number of people

with the disease has doubled in the past decade. You are about to call the New York Times

with the shocking news when one of your colleagues taps you on the shoulder and

explains that the population of the state has doubled in the same time period. The inci-

dence, described as cases per 100,000 population, has remained unchanged. You calm

yourself down and continue your analysis to find that the reported cases of the disease

have doubled in a different state that has had no corresponding increase in state popula-

tion. You are about to alert the White House with the news when your colleague taps you

on the shoulder and explains that the overall population of the state has remained

unchanged, but the population of children in the state has doubled. The incidence as

expressed as cases occurring in the affected population, has remained unchanged.

An age-adjusted rate is the rate of a disease within an age category, weighted against the

proportion of persons in the age groups of a standard population. When we age-adjust

rates, we cancel out the changes in the rates of disease that result from differences in

the proportion of people in different age groups.

Some of the most notorious observations on non-adjusted data come from the

field of baseball. In 1930 Bill Terry maintained a batting average of 0.401, the best

batting average in the National league. In 1968 Carl Yastrzemski led his league

with a batting average of 0.301. You would think that the facts prove that Terry’s lead

over his fellow players was greater than Yastrzemski’s. Actually, both had averages that

were 27% higher than the average of their fellow ballplayers of the year. Normalized

against all the players for the year in which the data was collected, Terry and

Yastrzemski tied.

– Rendering data values dimensionless.

Histograms express data distributions by binning data into groups and displaying the bins

in a bar graph. A histogram of an image may have bins (bars) whose heights consist of the

number of pixels in a black and white image that fall within a certain gray-scale range

(Fig. 10.1).

When comparing images of different sizes, the total number of pixels in the images

is different, making it impossible to usefully compare the heights of bins. In this case,

the number of pixels in each bin can be divided by the total number of pixels in the

image, to produce a number that corresponds to the fraction of the total image pixels

that are found in the bin. The normalized value (now represented as a fraction), can be

compared between two images. Notice that by representing the bin size as a fraction,

we have stripped the dimension from the data (i.e., a number expressed as pixels), and

rendered a dimensionless data item (i.e., a purely numeric fraction).



FIG. 10.1 An image of the author, left, converted into a histogram representing the number of pixels that have a gray-

scale value of 0, 1, 2, 3 and so on up to the top gray-scale value of 256. Each gray-scale value is a bin.
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– Converting one data type to another, more useful, data type.

A zip code is an example of data formed by numeric digits that lack numeric properties.

You cannot add two zip codes and expect to get any useful information from the

process. However, every zip code has been mapped to a specific latitude and longitude

at the center of the zip code region, and these values can be used as spherical coordinates

from which distances between locations can be computed. It is often useful to assign

geographic coordinates to every zip code entry in a database.

– Converting to a (0, 1) interval.

Any set of data values can be converted into an interval between 0 and 1, wherein the

original data values maintain their relative positions in the new interval. There are several

simple ways to achieve the result. Themost straightforward is to compute the range of the

data by subtracting the smallest data value in your data set from the largest data value.

To determine the location of any data value in the 0, 1 range, simply subtract from it

the smallest value in the data set and then divide the result by the range of the data

(Fig. 10.2). This tells you where your value is located, in a 0, 1 interval, as a fraction of

the range of the data.



FIG. 10.2 A formula that will convert any value to a fraction between 0 and 1 by dividing the distance of

the value from the smallest value of the attribute in the population by the full data range of the value in the

population [20].
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Another popular method for converting data sets to a standard interval is to subtract

the mean from any data value and divide by the standard deviation. This gives you

the position of the data value expressed as its deviation from the mean as a fraction

of the standard deviation. The resulting value is called the z-score.

When comparing different data sets, it is frequently important to normalize all of

the data points to a common interval. In the case of multi-dimensional data it is usually

necessary to normalize the data in every dimension using some sensible scaling compu-

tation. This may include the methods just described (i.e., dividing by range or by standard

deviation, or by substituting data with a dimensionless transformed value, such as a

correlation measure).

– Weighting.

Weighting is a method whereby the influence of a value is moderated by some factor

intended to yield an improved value. In general, when a data value is replaced by the

sum of weighted factors, the weights are chosen to add to 1. For example, if you are writing

your own smoothing function, in which each value in a data set is replaced by a value

computed by summing contributions from itself and its immediate neighbor on the left

and the right, you might multiply each number by one-third, so that the final number is

scaled to amagnitude similar to your original number. Alternately, youmight multiply the

number to the left and to the right by one-quarter and the original by one-half, to provide a

summed number weighted to favor the original number.

It is a shame that Big Data never comes with instructions. Data analysts are con-

stantly required to choose a normalization method, and the choice will always depend

on their intended use of the data. Here is an example. Three sources of data provide

records on children that include an age attribute. Each source measures age in the

same dimension; years. You would think that because the ages are all recorded in

years, not months or decades, you can omit a normalization step. When you study

the data, you notice that one source contains children up to the year 14, while another

is cut off at age 12, and another stops at age 16. Suddenly, you are left with a difficult

problem. Can your ignore the differences in the cut-off age in the three data sets?

Should you truncate all of the data above age 12? Should you use all of the data,

but weigh the data differently for the different sources? Should you divide by the

available ranges for the data? Should you compute z-scores? It all depends on what

you are trying to learn from the data.
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Section 10.5. Reducing Your Data

There is something fascinating about science. One gets such a wholesale return of

conjecture out of such a trifling investment of fact.
Mark Twain

At first glance, it seems obvious that gravitational attraction is a Big Data problem.

We know that gravitation between any two bodies is proportional to the product of

their masses and inversely proportional to the square of the distance between them.

If we want to predict the gravitational forces on an object, we would need to know the

position andmass of every body in the universe.With this data, we would compute a force

vector, from which we could determine the net gravitational influence of the universe

upon the mass. Of course, this is absurd. If we needed all that data for our computation,

physicists would be forever computing the orbit of the earth around the sun. We are lucky

to live in a universe wherein gravity follows an inverse square distance rule, as this allows

us to neglect the influences of heavenly bodies that are far away from earth and sun, and of

nearby bodies that have small masses compared with the sun. Any high school student

can compute the orbits of the earth around the sun, predicting their relative positions

millennia into the future.

Likewise, if we can see two galaxies in space and we notice that they are similar in

shape, size, and have a similar star density, then we can assume that they both produce

about the same amount of light. If the light received on Earth from one of those galaxies is

four times that received by the other galaxy, we can apply the inverse square law for light

intensity and infer that the dimmer galaxy is probably twice as far from earth as the

brighter galaxy. In this short analysis, we start with our observations on every visible galaxy

in the universe. Next, we compare just two galaxies and from this comparison we can

develop general methods of analysis that may apply to the larger set of data.

The point here is that when Big Data is analyzed it is seldom necessary to include every

point of data in your system model. In the Big Data field the most successful analysts

will often be those individuals who are adept at simplifying the system model; thus

eliminating unnecessary calculations.

Because Big Data is complex, you will often find that your data objects have high

dimensionality; each data object is annotated with a large number of values. The types

of values that are shared among all the different data objects are usually referred to as

parameters. It is very difficult to make much sense of high dimensional data. It is always

best to develop a filtering mechanism that expunges useless parameters. A useless

parameter will often have one of these two properties:

1. Redundancy. If a parameter correlates perfectly with some other parameter, you

know that you can safely drop one of the two parameters. For example, you may have

some physiologic data on a collection of people, and the data may include weight, waist

size, body fat index, weight adjusted by height, and density. These measurements seem to
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be measuring about the same thing; are they all necessary? If several attributes closely

correlate with one another, you might want to drop a few.

Association scores provide a measure of similarity between two variables. Two similar

variables will rise and fall together. The Pearson correlation score is popular and can

be easily implemented [18,21]. It produces a score that varies from �1 to 1. A score of 1

indicates perfect correlation; a score of �1 indicates perfect anti-correlation (i.e., one

variable rises while the other falls). A Pearson score of 0 indicates lack of correlation. Other

correlation measures are readily available, as discussed in Section 11.3, “The Dot Product,

a Simple and Fast CorrelationMethod” [22,23]. Big Data analysts should not demure from

developing their own correlation scores, as needed, to ensure enhanced speed, or to

provide a scoring measure that best serves their particular goals.

2. Randomness. If a parameter is totally random, then it cannot tell you anything

meaningful about the data object, and you can drop the parameter. There are many tests

that measure randomness; most were designed tomeasure the quality of random number

generators [24]. They can also be used to determine the randomness of data sets.

Putting your set of parameter values into a file, and compressing the file can achieve

a simple but useful test for randomness. If the values of the parameter are distributed

randomly, the file will not compress well, whereas a set of data that has a regular

distribution (e.g., a simple curve, or a Zipf-like distribution, or a distribution with a sharp

peak), will compress down into a very small file.

As a small illustration, I wrote a short program that created three files, each 10,000 bytes

in length. The first file consisted of the number 1, repeated 10,000 times (i.e., 11111111...).

The second file consisted of the numbers 0 through 9, distributed as a sequence of 1000

zeros followed by 1000 ones, followed by 1000 twos, and so on, up to 1000 nines. The final

file consisted of the numbers 0 through 9 repeated in a purely random sequence (e.g.,

285963222202186026084095527364317), extended to fill a file of 10,000 bytes. Each

file was compressed with gunzip, which uses the DEFLATE compression algorithm,

combining LZ77 and Huffman coding.

The uncompressed files (10,000 bytes) were compressed into the following file sizes:

compressed file size: 58 bytes for 10,000 consecutive "1"

compressedfilesize:75bytesfor1,000consecutivevaluesof0through9
compressed file size: 5,092 bytes for a random sequence of 10,000 digits

In the third file, which consisted of a random sequence of digits, a small compression was

achieved simply through the conversion from ASCII to binary representation. In general,

though, a purely random sequence cannot be compressed. A data analyst can compare the

compressibility of data values, parameter by parameter, to determine which parameters

might be expunged, at least during the preliminary analysis of a large, multi-dimensional

data set.

When random data are not omitted from the data parameters the unwary analyst may

actually develop predictive models and classifiers based entirely on noise. This can occur

because clustering algorithms and predictive methods, including neural networks, will
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produce an outcome from random input data. It has been reported that some published

diagnostic tests have been developed from random data [25]. [Glossary Classifier, Neural

network]

Aside from eliminating redundant or random parameters, you might want to review

the data and eliminate parameters that do not contribute in any useful way toward your

analysis. For example, if you have the zip code for an individual, you will probably not

need to retain the street address. If you have the radiologic diagnosis for a patient’s chest

X-ray, you might not need to retain the file containing the X-ray image unless you are

conducting an image analysis project.

The process of reducing parameters applies to virtually all of the fields of data analysis,

including standard statistical analysis. Names for this activity include feature reduction or

selection, variable reduction and variable subset reduction, and attribute selection. There

is sometimes a fine line between eliminating useless data parameters and cherry-picking

your test set. It is important to document the data attributes you have expunged and your

reason for doing so. Your colleagues should be given the opportunity of reviewing all

of your data, including the expunged parameters. [Glossary Cherry-picking, Second

trial bias]

An example of a data elimination method is found in the Apriori algorithm. At its

simplest, it expresses the observation that a collection of items cannot occur frequently

unless each item in the collection also occurs frequently. To understand the algorithm

and its significance, consider the items placed together in a grocery checkout cart. If

the most popular combination of purchase items is a sack of flour, a stick of butter, and

a quart of milk, then you can be certain that collections of each of these items

individually, and all pairs of items from the list of 3, must also occur frequently. In fact,

they must occur at least as often as the combination of all three, because each of these

smaller combinations are subsets of the larger set and will occur with the frequency of the

larger set plus the frequency of their occurrences in any other item sets. The importance

of the apriori algorithm to Big Data relates to data reduction. If the goal of the analysis is

to find association rules for frequently occurring combinations of items, then you can

restrictyouranalysis tocombinationscomposedofsingle itemsthatoccur frequently [26,20].

After a reduced data set has been collected, it is often useful to transform the data by

any of a variety of methods that enhance our ability to find trends, patterns, clusters or

relational properties that might be computationally invisible in the untransformed data

set. The first step is data normalization, described in the next section. It is critical that data

be expressed in a comparable form and measure. After the data is normalized, you can

further reduce your data by advanced transformative methods.

As a final caveat, data analysts should be prepared to learn that there is never any

guarantee that a collection of data will be helpful, even if it meets every criterion for

accuracy and reproducibility. Sometimes the data you have is not the data you need. Data

analysts should be aware that advanced analytic methods may produce a result that does

not take you any closer to ameaningful answer. The data analystmust understand that there

isanimportantdifferencebetweenaresult andananswer. [GlossarySupportvectormachine]
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Section 10.6. Understanding Your Control

The purpose of computing is insight, not numbers.
Richard Hamming

In the small data realm the concept of “control” is easily defined and grasped. Typically, a

group is divided into treatment and control sub-groups. Heterogeneity in the population

(e.g., gender, age, health status) is randomly distributed into both groups, so that the

treatment and the control subgroups are, to the extent possible, indistinguishable from

one another. If the treatment group receives a drug administered by syringe suspended

in a saline solution, then the control group might receive an injection of saline solution

by syringe, without the drug. The idea is to control the experimental groups so that they

are identical in every way, save for one isolated factor. Measurable differences in the

control and the treatment groups that arise after treatment are potentially due to the

action of the one treatment factor.

The concept of “control” does not strictly apply to Big Data; the data analyst never

actually “controls” the data. We resign ourselves to doing our best with the

“uncontrolled” data that is provided. In the absence of controlling an experiment, what

can the data analyst do to exert some kind of data selection that simulates a controlled

experiment? It often comes down to extracting two populations, from the Big Data

resource, that are alike in every respect, but one: the treatment.

Let me relate a hypothetical situation that illustrates the special skills that Big Data

analysts must master. An analyst is charged with developing a method for distinguishing

endometriosis from non-diseased (control) tissue using gene expression data. By way of

background, endometriosis is a gynecologic condition wherein endometrial tissue that is

usually confined to the endometrium (the tissue that lines the inside cavity of the uterus)

is found growing outside the uterus, on the surfaces of the ovaries, pelvis, and other organs

found in the pelvis. He finds a public data collection that provides gene expression data on

endometriosis tissue (five samples) and on control tissues (five samples). By comparing

the endometriosis samples with the control samples, he finds a set of 1000 genes that

are biomarkers for endometriosis (i.e., that have “significantly” different expression in

the disease samples compared with the control samples).

Let us set aside the natural skepticism reserved for studies that generate 1000 new

biomarkers from an analysis of 10 tissue samples. The analyst is asked the question, “What

was your control tissue, and how was it selected and prepared for analysis?” The analyst

indicates that he does not know anything about the control tissues. He points out that the

selection and preparation of control tissues is a pre-analytic task (i.e., outside the realm of

influence of the data analyst). In this case, the choice of the control tissue was not at all

obvious. If the control tissue were non-uterine tissue, taken from the area immediately

adjacent to the area from which the endometriosis was sampled, then the analysis would

have been comparing endometriosis with the normal tissue that covers the surface of

pelvic organs (i.e., a mixture of various types of connective tissue cells unlike endometrial
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cells). If the control consisted of samples of normal endometriotic tissue (i.e., the

epithelium lining the endometrial canal), then the analysis would have been comparing

endometriosis with its normal counterpart. In either case, the significance and rationale

for the study would have been very different, depending on the choice of controls.

In this case, as in every case, the choice and preparation of the control is of the utmost

importance to the analysis that will follow. In a “small data” controlled study, every system

variable but one, the variable studied in the experiment, is “frozen”; an experimental

luxury lacking in Big Data. The Big Data analyst must somehow invent a plausible control

from the available data. This means that the data analyst, and his close co-workers, must

delve into the details of data preparation and have a profound understanding of the kinds

of questions that the data can answer. Finding the most sensible control and treatment

groups from a Big Data resource can require a particular type of analytic mind that has

been trained to cope with data drawn from many different scientific disciplines.
Section 10.7. Statistical Significance Without
Practical Significance

The most savage controversies are those about matters as to which there is no good

evidence either way.
Bertrand Russell

Big Data provides statistical significance without necessarily providing any practical

significance. Here is an example. Suppose you have two populations of people and you

suspect that the adult males in the first population are taller than the second population.

To test your hypothesis, you measure the heights of a random sampling (100 subjects)

fromboth groups. You find that the average height of group 1 is 172.7cm,while the average

height of the second group is 172.5cm. You calculate the standard error of the mean (the

standard deviation divided by the square root of the number of subjects in the sampled

population), and you use this statistic to determine the range in which the mean is

expected to fall. You find that the difference in the average height in the two sampled

populations is not significant, and you cannot exclude the null hypothesis (i.e., that the

two sampled groups are equivalent, height-wise).

This outcome really bugs you! You have demonstrated a 2mmdifference in the average

heights of the two groups, but the statistical tests do not seem to care. You decide to up

the ante. You use a sampling of one million individuals from the two populations and

recalculate the averages and the standard errors of the means. This time, you get a slightly

smaller difference in the heights (172.65 for group 1 and 172.51 for group 2). When you

calculate the standard error of the mean for each population, you find a much smaller

number, because you are dividing the standard deviation by the square root of onemillion

(i.e., one thousand); not by the square root of 100 (i.e., 10) that you used for the first

calculation. The confidence interval for the ranges of the averages is much smaller
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now, and you find that the differences in heights between group 1 and group 2 are

sufficient to exclude the null hypothesis with reasonable confidence.

Your BigData project was a stunning success; you have shown that group 1 is taller than

group 2, with reasonable confidence. However, the average difference in their heights

seems to be about a millimeter. There are no real life situations where a difference of this

small magnitude would have any practical significance. You could not use height to

distinguish individual members of group 1 from individual members of group 2; there

is too much overlap among the groups, and height cannot be accurately measured to

within a millimeter tolerance. You have used Big Data to achieve statistical significance,

without any practical significance.

There is a tendency among Big Data enthusiasts to promote large data sets as a cure

for the limited statistical power and frequent irreproducibility of small data studies. In

general, if an effect is large, it can be evaluated in a small data project. If an effect is

too small to confirm in a small data study, statistical analysis may benefit from a Big Data

study, by increasing the sample size and reducing variances. Nonetheless, the final results

may have no practical significance, or the results may be unrepeatable in a small-scale

(i.e., real life) setting, or may be invalidated due to the persistence of biases that were

not eliminated when the sample size was increased.
Section 10.8. Case Study: Gene Counting

There is a chasm

of carbon and silicon

the software can’t bridge.
Computer-inspired haiku by Rahul Sonnad

The Human Genome Project is a massive bioinformatics project in which multiple

laboratories helped to sequence the 3 billion base pair haploid human genome. The

project began its work in 1990, a draft human genome was prepared in 2000, and a

completed genome was finished in 2003, marking the start of the so-called post-genomics

era. There are about 2 million species of proteins synthesized by human cells. If every

protein had its own private gene containing its specific genetic code, then there would

be about two million protein-coding genes contained in the human genome. As it turns

out, this estimate is completely erroneous. Analysis of the human genome indicates that

there are somewhere between 20,000 and 150,000 genes. The majority of estimates come

in at the low end (about 25,000 genes). Why are the current estimates so much lower than

the number of proteins, and why is there such a large variation in the lower and upper

estimates (20,000 to 150,000)? [Glossary Human Genome Project]

Counting is difficult when you do not fully understand the object that you are counting.

The reason that you are counting objects is to learnmore about the object, but you cannot

fully understand an object until you have learned what you need to know about the object.

Perceived this way, counting is a bootstrapping problem. In the case of proteins a small
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number of genes can account for a much larger number of protein species because

proteins can be assembled from combinations of genes, and the final form of a unique

protein can be modified by so-called post-translational events (folding variations,

chemicalmodifications, sequence shortening, clustering by fragments, etc.). Themethods

used to count protein-coding genes can vary [27]. One techniquemight look for sequences

thatmark the beginning and the end of a coding sequence; anothermethodmight look for

segments containing base triplets that correspond to amino acid codons. The former

method might count genes that code for cellular components other than proteins, and

the later might miss fragments whose triplet sequences do not match known protein

sequences [28]. Improved counting methods are being developed to replace the older

methods, but a final number evades our grasp.

The take-home lesson is that the most sophisticated and successful Big Data projects

can be stumped by the simple act of counting.
Section 10.9. Case Study: Early Biometrics, and the
Significance of Narrow Data Ranges

The proper study of Mankind is Man.
Alexander Pope in “An Essay on Man,” 1734.

It is difficult to determine the moment in history when we seriously began collecting

biometric data. Perhaps it started with the invention of the stethoscope. Rene-

Theophile-Hyacinthe Laennec (1781–1826) is credited with inventing this device, which

provided us with the opportunity to listen to the sounds generated within our bodies.

Laennec’s 1816 invention was soon followed by his 900-page analysis of sounds, heard

in health and disease, the Traite de l’Aascultation Mediate (1819). Laennec’s meticulous

observations were an early effort in Big Data medical science. A few decades later, in

1854, Karl Vierordt’s 1854 sphygmograph was employed to routinely monitor the

pulse of patients. Perhaps the first large monitoring project came in 1868 when Carl

Wunderlich published Das Verhalten der Eigenwarme in Krankheiten, which collected

body temperature data on approximately 25,000 patients [29]. Wunderlich associated

peaks and fluctuations of body temperature with 32 different diseases. Not only did this

work result in a large collection of patient data, it also sparked considerable debate over

the best way to visualize datasets. Competing suggestions for the representation of

thermometric data (as it was called) included time interval (discontinuous) graphs and

oscillating realtime (continuous) charts. Soon thereafter, sphygmomanometry (blood

pressure recordings) was invented (1896). With bedside recordings of pulse, blood

pressure, respirations, and temperature (the so-called vital signs), the foundations of

modern medical data collection were laid.

At the same time that surveillance of vital signs became commonplace, a vast array

of chemical assays of blood and body fluids were being developed. By the third decade
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of the twentieth century, physicians had at their disposal most of the common blood tests

known to modern medicine (e.g., electrolytes, blood cells, lipids, glucose, nitrogenous

compounds). What the early twentieth century physicians lacked was any sensible way

to interpret the test results. Learning how to interpret blood tests required examination

of old data collected on many thousands of individuals, and it took considerable time

and effort to understand the aggregated results.

The results of blood tests, measured under a wide range of physiologic and pathologic

circumstances, produced a stunning conclusion. It was shown that nearly every blood test

conducted on healthy individuals fell into a very narrow range, with very little change

between individuals. This was particularly true for electrolytes (e.g., Sodium and Calcium)

and to a somewhat lesser extent for blood cells (e.g., white blood cells, red blood cells).

Furthermore, for any individual, multiple recordings at different times of the day and

on different days, tended to produce consistent results (e.g., Sodium concentration in

the morning was equivalent to Sodium concentration in the evening). These finding were

totally unexpected at the time [30].

Analysis of the data also showed that significant deviations from the normal concen-

trations of any one of these blood chemicals is always an indicator of disease. Backed by

data, but lacking any deep understanding of the physiologic role of blood components,

physicians learned to associate deviations from the normal range with specific disease

processes. The discovery of the “normal range” revolutionized the field of physiology.

Thereafter physiologists concentrated their efforts toward understanding how the body

regulates its blood constituents. These early studies led to nearly everything we now know

about homeostatic control mechanisms, and the diseases thereof.

To this day,much ofmedicine consists ofmonitoring vital signs, blood chemistries, and

hematologic cell indices (i.e., the so-called complete blood count), and seeking to find a

cause and a remedy for deviations from the normal range.
Glossary
Cherry-picking The process whereby data objects are chosen for some quality that is intended to boost

the likelihood that an experiment is successful, but which biases the study. For example, a clinical trial

manager might prefer patients who seem intelligent and dependable, and thus more likely to comply

with the rigors of a long and complex treatment plan. By picking those trial candidates with a set of

desirable attributes, the data manager is biasing the results of the trial, whichmay no longer apply to a

real-world patient population.

Classifier As used herein, refers to algorithms that assign a class (from a pre-existing classification) to an

object whose class is unknown [26]. It is unfortunate that the term classifier, as used by data scientists,

is often misapplied to the practice of classifying, in the context of building a classification. Classifier

algorithms cannot be used to build a classification, as they assign class membership by similarity

to other members of the class; not by relationships. For example, a classifier algorithm might assign

a terrier to the same class as a housecat, because both animals have many phenotypic features in

common (e.g., similar size and weight, presence of a furry tail, four legs, tendency to snuggle in a

lap). A terrier is dissimilar to a wolf, and a housecat is dissimilar to a lion, but the terrier and the wolf

are directly related to one another; as are the housecat and the lion. For the purposes of creating a
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classification, relationships are all that are important. Similarities, when they occur, arise as a

consequence of relationships; not the other way around. At best, classifier algorithms provide a clue

to classification, by sorting objects into groups that may contain related individuals. Like clustering

techniques, classifier algorithms are computationally intensive when the dimension is high, and

can produce misleading results when the attributes are noisy (i.e., contain randomly distributed

attribute values) or non-informative (i.e., unrelated to correct class assignment).

Human Genome Project The Human Genome Project is a massive bioinformatics project in which

multiple laboratories contributed to sequencing the 3 billion base pair haploid human genome

(i.e., the full sequence of human DNA). The project began its work in 1990, a draft human genome

was prepared in 2000, and a completed genome was finished in 2003, marking the start of the

so-called post-genomics era. All of the data produced for theHumanGenomeProject is freely available

to the public.

Meta-analysis Meta-analysis involves combining data from multiple similar and comparable studies to

produce a summary result. The hope is that by combining individual studies, the meta-analysis

will carry greater credibility and accuracy than any single study. Three of the most recurring flaws

inmeta-analysis studies are selection bias (e.g., negative studies are often omitted from the literature),

inadequate knowledge of the included sets of data (e.g., incomplete methods sections in the original

articles), and non-representative data (e.g., when the published data are non-representative samples

of the original data sets).

Neural network Adynamic system inwhich outputs are calculated by a summation of weighted functions

operating on inputs. The weights for the individual functions are determined by a learning process,

simulating the learning process hypothesized for human neurons. In the computer model, individual

functions that contribute to a correct output (based on the training data) have their weights increased

(strengthening their influence to the calculated output). Over the past ten or fifteen years, neural

networks have lost some favor in the artificial intelligence community. They can become computa-

tionally complex for very large sets of multidimensional input data. More importantly, complex neural

networks cannot be understood or explained by humans, endowing these systems with a “magical”

quality that some scientists find unacceptable.

Second trial bias Can occur when a clinical trial yields a greatly improved outcome when it is repeated

with a second group of subjects. In themedical field, second trial bias arises when trialists find subsets

of patients from the first trial who do not respond well to treatment, thereby learning which clinical

features are associated with poor trial response (e.g., certain pre-existing medical conditions, lack of a

good home support system, obesity, nationality). During the accrual process for the second trial,

potential subjects who profile as non-responders are excluded. Trialists may justify this practice by

asserting that the purpose of the second trial is to find a set of subjects whowill benefit from treatment.

With a population enriched with good responders, the second trial may yield results that look much

better than the first trial. Second trial bias can be considered a type of cherry-picking that is often

justifiable.

Steghide Steghide is an open source GNU license utility that invisibly embeds data in image or audio files.

Windows and Linux versions are available for download from SourceForge, at:

http://steghide.sourceforge.net/download.php

A Steghide manual is available at:

http://steghide.sourceforge.net/documentation/manpage.php

After installing, you can invoke steghide at the system prompt as a command line launched from the

subdirectory in which steghide.exe resides.

Here is an example of a command line invocation of Steghide. Your chosen password can be inserted

directly into the commandline. For example:

steghide embed -cf myphoto.jpg -ef mytext.txt -p hideme

http://steghide.sourceforge.net/download.php
http://steghide.sourceforge.net/documentation/manpage.php
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The command line was launched from the subdirectory that holds the steghide executable files onmy

computer. The command instructs steghide to embed the text file, berman_author_bio.txt into the

image file, berman_author_photo.jpg, under the password “hideme”.

That is all there is to it. The image file, containing a photo of myself, now contains an embedded text

file, containing my short biography. No longer need I keep track of both files. I can generate my biog-

raphy file, from my image file, but I must remember the password.

I could have called Steghide from a script. Here is an example of an equivalent Python script that

invokes steghide from a system call.

import os
command_string = "steghide embed -cf myphoto.jpg -ef mytext.txt -p hideme"
os.system(command_string)

You can see how powerful this method can be. With a bit of tweaking, you can write a short script that

uses the Steghide utility to embed a hidden text message in thousands of images, all at once. Anyone

viewing those images would have no idea that they contained a hidden message, unless and until you

told them so.

Support vector machine A machine learning technique that classifies objects. The method starts with a

training set consisting of two classes of objects as input. The support vector machine computes a

hyperplane, in a multidimensional space, that separates objects of the two classes. The dimension

of the hyperspace is determined by the number of dimensions or attributes associated with the

objects. Additional objects (i.e., test set objects) are assigned membership in one class or the other,

depending on which side of the hyperplane they reside.
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Section 11.1. Speed and Scalability

It’s hardware thatmakes amachine fast. It’s software thatmakes a fast machine slow.
Craig Bruce

Speed and scalability are the two issues that never seem to go away when discussions turn

to Big Data. Will we be able to collect, organize, search, retrieve, and analyze Big Data at

the same speed that we have grown accustomed to in small data systems? Will the same

algorithms, software, protocols, and systems that work well with small data scale up to

Big Data?

Let us turn the question around for a moment. Will Big Data solutions scale down to

provide reliable and fast solutions for small data? It may seem as though the answer is

obvious. If a solution works for large data it must also work for small data. Actually, this

is not the case. Methods that employ repeated sampling of a population may produce

meaningless results when the population consists of a dozen data points. Nonsensical

results can be expected when methods that determine trends, or analyze signals come

up against small data.

The point here is that computational success is always an artifact of the way that

we approach data-related issues. By customizing solutions to some particular set of

circumstances (number of samples, number of attributes, required response time,

required precision), we make our products ungeneralizable. We tend to individualize
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00011-X
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our work, at first, because we fail to see the downside of idiosyncratic solutions.

Hence, we learn the hard way that solutions that work well under one set of circum-

stances will fail miserably when the situation changes. Desperate to adapt to the new

circumstances, we often pick solutions that are expensive and somewhat short-sighted

(e.g., “Let’s chuck all our desktop computers and buy a supercomputer.”; “Let’s paralle-

lize our problems and distribute the calculations to multiple computers”, “Let’s forget

about trying to understand the system and switch to deep learning with neural net-

works.”; “Let’s purchase a new and more powerful information system and abandon

our legacy data.”)

In this book, which offers a low-tech approach to Big Data, we have been stressing

the advantages of simple and general concepts that allow data to be organized at any level

of size and complexity (e.g., identifiers, metadata/data pairs, triples, triplestores), and

extremely simple algorithms for searching, retrieving, and analyzing data that can be

accomplished with a few lines of code in any programming language. The solutions

discussed in this book may not be suitable for everyone, but it is highly likely that many

of the difficulties associated with Big Data could be eliminated or ameliorated, if all data

were well organized.

Aside from issues of data organization, here are a few specific suggestions for avoiding

some of the obstacles that get in the way of computational speed and scalability:

– High-level programming languages (including Python) employ built-in methods

that fail when the variables are large, and such methods must be avoided by

programmers.

Modern programming languages relieve programmers from the tedium of allocating

memory to every variable. The language environment is tailored to the ample memory

capacities of desktop and laptop computers and provides data structures (e.g., lists,

dictionaries, strings) that are intended to absorb whatever data they are provided. By

doing so, two problems are created for Big Data users. First, the size of data may easily

exceed the loading capacity of variables (e.g., don’t try to put a terabyte of data into a string

variable). Second, the built-in methods that work well with small data will fail when

dealing with large, multidimensional data objects, such as enormous matrices. This

means that good programmers may produce terrific applications, using high-level

programming languages that fail miserably in the Big Data realm.

Furthermore, the equivalent methods, in different versions of a high-level program-

ming language, may deal differently with memory. Successive versions of a programming

language, such as Python or Perl, may be written with the tacit understanding that the

memory capacity of computers is increasing and that methods can be speeded assuming

that memory will be available, as needed. Consequently, a relatively slow method may

work quite well for a large load of data in an early version of the language. That same

method, in a later version of the same language, written to enhance speed, may choke

on the same data. Because the programmer is using the same named methods in her

programs, run under different version of the language, the task of finding the source of

consequent software failures may be daunting.
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What is the solution? Should Big Data software be written exclusively in assembly

language, or (worse) machine language? Probably not, although it is easy to see why

programmers skilled in low-level programming languages will always be valued for their

expertise. It is best to approach Big Data programming with the understanding that

methods are not infinitely expandable to accommodate any size data, of any dimension.

Sampling methods, such as those discussed in detail in Chapter 13, “Using Random

Numbers to Knock Your Big Data Analytic Problems Down to Size” might be one solution.

– Line-by-line reading is slow, but is always scalable.

Years ago, I did a bit of programming in Mumps, a programming language developed in

the 1960s (that will be briefly discussed in Section 11.8 of this chapter). Every variable had

a maximum string size of 255 bytes. Despite this limitation, Mumps managed enormous

quantities of data in hierarchical data structure (the so-called Mumps global). Efficient

and reliable, Mumps was loved by a cult of loyal programmers. Every programmer of a

certain age can regale younger generations with stories of magnificent software written

for computers whose RAM memory was kilobytes (not Gigabytes).

A lingering residue of Mumps-like parsing is the line-by-line file read. Every file, even a

file of Big Data enormity, can be parsed from beginning to end by repeated line feeds.

Programmers who resist the urge to read whole files into a variable will produce software

that scales to any size, but which will run slower than comparable programs that rely on

memory. There are many trade-offs in life.

– Make your data persistent.

In Section 11.5 of this chapter, “Methods for Data Persistence” we will be discussing

methods whereby data structures can be moved from RAM memory into external files,

which can be retrieved in whole or in part, as needed. Doing so relieves many of the

consequences of memory overload, and eliminates the necessity of rebuilding data

structures each time a program or a process is called to execute.

– Don’t test your software on subsets of data

Programs that operate with complex sets of input may behave unpredictably. It is

important to use software that has been extensively tested by yourself and by your

colleagues. After testing, it is important to constantly monitor the performance of

software. This is especially important when using new sources of data, whichmay contain

data values that have been formatted differently than prior data.

Here is one solution that everyone tries. If the test takes a lot of processing time, just

reduce the size of the test data. Then you can quickly go through many test/debug cycles.

Uh uh. When testing software, you cannot use a small subset of your data because the

kinds of glitches you need to detect may only be detectable in large datasets. So, if you

want to test software that will be used in large datasets, youmust test the software on large

datasets. How testing can be done, on Big Data, without crashing the live system, is a del-

icate problem. Readers are urged to consult publications in the large corpus of literature

devoted to software testing.
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– Avoid turn-key applications.

Vendors may offer Big Data solutions in the form of turn-key applications and systems

that do everything for you. Often, such systems are opaque to users. When difficulties

arise, including system crashes, the users are dependent upon the vendor to provide a

fix. When the vendor is unreliable, or the version of the product that you are using is

no longer supported, or when the vendor has gone out of business, or when the vendor

simply cannot understand and fix the problem, the consequences to the Big Data effort

can be catastrophic.

Everyone has his or her own opinions about vendor-provided solutions. In some

cases, it may be reasonable to begin Big Data projects with an extremely simple, open

source, database that offers minimal functionality. If the data is simple but identified

(e.g., collections of triples), then a modest database application may suffice. Additional

functionalities can be added incrementally, as needed.

– Avoid proprietary software (when conducting scientific research)

Proprietary software applications have their place in the realm of Big Data. Such software

is used to operate the servers, databases, and communications involved in building and

maintaining the Big Data resource. They are often well tested and dependable, faithfully

doing the job they were designed to do. However, in the analysis phase, it may be

impossible to fully explain your research methods if one of the steps is: “Install the

vendor’s software and mouse-click on the ‘Run’ button.” Responsible scientists should

not base their conclusion on software they cannot understand. [Glossary Black box]

– Use small, efficient, and fast utilities

Utilities are written to perform one task optimally. For data analysts, utilities fit perfectly

with the “filter” paradigm of Big Data (i.e., that the primary purpose of Big Data is to

provide a comprehensive source of small data). A savvy data analyst will have hundreds

of small utilities, most being free and open source products, that can be retrieved

and deployed, as needed. A utility can be tested with data sets of increasing size and

complexity. If the utility scales to the job, then it can be plugged into the project.

Otherwise, it can be replaced with an alternate utility or modified to suit your needs.

[Glossary Undifferentiated software]

– Avoid system calls from within iterative loops

Many Big Data programs perform iterative loops operating on each of the elements of a

large list, reading large text files line by line, or calling every key in a dictionary. Within

these long loops, programmers must exercise the highest degree of parsimony, avoiding

any steps that may unnecessarily delay the execution of the script, inasmuch as any delay

will bemultiplied by the number of iterations in the loop. System calls to externalmethods

or utilities are always time consuming. In addition to the time spent executing the com-

mand, there is also the time spent loading and interpreting called methods, and this time

is repeated at each iteration of the loop. [Glossary System call]
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Todemonstrate the point, let us do a little experiment. As discussed in Section 3.3,when

we create new object identifiers with UUID, we have the choice of calling the Unix UUID

method as a system call from a Python script; or, we can use Python’s own uuid method.

Wewill run twoversionsofa script.The first versionwill create10,000newUUID identifiers,

using systemcalls to the external unix utility, uuid.gen.Wewill create another 10,000UUID

identifiers with Perl’s own uuid method. We will keep time of how long each script runs.

Here is the script using system calls to uuidgen.exe

timenow = time.time()

for i in range(1, 10000):
os.system("uuidgen.exe >uuid.out")

timenew = time.time()
print("Time for 10,000 uuid assignments: " + str(timenew - timenow))

output:
Time for 10,000 uuid assignments: 422.0238435268402

10,000 system calls to uuidgen.exe required 422 seconds to complete.

Here is the equivalent script using Python’s built-in uuid method.

timenow = time.time()
for i in range(1, 10000):

uuid.uuid4()
timenew = time.time()

print("Time for 10,000 uuid assignments: " + str(timenew - timenow))

output:

Time for 10,000 uuid assignments: 0.06850886344909668

Python’s built-in method required 0.07 seconds to complete, a dramatic time savings.

– Use look-up tables, and other pre-computed pointers

Computers are very fast at retrieving information from look-up tables, and these would

include concordances, indexes, color maps (for images), and even dictionary objects

(known also as associative arrays). For example, the Google search engine uses a look-up

tablebuilt upon thePageRankalgorithm.PageRank (alternate formPageRank) is amethod,

developed atGoogle, for displaying anordered set of results (for a phrase search conducted

over everypageof theWeb). The rankof apage is determinedby two scores: the relevancyof

the page to the query phrase; and the importance of the page. The relevancy of the page is

determinedby factors such as howclosely thepagematches thequeryphrase, andwhether

the content of the page is focused on the subject of the query. The importance of the page is

determined by howmanyWeb pages link to and from the page, and the importance of the

Web pages involved in the linkages. It is easy to see that the methods for scoring relevance

and importance are subject tomany algorithmic variances, particularly with respect to the

choice ofmeasures (i.e., theway inwhich a page’s focus on a particular topic is quantified),
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and theweights applied to eachmeasurement. The reasons that PageRankquery responses

canbecompletedvery rapidly is that the scoreofapage’s importancecanbepre-computed,

and stored with the page’s Web addresses. Word matches from the query phrase to Web

pages are quickly assembled using a precomputed index of words, the pages containing

the words, and the locations of the words in the pages [1]. [Glossary Associative array]

– Avoid RegEx, especially in iterative processes

RegEx (short for Regular Expressions) is a language for describing string patterns. The

RegEx language is used in virtually every modern programming language to describe

search, find, and substitution operations on strings. Most programmers love RegEx,

especially those programmers who have mastered its many subtleties. There is a strong

tendency to get carried away by the power and speed of Regex. I have personally reviewed

software in which hundreds of RegEx operations are performed on every line read from

files. In one such program the software managed to parse through text at the numbingly

slow rate of 1000 bytes (about a paragraph) every 4 seconds. As this rate a terabyte of data

would require a 4 billion seconds to parse (somewhat more than one century). In this

particular case, I developed an alternate program that used a fast look-up table and did

not rely upon RegEx filters. My program ran at a speed 1000 times faster than the RegEx

intense program [2]. [Glossary RegEx]

– Avoid unpredictable software.

Everyone thinks of software as something that functions in a predetermined manner, as

specified by the instructions in its code. It may seem odd to learn that software output

may be unpredictable. It is easiest to understand the unpredictability of software when

we examine how instructions are followed in software that employs class libraries (C++,

Java) or that employs some features of object-oriented languages (Python) or is fully object

oriented (Smalltalk, Ruby, Eiffel) [3]. When a method (e.g., an instruction to perform a

function) is sent to an object, the object checks to see if the method belongs to itself (i.e.,

if the method is an instance method for the object). If not, it checks to see if the method

belongs to its class (i.e., if themethod is a classmethod for theobject’s class). If not, it checks

its through the lineage of ancestral classes, searching for themethod.When classes areper-

mitted to have more than one parent class, there will be occasions when a namedmethod

exists inmore than one ancestral class, formore than one ancestral lineage. In these cases,

wecannotpredictwithanycertaintywhichclassmethodwill bechosen to fulfill themethod

call. Depending on the object receiving the method call, and its particular ancestral line-

ages, and the route taken to explore the lineages, the operation and output of the software

will change.

In the realm of Big Data, you do not need to work in an object oriented environment to

suffer the consequences of method ambiguity. An instruction can be sent over a network

of servers as an RPC (Remote Procedure Call) that is executed in a different ways by the

various servers that receive the call.

Unpredictability is often the very worst kind of programming bug because incorrect

outputs producing adverse outcomes often go undetected. In cases where an adverse

outcome is detected, it may be nearly impossible to find the glitch.
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– Avoid combinatorics.

Much of BigData analytics involves combinatorics; the evaluation, on some numeric level,

of combinations of things.Often,BigData combinatorics involves pairwise comparisons of

all possiblecombinationsofdataobjects, searching for similarities, orproximity (adistance

measure) of pairs. The goal of these comparisons often involves clustering data into similar

groups, finding relationships among data that will lead to classifying the data objects, or

predicting how data objects will respond or change under a particular set of conditions.

When the number of comparisons becomes large, as is the case with virtually all combina-

toric problems involving Big Data, the computational effort may becomemassive. For this

reason, combinatorics research has become somewhat of a subspecialty for Big Data

mathematics. There are four “hot” areas in combinatorics. The first involves building

increasingly powerful computers capable of solving combinatoric problems for Big Data.

The second involves developing methods whereby combinatoric problems can be broken

into smaller problems that can be distributed to many computers, to provide relatively

fast solutions for problems that could not otherwise be solved in any reasonable length

of time. The third area of research involves developing new algorithms for solving combi-

natoric problems quickly and efficiently. The fourth area, perhaps the most promising,

involves finding innovative non-combinatoric solutions for traditionally combinatoric

problems.

– Pay for smart speed

The Cleveland Clinic developed software that predicts disease survival outcomes from a

large number of genetic variables. Unfortunately the time required for these computations

was unacceptable. As a result, the Cleveland Clinic issued a Challenge “to deliver an

efficient computer program that predicts cancer survival outcomes with accuracy equal

or better than the reference algorithm, including 10-fold validation, in less than 15 hours

of real world (wall clock) time” [4]. The Cleveland Clinic had its own working algorithm,

but it was not scalable to the number of variables analyzed. The Clinic was willing to pay

for faster service.
Section 11.2. Fast Operations, Suitable for Big Data, That Every
Computer Supports

No one will needmore than 637 kb ofmemory for a personal computer. 640K ought to

be enough for anybody.
Bill Gates, founder of Microsoft Corporation, in 1981
– Random access to files

Most programming languages have a way of providing so-called random access to file

locations. This means that if you want to retrieve the 2053th line of a file, you need not

sequentially read lines 1 through 2052 before reaching your desired line. You can go

directly to any line in the text, or any byte location, for that matter.
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In Python, so-called random access to file locations is invoked by the seek() command.

Here is a 9-line Python script that randomly selects twenty locations in a text file (the

plain-text version of James Joyce’s Ulysses in this example) for file access.

import os, sys, itertools, random

size = os.path.getsize("ulysses.txt")
infile = open("ulysses.txt", "r")

random_location = "0"
for i in range(20):

random_location = random.uniform(0,size)
infile.seek(random_location, 0)

print(infile.readline(), end="\n")
infile.close()

Random access to files is a gift to programmers. When we have indexes, concordances,

and other types of lookup tables, we can jump to the file locations we need, nearly

instantaneously.

– Addition and multiplication

Some mathematical operations are easier than others. Addition and multiplication and

the bitwise logic operations (e.g., XOR) are done so quickly that programmers can include

these operations liberally in programs that loop through huge data structures.

– Time stamps

Computers have an intimate relationship with time. As discussed in Section 6.4, every

computer has several different internal clocks that set the tempo for the processor, the

motherboard, and for software operations. A so-called real-time clock (also known as

system clock) knows the time internally as the number of seconds since the epoch. By

convention, in Unix systems, the epoch begins at midnight on New Year’s Eve, 1970. Prior

dates are provided a negative time value. On most systems, the time is automatically

updated 50–100 times per second, providing us with an extremely precise way of

measuring the time between events.

Never hesitate to use built-in time functions to determine the time of events and to

determine the intervals between times. Many important data analysis opportunities have

been lost simply because the programmers who prepared the data neglected to annotate

the times that the data was obtained, created, updated, or otherwise modified.

– One-way hashes

One-way hashes were discussed in Section 3.9. One-way hash algorithms have many

different uses in the realm of BigData, particularly in areas of data authentication and secu-

rity. In some applications, one-way hashes are called iteratively, as in blockchains

(Section 8.6) and in protocol for exchanging confidential information [5,6]. As previously

discussed, various hash algorithms can be invoked via system calls from Python scripts

to the openssl suite of data security algorithms. With few exceptions, a call to methods
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from within the running programming environment, is much faster than a system call to

an external program. Python provides a suite of one-way hash algorithms in the hashlib

module.

>>> import hashlib
>>> hashlib.algorithms_available

{'sha', 'SHA', 'SHA256', 'sha512', 'ecdsa-with-SHA1', 'sha256',
'whirlpool', 'sha1', 'RIPEMD160', 'SHA224', 'dsaEncryption',
'dsaWithSHA', 'sha384', 'SHA384', 'DSA-SHA', 'MD4', 'ripemd160',

'DSA', 'SHA512', 'md4', 'sha224', 'MD5', 'md5', 'SHA1'}

The python zlib module also provides some one-way hash functions, including adler32,

with extremely fast algorithms, producing a short string output.

The following Python command lines imports Python’s zlibmodule and calls the adler32

hash, producing a short one-way hash for “hello world.” The bottom two command lines

imports sha256 from Python’s hashlib module and produces a much longer hash value.

>>> import zlib

>>> zlib.adler32("hello world".encode('utf-8'))
436929629

>>> import hashlib
>>> hashlib.sha256(b"hello world").hexdigest()
'b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7

ace2efcde9'

Is there any difference in the execution time when we compare the adler32 and sha256

algorithms. Let’s find out with the hash_speed.py script that repeats 10,000 one-way hash

operations with each one-way hash algorithms, testing both algorithms on a short phrase

(“hello world”) and a long file (meshword.txt, in this example, which happens to be

1,901,912 bytes in length).

import time, zlib, hashlib

timenow = time.time()
for i in range(1, 10000):

zlib.adler32("hello world".encode('utf-8'))
timenew = time.time()
print("Timefor10,000adler32hashesonashortstring:"+str(timenew-

timenow))
timenow = time.time()

for i in range(1, 10000):
hashlib.sha256(b"hello world").hexdigest()

timenew = time.time()
print("Time for 10,000 sha256 hashes on a short string: " + str(timenew -

timenow))
with open('meshword.txt', 'r') as myfile:
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data=myfile.read()

timenow = time.time()

for i in range(1, 10000):
zlib.adler32(data.encode('utf-8'))

timenew = time.time()
print("Time for 10,000 adler32 hashes on a file: " + str(timenew -
timenow))

timenow = time.time()
for i in range(1, 10000):

hashlib.sha256(data.encode('utf-8')).hexdigest()
timenew = time.time()

print("Time for 10,000 sha256 hashes on a file: " + str(timenew -
timenow))

Here is the output of the hash_speed.py script

Time for 10,000 adler32 hashes on a short string: 0.006000041961669922
Time for 10,000 sha256 hashes on a short string: 0.014998674392700195
Time for 10,000 adler32 hashes on a file: 20.740180492401123

Time for 10,000 sha256 hashes on a file: 76.80237746238708

Both adler32 and SHA256 took much longer (several thousand times longer) to hash a

2 Megabyte file than a short, 11-character string. This indicates that one-way hashes

can be performed on individual identifiers and triples, at high speed.

The adler32 hash is several times faster than sha256. This difference may be insignif-

icant under most circumstances, but would be of considerable importance in operations

that repeatmillions or billions of times. The adler 32 hash is less secure against attack than

the sha256, and has a higher chance of collisions. Hence, the adler32 hash may be useful

for projects where security and confidentiality are not at issue, and where speed is

required. Otherwise, a strong hashing algorithm, such as sha256, is recommended.

– Pseudorandom number generators are fast.

As will be discussed in Chapter 13, “Using RandomNumbers to Knock Your Big Data Ana-

lytic Problems Down to Size,” random number generators have many uses in Big Data

analyses. [Glossary Pseudorandom number generator]

Let us look at the time required to compute 10 million random numbers.

import random, time
timenow = time.time()
for iterations in range(10000000):

random.uniform(0,1)
timenew = time.time()

print("Time for 10 million random numbers: " + str(timenew - timenow))
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Here is the output from the ten_million_rand.py script:

output:

Time for 10 million random numbers: 6.093759775161743

Ten million random numbers were generated in just over 6 seconds, on my refurbished

home desktop running at a CPU speed of 3.40GHz. This tells us that, under most circum-

stances, the time required to generate random numbers will not be a limiting factor, even

whenwe need to generatemillions of numbers. Next, we need to knowwhether the random

numbers we generate are truly random. Alas, it is impossible for computers to produce an

endless collection of truly random numbers. Eventually, algorithms will cycle through their

available variations and begin to repeat themselves, producing the same set of “random”

numbers, in the same order; a phenomenon referred to as the generator’s period. Because

algorithms thatproduce seemingly randomnumbers are imperfect, theyare knownaspseu-

dorandom number generators. The Mersenne Twister algorithm, which has an extremely

long period, is used as the default random number generator in Python. This algorithm

performswell onmost of the tests thatmathematicians have devised to test randomness [7].

– Be aware that calls to external cryptographic programs may slow your scripts.

In Section 18.3, we will be discussing cryptographic protocols. For now, suffice it to say

that encryption protocols can be invoked from Python scripts with a system call to the

openssl toolkit. Let us look at aes128, a strong encryption standard used by the United

States government. We will see how long it takes to encrypt a nearly two megabyte file,

10,000 times, with the Python crypt_speed.py script. [Glossary AES]

#!/usr/bin/python
import time, os
os.chdir("c:/cygwin64/bin/")

timenow = time.time()
for i in range(1, 10000):

os.system("openssl.exe aes128 -in c:/ftp/py/meshword.txt -out
meshword.aes -pass pass:12345")

timenew = time.time()
print("Time for 10,000 aes128 encryptions on a long file:

" + str(timenew - timenow))
exit

outputtp\py>crypt_speed.py

Time for 10,000 aes128 encryptions on a long file: 499.7346260547638

We see that it would take take about 500 seconds to encrypt a file 10,000 times (or 0.05 sec-

onds per encryption); glacial in comparison to other functions (e.g., random number,

time). Is it faster to encrypt a small file than a large file? Let us repeat the process, using

the 11 byte helloworld.txt file.
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import time, os
os.chdir("c:/cygwin64/bin/")

timenow = time.time()
for i in range(1, 10000):

os.system("openssl.exe aes128 -in c:/ftp/py/helloworld.txt -out
meshword.aes -pass pass:12345")

timenew = time.time()
print("Time for 10,000 aes128 encryptions on a short file:

" + str(timenew - timenow))

c:\ftp\py>crypt_speed.py

Time for 10,000 aes128 encryptions on a short file: 411.52050709724426

Short files encrypt faster than longer files, but the savings is not great. As we have seen,

calling an external program from within Python is always a time-consuming process,

and we can presume that most of the loop time was devoted to finding the openssl.exe

program, interpreting the entire program and returning a value.”

– Do not insist on precision when there is no practical value in precise answers.

Approximation methods are often orders of magnitude faster than exact methods.

Furthermore, algorithms that produce inexact answers are preferable to exact algorithms

that crash under the load of a gigabyte of data. Real world data is never exact, so whymust

we pretend that we need exact solutions?

– Write you scripts in such a way that calculations are completed in one pass

through the data.

Programmers commonly write iterative loops through their data, calculating some

particular component of an equation, only to repeat the loop to calculate another piece

of the puzzle. As an example, consider the common task of calculating the variance

(square of the standard deviation) of a population. The typical algorithm involves calcu-

lating the population mean, by summing all the data values in the population and divid-

ing by the number of values summed. After the population mean is calculated, the

variance is obtained by a second pass through the population and applying the formula

below (Fig. 11.1):
FIG. 11.1 Calculating the variance (square of standard deviation) after first calculating the population mean.
The variance can be calculated in a fast, single pass through the population, using the

equivalent formula, below, which does not involve precalculating the population mean

(Fig. 11.2).



FIG. 11.2 Calculating the variance, in a single pass through the values of a population [8].
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By using the one-pass equation, after any number of data values have been processed,

the running values of the average and variance can be easily determined; a handy trick,

especially applicable to signal processing [8,9].
Section 11.3. The Dot Product, a Simple and Fast
Correlation Method

Our similarities are different.
Yogi Berra

Similarity scores are based on comparing one data object with another, attribute by

attribute. Two similar variables will rise and fall together. A score can be calculated by

summing the squares of the differences in magnitude for each attribute, and using the

calculation to compute a final outcome, known as the correlation score. One of the most

popular correlation methods is Pearson’s correlation, which produces a score that can

vary from �1 to +1. Two objects with a high score (near +1) are highly similar [10]. Two

uncorrelated objects would have a Pearson score near zero. Two objects that correlated

inversely (i.e., one falling when the other rises) would have a Pearson score near �1.

[Glossary Correlation distance, Normalized compression distance, Mahalanobis distance]

The Pearson correlation for two objects, with paired attributes, sums the product of

their differences from their object means and divides the sum by the product of the

squared differences from the object means (Fig. 11.3).

Python’s Scipy module offers a Pearson function. In addition to computing Pearson’s

correlation, the scipy function produces a two-tailed P-value, which provides some indi-

cation of the likelihood that two totally uncorrelated objects might produce a Pearson’s

correlation value as extreme as the calculated value. [Glossary P value, Scipy]

Let us look at a short python script, sci_pearson.py, that calculates the Pearson

correlation on two lists.
FIG. 11.3 Formula for Pearson’s correlation, for two data objects, with paired sets of attributes, x and y.
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from scipy.stats.stats import pearsonr
a = [1, 2, 3, 4]

b = [2, 4, 6, 8]
c = [1,4,6,9,15,55,62,-5]

d = [-2,-8,-9,-12,-80,14,15,2]
print("Correlation a with b: " + str(pearsonr(a,b)))

print("Correlation c with d: " + str(pearsonr(c,d)))

Here is the output of pearson.py

Correlation a with b: (1.0, 0.0)
Correlation c with d: (0.32893766587262174, 0.42628658412101167)

The Pearson correlation of a with b is 1 because the values of b are simply double the

values of a; hence the values in a and b correlate perfectly with one another. The second

number, “0.0”, is the calculated P value.

In the case of c correlated with d, the Pearson correlation, 0.329, is intermediate

between 0 and 1, indicating some correlation. How does the Pearson correlation

help us to simplify and reduce data? If two lists of data have a Pearson correlation of

1 or of �1, this implies that one set of the data is redundant. We can assume the two lists

have the same information content. If we were comparing two sets of data and found a

Pearson correlation of zero, then we might assume that the two sets of data were uncor-

related, and that it would be futile to try to model (i.e., find a mathematical relationship

for) the data. [Glossary Overfitting]

There are many different correlation measurements, and all of them are based on

assumptions about how well-correlated sets of data ought to behave. A data analyst

who works with gene sequences might impose a different set of requirements, for

well-correlated data, than a data analyst who is investigating fluctuations in the stockmar-

ket. Hence, there aremany available correlation values that are available to data scientists,

and these include: Pearson, Cosine, Spearman, Jaccard, Gini, Maximal Information

Coefficient, and Complex Linear Pathway score. The computationally fastest of the corre-

lation scores is the dot product (Fig. 11.4). In a recent paper comparing the performance of

12 correlation formulas the simple dot product led the pack [11].

Let us examine the various dot products that can be calculated for three sample

vectors,
FIG. 11.4 The lowly dot product. For two vectors, the dot product is the sum of the products of the

corresponding values. To normalize the dot product, we would divide the dot product by the product of the

lengths of the two vectors.
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a = [1,4,6,9,15,55,62,-5]
b = [-2,-8,-9,-12,-80,14,15,2]

c = [2,8,12,18,30,110,124,-10]

Notice that vector c has twice the value of each paired attribute in vector a. We’ll use the

Python script, numpy_dot.py to compute the lengths of the vectors a, b, and c; and we will

calculate the simple dot products, normalized by the product of the lengths of the vectors.

from __future__ import division

import numpy
from numpy import linalg
a = [1,4,6,9,15,55,62,-5]

b = [-2,-8,-9,-12,-80,14,15,2]
c = [2,8,12,18,30,110,124,-10]

a_length = linalg.norm(a)
b_length = linalg.norm(b)

c_length = linalg.norm(c)
print(numpy.dot(a,b) / (a_length * b_length))

print(numpy.dot(a,a) / (a_length * a_length))
print(numpy.dot(a,c) / (a_length * c_length))
print(numpy.dot(b,c) / (b_length * c_length))

Here is the commented output:

0.0409175385118 (Normalized dot product of a with b)
1.0 (Normalized dot product of a with a)

1.0 (Normalized dot product of a with c)
0.0409175385118 (Normalized dot product of b with c)

Inspecting the output, we see that the normalized dot product of a vector with itself is 1.

The normalized dot product of a and c is also 1, because c is perfectly correlated with a,

being twice its value, attribute by attribute. We also see that the normalized dot product of

a and b is equal to the normalized dot product of b and c (0.0409175385118); because c is

perfectly correlated with a and because dot products are transitive.
Section 11.4. Clustering

Reality is merely an illusion, albeit a very persistent one.
Albert Einstein

Clustering algorithms are currently very popular. They provide a way of taking a large

set of data objects that seem to have no relationship to one another and to produce a

visually simple collection of clusters wherein each clustermember is similar to every other

member of the same cluster.
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The algorithmic methods for clustering are simple. One of the most popular clustering

algorithms is the k-means algorithm, which assigns any number of data objects to one of k

clusters [12]. The number k of clusters is provided by the user. The algorithm is easy

to describe and to understand, but the computational task of completing the algorithm

can be difficult when the number of dimensions in the object (i.e., the number of

attributes associated with the object), is large. [Glossary K-means algorithm, K-nearest

neighbor algorithm]

Here is how the algorithm works for sets of quantitative data:

1. The program randomly chooses k objects from the collection of objects to be clustered.

We will call each of these these k objects a focus.

2. For every object in the collection, the distance between the object and all of randomly

chosen k objects (chosen in step 1) is computed.

3. A round of k-clusters are computed by assigning every object to its nearest focus.

4. Thecentroid focus for eachof thek clusters is calculated. The centroid is thepoint that is

closest to all of theobjectswithin the cluster.Anotherwayof saying this is that if you sum

the distances between the centroid and all of the objects in the cluster, this summed

distance will be smaller than the summed distance from any other point in space.

5. Steps 2, 3, and 4 are repeated, using the k centroid foci as the points for which all

distances are computed.

6. Step 5 is repeated until the k centroid foci converge on a non-changing set of values

(or until the program slows to an interminable crawl).

There are some serious drawbacks to the algorithm:

– The final set of clusters will sometimes depend on the initial, random choice of k data

objects. This means that multiple runs of the algorithm may produce different

outcomes.

– The algorithms are not guaranteed to succeed. Sometimes, the algorithm does not

converge to a final, stable set of clusters.

– When the dimensionality is very high the distances between data objects (i.e., the

square root of the sum of squares of the measured differences between corresponding

attributes of two objects) can be ridiculously large and of no practical meaning.

Computationsmay bog down, cease altogether, or producemeaningless results. In this

case the only recourse may require eliminating some of the attributes (i.e., reducing

dimensionality of the data objects). Subspace clustering is a method wherein clusters

are found for computationally manageable subsets of attributes. If useful clusters are

found using this method, additional attributes can be added to the mix to see if the

clustering can be improved. [Glossary Curse of dimensionality]

– The clustering algorithm may succeed, producing a set of clusters of similar objects,

but the clusters may have no practical value. They may miss important relationships

among the objects, or they might group together objects whose similarities are totally

non-informative.
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At best, clustering algorithms should be considered a first step toward understanding how

attributes account for the behavior of data objects.

Classifier algorithms are different from clustering algorithms. Classifiers assign a class

(from a pre-existing classification) to an object whose class is unknown [12]. The k-nearest

neighbor algorithm (not to be confusedwith the k-means clustering algorithm) is a simple

and popular classifier algorithm. From a collection of data objects whose class is known,

the algorithm computes the distances from the object of unknown class to the objects of

known class. This involves a distance measurement from the feature set of the objects of

unknown class to every object of known class (the test set). The distance measure uses the

set of attributes that are associated with each object. After the distances are computed, the

k classed objects with the smallest distance to the object of unknown class are collected.

The most common class in the nearest k classed objects is assigned to the object of

unknown class. If the chosen value of k is 1, then the object of unknown class is assigned

the class of its closest classed object (i.e., the nearest neighbor).

The k-nearest neighbor algorithm is just one among many excellent classifier

algorithms, and analysts have the luxury of choosing algorithms that match their data

(e.g., sample size, dimensionality) and purposes [13]. Classifier algorithms differ

fundamentally from clustering algorithms and from recommender algorithms in that they

beginwith an existing classification. Their task is very simple; assign an object to its proper

class within the classification. Classifier algorithms carry the assumption that similarities

among class objects determine class membership. This may not be the case. For example,

a classifier algorithm might place cats into the class of small dogs because of the

similarities among several attributes of cats and dogs (e.g., four legs, one tail, pointy ears,

average weight about 8 pounds, furry, carnivorous, etc.). The similarities are impressive,

but irrelevant. No matter how much you try to make it so, a cat is not a type of dog. The

fundamental difference between grouping by similarity and grouping by relationship has

been discussed in Section 5.1. [Glossary Recommender, Modeling]

Like clustering techniques, classifier techniques are computationally intensive when

the dimension is high, and can produce misleading results when the attributes are noisy

(i.e., contain randomly distributed attribute values) or non-informative (i.e., unrelated to

correct class assignment).
Section 11.5. Methods for Data Persistence
(Without Using a Database)

A file that big?

It might be very useful.

But now it is gone.
Haiku by David J. Liszewski

Your scripts create data objects, and the data objects hold data. Sometimes, these data

objects are transient, existing only during a block or subroutine. At other times, the data
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objects produced by scripts represent prodigious amounts of data, resulting from complex

and time-consuming calculations. What happens to these data structures when the script

finishes executing? Ordinarily, when a script stops, all the data structures produced by the

script simply vanish.

Persistence is the ability of data to outlive the program that produced it. The methods

by which we create persistent data are sometimes referred to as marshalling or serializing.

Some of the language specific methods are called by such colorful names as data dump-

ing, pickling, freezing/thawing, and storable/retrieve. [Glossary Serializing, Marshalling,

Persistence]

Data persistence can be ranked by level of sophistication. At the bottom is the

exportation of data to a simple flat-file, wherein records are each one line in length,

and each line of the record consists of a record key, followed by a list of record attri-

butes. The simple spreadsheet stores data as tab delimited or comma separated line

records. Flat-files can contain a limitless number of line records, but spreadsheets are

limited by the number of records they can import and manage. Scripts can be written

that parse through flat-files line by line (i.e., record by record), selecting data as they

go. Software programs that write data to flat-files achieve a crude but serviceable type

of data persistence.

A middle-level technique for creating persistent data is the venerable database. If

nothing else, databases can create, store, and retrieve data records. Scripts that have

access to a database can achieve persistence by creating database records that accommo-

date data objects. When the script ends, the database persists, and the data objects can be

fetched and reconstructed for later use.

Perhaps the highest level of data persistence is achieved when complex data objects

are saved in toto. Flat-files and databases may not be suited to storing complex data

objects, holding encapsulated data values. Most languages provide built-in methods

for storing complex objects, and a number of languages designed to describe complex

forms of data have been developed. Data description languages, such as YAML (Yet

Another Markup Language) and JSON (JavaScript Object Notation), can be adopted by

any programming language.

Let us review some of the techniques for data persistence that are readily accessible to

Python programmers.

Python pickles its data. Here, the Python script, pickle_up.py, pickles a string variable,

in the save.p file.

import pickle

pumpkin_color = "orange"
pickle.dump( pumpkin_color, open("save.p","wb"))

The Python script, pickle_down.py, loads the pickled data, from the “save.p” file, and

prints it to the screen.

import pickle

pumpkin_color = pickle.load(open("save.p","rb"))
print(pumpkin_color)
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The output of the pickle_down.py script is shown here:

orange

Python has several database modules that will insert database objects into external files

that persist after the script has executed. The database objects can be quickly called from

the external module, with a simple command syntax [10]. Here is the Python script, lucy.

py, that creates a tiny external database, using Python’s most generic dbm.dumb module.

import dbm.dumb
lucy_hash = dbm.dumb.open('lucy', 'c')

lucy_hash["Fred Mertz"] = "Neighbor"
lucy_hash["Ethel Mertz"] = "Neighbor"

lucy_hash["Lucy Ricardo"] = "Star"
lucy_hash["Ricky Ricardo"] = "Band leader"
lucy_hash.close()

Here is the Python script, lucy_untie.py, that reads all of the key/value pairs held in the

persistent database created for the lucy_hash dictionary object.

import dbm.dumb

lucy_hash = dbm.dumb.open('lucy')
for character in lucy_hash.keys():

print(character.decode('utf-8') + " " + lucy_hash[character].
decode('utf-8'))

lucy_hash.close()

Here is the output produced by the Python script, lucy_untie.py script.

Ethel Mertz Neighbor
Lucy Ricardo Star

Ricky Ricardo Band leader
Fred Mertz Neighbor

Persistence is a simple and fundamental process ensuring that data created in your scripts

can be recalled by yourself or by others who need to verify your results. Regardless of the

programming language you use, or the data structures you prefer, you will need to famil-

iarize with at least one data persistence technique.
Section 11.6. Case Study: Climbing a Classification

But - once I bent to taste an upland spring

And, bending, heard it whisper of its Sea.
Ecclesiastes

Classifications are characterized by a linear ascension through a hierarchy. The parental

classes of any instance of the classification can be traced as a simple, non-branched, and

non-recursive, ordered, and uninterrupted list of ancestral classes.
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In a prior work [10], I described how a large, publicly available, taxonomy data file

could be instantly queried to retrieve any listed organism, and to compute its complete

class lineage, back to the “root” class, the primordial origin the classification of living

organisms [10]. Basically, the trick to climbing backwards up the class lineage involves

building two dictionary objects, also known as associative arrays. One dictionary object

(which we will be calling “namehash”) is composed of key/value pairs wherein each

key is the identifier code of a class (in the nomenclature of the taxonomy data file),

and each value is its name or label. The second dictionary object (which we’ll be calling

“parenthash”) is composed of key/value pairs wherein each key is the identifier code of a

class, and each value is the identifier code of the parent class. Once you have prepared the

namehash dictionary and the parenthash dictionary the entire ancestral lineage of every

one of the many thousands of organisms included in the taxonomy of living species (con-

tained in the taxonomy.dat file) can be reconstructed with just a few lines of Python code,

as shown here:

for i in range(30):

if id_name in namehash:
outtext.write(namehash[id_name] + "\n")

if id_name in parenthash:
id_name = parenthash[id_name]

The parts of the script that build the dictionary objects are left as an exercise for the reader.

As an example of the script’s output, here is the lineage for the Myxococcus bacteria:

Myxococcus
Myxococcaceae

Cystobacterineae
Myxococcales

Deltaproteobacteria
delta/epsilon subdivisions

Proteobacteria
Bacteria

cellular organisms
root

The words in this lineage may seem strange to laypersons, but taxonomists who view this

lineage instantly grasp the place of organism within the classification of all living organ-

isms. Every large and complex knowledge domain should have its own taxonomy, com-

plete with a parent class for every child class. The basic approach to reconstructing

lineages from the raw taxonomy file would apply to every field of study. For those inter-

ested in the taxonomy of living organisms, possibly the best documented classification of

any kind, the taxonomy.dat file (exceeding 350 Mbytes) is available at no cost via ftp at:

ftp://ftp.ebi.ac.uk/pub/databases/taxonomy/

ftp://ftp.ebi.ac.uk/pub/databases/taxonomy/


Chapter 11 • Indispensable Tips for Fast and Simple Big Data Analysis 251
Section 11.7. Case Study (Advanced): A Database Example

Experts often possess more data than judgment.
Colin Powell

For industrial strength persistence, providing storage for millions or billions of data

objects, database applications are a good choice. SQL (Systems Query Language,

pronounced like “sequel”) is a specialized language used to query relational databases.

SQL allows programmers to connect with large, complex server-based network databases.

A high level of expertise is needed to install and implement the software that creates

server-based relational databases responding to multi-user client-based SQL queries.

Fortunately, Python provides access to SQLite, a free, and widely available spin-off of

SQL [10]. The source code for SQLite is public domain. [Glossary Public domain]

SQLite is bundled into the newer distributions of Python, and can be called from

Python scripts with an “import sqlite3” command. Here is a Python script, sqlite.py, that

reads a very short dictionary into an SQL database.

import sqlite3, itertools

from sqlite3 import dbapi2 as sqlite
import string, re, os

mesh_hash = {}
entry = ()
mesh_hash["Fred Mertz"] = "Neighbor"

mesh_hash["Ethel Mertz"] = "Neighbor"
mesh_hash["Lucy Ricardo"] = "Star"

mesh_hash["Ricky Ricardo"] = "Band leader"
con=sqlite.connect('test1.db')

cur=con.cursor()
cur.executescript("""

create table lucytable
(

name varchar(64),

term varchar(64)
);

""")
for key,value in mesh_hash.items():

entry = (key, value)
cur.execute("insert into lucytable (name, term) values (?, ?)",

entry)
con.commit()

Once created, entries in the SQL database file, test1.db, can be retrieved, as shown in the

Python script, sqlite_read.py:



252 PRINCIPLES AND PRACTICE OF BIG DATA
import sqlite3
from sqlite3 import dbapi2 as sqlite

import string, re, os
con=sqlite.connect('test1.db')

cur=con.cursor()
cur.execute("select * from lucytable")

for row in cur:
print(row[0], row[1])

Here is the output of the sqlite_read.py script

Fred Mertz Neighbor

Ethel Mertz Neighbor
Lucy Ricardo Star

Ricky Ricardo Band leader

Databases, such as SQLite, are a great way to achieve data persistence, if you are adept

at programming in SQL, and if you need to store millions of simple data objects.

You may be surprised to learn that built-in persistence methods native to your favorite

programming language may provide a simpler, more flexible option than proprietary

database applications, when dealing with Big Data.
Section 11.8. Case Study (Advanced): NoSQL

The creative act is the defeat of habit by originality
George Lois

Triples are the basic commodities of information science. Every triple represents a

meaningful assertion, and collections of triples can be automatically integrated with other

triples. As such all the triples that share the same identifier can be collected to yield all the

available information that pertains to the unique object. Furthermore, all the triples that

pertain to all the members of a class of objects can be combined to provide information

about the class, and to find relationships among different classes of objects. This being the

case, it should come as no surprise that databases have been designed to utilize triples as

their data structure; dedicating their principal functionality to the creation, storage, and

retrieval of triples.

Triple databases, also known as triplestores, are specialized variants of the better-

known NoSQL databases,; databases that are designed to store records consisting of

nothing more than a key and value. In the case of triplestores, the key is the identifier

of a data object, and the value is a metadata/data pair belonging associated with the

identifier belonging to the data object.

Today, large triplestores exist, holding trillions of triples. At the current time, software

development for triplestore databases is in a state of volatility. Triplestore databases are
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dropping in an out of existence, changing their names, being incorporated into other

systems, or being redesigned from the ground up.

At the risk of showing my own personal bias, as an unapologetic Mumps fan, I would

suggest that readers may want to investigate the value of using native Mumps as a

triplestore database. Mumps, also known as the M programming language, is one of a

small handful of ANSI-standard (American National Standard Institute) languages

that includes C, Ada, and Fortran. It was developed in the 1960s and is still in use, primarily

in hospital information systems and large production facilities [14]. The simple, hierarchi-

cal database design ofMumps lost favor through the last decades of the twentieth century,

as relational databases gained popularity. In the past decade, with the push towardNoSQL

databases holding massive sets of simplified data, Mumps has received renewed interest.

As it happens, Mumps can be implemented as a powerful and high performance Triples-

tore database.

Versions of Mumps are available as open source, free distributions [15,16]. but the

Mumps installation process can be challenging for those who are unfamiliar with the

Mumps environment. Stalwarts who successfully navigate theMumps installation process

may find that Mumps’ native features render it suitable for storing triples and exploring

their relationships [17].
Glossary
AES The Advanced Encryption Standard (AES) is the cryptographic standard endorsed by the United

States government as a replacement for the old government standard, DES (Data Encryption

Standard). AES was chosen from among many different encryption protocols submitted in a

cryptographic contest conducted by the United States National Institute of Standards and Technology,

in 2001. AES is also known as Rijndael, after its developer. It is a symmetric encryption standard,

meaning that the same password used for encryption is also used for decryption.

Associative array A data structure consisting of an unordered list of key/value data pairs. Also known as

hash, hash table, map, symbol table, dictionary, or dictionary array. The proliferation of synonyms

suggests that associative arrays, or their computational equivalents, have great utility. Associative

arrays are used in Perl, Python, Ruby and most modern programming languages.

Black box In physics, a black box is a device with observable inputs and outputs, but what goes on inside

the box is unknowable. The term is used to describe software, algorithms, machines, and systems

whose inner workings are inscrutable.

Correlation distance Also known as correlation score. The correlation distance provides a measure of

similarity between two variables. Two similar variables will rise rise and fall together [18,19]. The

Pearson correlation score is popular, and can be easily implemented [10,20]. It produces a score that

varies from �1 to 1. A score of 1 indicates perfect correlation; a score of �1 indicates perfect

anti-correlation (i.e., one variable rises while the other falls). A Pearson score of 0 indicates lack of

correlation. Other correlation measures can be applied to Big Data sets [18,19].

Curse of dimensionality As the number of attributes for a data object increases, the distance between

data objects grows to enormous size. The multidimensional space becomes sparsely populated,

and the distances between any two objects, even the two closest neighbors, becomes absurdly large.

When you have thousands of dimensions, the space that holds the objects is so large that distances
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between objects become difficult or impossible to compute, and computational products become

useless for most purposes.

K-means algorithm The k-means algorithm assigns any number of data objects to one of k clusters [12].

The algorithm is described fully in Chapter 9. The k-means algorithm should not be confused with the

k-nearest neighbor algorithm.

K-nearest neighbor algorithm The k-nearest neighbor algorithm is a simple and popular classifier

algorithm. From a collection of data objects whose class is known, the algorithm computes the

distances from the object of unknown class to the objects of known class. This involves a distance

measurement from the feature set of the objects of unknown class to every object of known class

(the test set). After the distances are computed, the k classed objects with the smallest distance to

the object of unknown class are collected. The most common class (i.e., the class with the most

objects) among the nearest k classed objects is assigned to the object of unknown class. If the chosen

value of k is 1, then the object of unknown class is assigned the class of its closest classed object (i.e.,

the nearest neighbor).

Mahalanobis distance A distance measure based on correlations between variables; hence, it measures

the similarity of the objects whose attributes are compared. As a correlation measure, it is not

influenced by the relative scale of the different attributes. It is used routinely in clustering and classifier

algorithms.

Marshalling Marshalling, like serializing, is a method for achieving data persistence (i.e., saving variables

and other data structures produced in a program, after the program has stopped running). Marshalling

methods preserve data objects, with their encapsulated data and data structures.

Modeling Modeling involves explaining the behavior of a system, often with a formula, sometimes with

descriptive language. The formula for the data describes the distribution of the data and often predicts

how the different variables will change with one another. Consequently, modeling often provides

reasonable hypotheses to explain how the data objects within a system will influence one another.

Many of the great milestones in the physical sciences have arisen from a bit of data modeling supple-

mented by scientific genius (e.g., Newton’s laws of mechanics and optics, Kepler’s laws of planetary

orbits, Quantum mechanics). The occasional ability to relate observation with causality endows

modeling with greater versatility and greater scientific impact than the predictive techniques (e.g.,

recommenders, classifiers and clustering methods). Unlike the methods of predictive analytics, which

tend to rest on a few basic assumptions aboutmeasuring similarities among data objects, themethods

of data modeling are selected from every field of mathematics and are based on an intuitive approach

to data analysis. In many cases, the modeler simply plots the data and looks for familiar shapes and

patterns that suggest a particular type of function (e.g., logarithmic, linear, normal, Fourier series,

Power law).

Normalized compression distance String compression algorithms (e.g., zip, gzip, bunzip) should yield

better compression from a concatenation of two similar strings than from a concatenation of two

highly dissimilar strings. The reason being that the same string patterns that are employed to compress

a string (i.e., repeated runs of a particular pattern) are likely to be found in another, similar string. If two

strings are completely dissimilar, then the compression algorithm would fail to find repeated patterns

that enhance compressibility. The normalized compression distance is a similarity measure based on

the enhanced compressibility of concatenated strings of high similarity [21]. A full discussion, with

examples, is found in the Open Source Tools section of Chapter 4.

Overfitting Overfitting occurs when a formula describes a set of data very closely, but does not lead to any

sensible explanation for the behavior of the data, and does not predict the behavior of comparable data

sets. In the case of overfitting the formula is said to describe the noise of the system rather than the

characteristic behavior of the system. Overfitting occurs frequently with models that perform iterative

approximations on training data, coming closer and closer to the training data set with each iteration.

Neural networks are an example of a data modeling strategy that is prone to overfitting.
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P value The P value is the probability of getting a set of results that are as extreme or more extreme as

the set of results you observed, assuming that the null hypothesis is true (that there is no statistical

difference between the results). The P-value has come under great criticism over the decades, with

a growing consensus that the P-value is often misinterpreted, used incorrectly, or used in situations

wherein it does not apply [22]. In the realm of Big Data, repeated samplings of data from large data

sets will produce small P-values that cannot be directly applied to determining statistical significance.

It is best to think of the P-value as just another piece of information that tells you something about how

sets of observations compare with one another; and not as a test of statistical significance.

Persistence Persistence is the ability of data to remain available inmemory or storage after the program in

which the data was created has stopped executing. Databases are designed to achieve persistence.

When the database application is turned off, the data remains available to the database application

when it is re-started at some later time.

Pseudorandom number generator It is impossible for computers to produce an endless collection of

truly random numbers. Eventually, algorithms will cycle through their available variations and begins

to repeat themselves, producing the same set of “random” numbers, in the same order; a phenomenon

referred to as the generator’s period. Because algorithms that produce seemingly random numbers

are imperfect, they are known as pseudorandom number generators. The Mersenne Twister algo-

rithm, which has an extremely long period, is used as the default random number generator in Python.

This algorithm performs well on most of the tests that mathematicians have devised to test

randomness.

Public domain Data that is not owned by an entity. Public domain materials include documents whose

copyright terms have expired, materials produced by the federal government, materials that contain

no creative content (i.e., materials that cannot be copyrighted), or materials donated to the public

domain by the entity that holds copyright. Public domain data can be accessed, copied, and

re-distributed without violating piracy laws. It is important to note that plagiarism laws and rules

of ethics apply to public domain data. You must properly attribute authorship to public domain

documents. If you fail to attribute authorship or if you purposefully and falsely attribute authorship

to the wrong person (e.g., yourself ), then this would be an unethical act and an act of plagiarism.

Recommender A collection of methods for predicting the preferences of individuals. Recommender

methods often rely on one or two simple assumptions: (1) If an individual expresses a preference

for a certain type of product, and the individual encounters a newproduct that is similar to a previously

preferred product, then he is likely to prefer the new product; (2) If an individual expresses preferences

that are similar to the preferences expressed by a cluster of individuals, and if the members of the

cluster prefer a product that the individual has not yet encountered, then the individual will most likely

prefer the product.

RegEx Short for Regular Expressions, RegEx is a syntax for describing patterns in text. For example, if

I wanted to pull all lines from a text file that began with an uppercase “B” and contained at least

one integer, and ended with the a lowercase x, then I might use the regular expression: “ B̂.*[0-9].
*x$”. This syntax for expressing patterns of strings that can be matched by pre-built methods available

to a programming language is somewhat standardized. This means that a RegEx expression in Perl will

match the same pattern in Python, or Ruby, or any language that employs RegEx. The relevance of

Regex to Big Data is several-fold. Regex can be used to build or transform data from one format to

another; hence creating or merging data records. It can be used to convert sets of data to a desired

format; hence transforming data sets. It can be used to extract records thatmeet a set of characteristics

specified by a user; thus filtering subsets of data or executing data queries over text-based files or

text-based indexes. The big drawback to using RegEx is speed: operations that call for many Regex

operations, particularly when those operations are repeated for each parsed line or record, will reduce

software performance. Regex-heavy programs that operate just fine onmegabyte files may take hours,

days or months to parse through terabytes of data.
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A 12-line python script, file_search.py, prompts the user for the name of a text file to be searched, and then

prompts the user to supply a RegEx pattern. The script will parse the text file, line by line, displaying

those lines that contain a match to the RegEx pattern.

import sys, string, re

print("What is file would you like to search?")

filename = sys.stdin.readline()

filename = filename.rstrip()

print("Enter a word, phrase or regular expression to search.")

word_to_search = (sys.stdin.readline()).rstrip()

infile = open (filename, "r")

regex_object = re.compile(word_to_search, re.I)

for line in infile:

m= regex_object.search(line)

if m:

print(line)

Scipy Scipy, like numpy, is an open source extension to Python [23]. It includes many very useful

mathematical routines commonly used by scientists, including: integration, interpolation, Fourier

transforms, signal processing, linear algebra, and statistics. Scipy can be downloaded as a suite of

modules from: http://www.scipy.org/scipylib/download.html. You can spare yourself the trouble

of downloading individual installations of numpy and scipy by downloading Anaconda, a free distri-

bution that bundles hundreds of python packages, along with a recent version of Python. Anaconda is

available at: https://store.continuum.io/cshop/anaconda/

Serializing Serializing is a plesionym (i.e., near-synonym) for marshalling and is amethod for taking data

produced within a script or program, and preserving it in an external file, that can be saved when the

program stops, and quickly reconstituted as needed, in the same program or in different programs.

The difference, in terms of common usage, between serialization and marshalling is that serialization

usually involves capturing parameters (i.e., particular pieces of information), while marshalling

preserves all of the specifics of a data object, including its structure, content, and code content). As

you might imagine, the meaning of terms might change depending on the programming language

and the intent of the serializing and marshalling methods.

System call Refers to a command, within a running script, that calls the operating system into action,

momentarily bypassing the programming interpreter for the script. A system call can do essentially

anything the operating system can do via a command line.

Undifferentiated software Intellectual property disputes have driven developers to divide software

into two categories: undifferentiated software and differentiated software. Undifferentiated

software comprises the fundamental algorithms that everyone uses whenever they develop a new

software application. It is in nobody’s interest to assign patents to basic algorithms and their

implementations. Nobody wants to devote their careers to prosecuting or defending tenuous legal

claims over the ownership of the fundamental building blocks of computer science. Differentiated

software comprises customized applications that are sufficiently new and different from any

preceding product that patent protection would be reasonable.
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Section 12.1. Denominators

The question is not what you look at, but what you see.
Henry David Thoreau in Journal, 5 August 1851

Denominators are the numbers that provide perspective to other numbers. If you are

informed that 10,000 persons die each year in the United States, from a particular disease,

then youmight want to know the total number of deaths, from all causes. When you com-

pare the death from a particular disease with the total number of deaths from all causes

(the denominator), you learn something about the relative importance of your original

count (e.g., an incidence of 10,000 deaths/350 million persons). Epidemiologists typically

represent incidences as numbers per 100,000 population. An incidence of 10,000/350mil-

lion is equivalent to an incidence of 2.9 per 100,000.

Denominators are not always easy to find. In most cases the denominator is computed

by tallying every data object in a Big Data resource. If you have a very large number of data

objects, then the time required to reach a global tally may be quite long. In many cases a

Big Data resource will permit data analysts to extract subsets of data, but analysts will be

forbidden to examine the entire resource. In such cases the denominator will be com-

puted for the subset of extracted data and will not accurately represent all of the data

objects available to the resource.

If you are using Big Data collected frommultiple sources, your histograms (i.e., graphic

representations of the distribution of objects by some measureable attribute such as age,

frequency, size) will need to be represented as fractional distributions for each source’s
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00012-1
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data; not as value counts. The reason for this is that a histogram from one source may not

have the same total number of distributed values compared with the histogram created

from another source. As discussed in Section 10.4, “Normalizing and Transforming Your

Data,” we achieve comparability among histograms by dividing the binned values by the

total number of values in a distribution, for each data source. Doing so renders the bin

value as a percentage of total, rather than a sum of data values.

Big Data managers should make an effort to supply information that summarizes the

total set of data available at any moment in time, and should also provide information on

the sources of data that contribute to the total collection. Here are some of the numbers

that should be available to analysts: the number of records in the resource, the number of

classes of data objects in the resource, the number of data objects belonging to each class

in the resource, and the number of data values (preferably expressed as metadata/data

pairs) that belong to data objects.
Section 12.2. Word Frequency Distributions

Poetry is everywhere; it just needs editing.
James Tate

There are two general types of data: quantitative and categorical. Quantitative data refers

to measurements. Categorical data is simply a number that represents the number of

items that have a feature. For most purposes the analysis of categorical data reduces to

counting and binning.

Categorical data typically conforms to a Zipf distribution. George Kingsley Zipf

(1902–50) was an American linguist who demonstrated that, for most languages, a small

number of words account for the majority of occurrences of all the words found in prose.

Specifically, he found that the frequency of any word is inversely proportional to its place-

ment in a list of words, ordered by their decreasing frequencies in text. The first word in the

frequency list will occur about twice as often as the second word in the list and three times

as often as the third word in the list. [Glossary Word lists]

The Zipf distribution applied to languages is a special form of Pareto’s principle, or

the 80/20 rule. Pareto’s principle holds that a small number of causes may account for

the vast majority of observed instances. For example a small number of rich people

account for the majority of wealth. Likewise, a small number of diseases account for

the vast majority of human illnesses. A small number of children account for the majority

of the behavioral problems encountered in a school. A small number of states hold the

majority of the population of the United States. A small number of book titles, compared

with the total number of publications, account for the majority of book sales. Much of Big

Data is categorical and obeys the Pareto principle. Mathematicians often refer to Zipf dis-

tributions as Power law distributions. A short Python script for producing Zipf distribu-

tion’s is found under its Glossary item. [Glossary Power law, Pareto’s principle, Zipf

distribution]
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Let us take a look at the frequency distribution of words appearing in a book. Here is

the list of the 30 most frequent words in a sample book and the number of occurrence of

each word.

01 003977 the

02 001680 and
03 001091 class

04 000946 are
05 000925 chapter

06 000919 that
07 000884 species

08 000580 virus
09 000570 with

10 000503 disease
11 000434 for
12 000427 organisms

13 000414 from
14 000412 hierarchy

15 000335 not
16 000329 humans

17 000320 have
18 000319 proteobacteria

19 000309 human
20 000300 can
21 000264 fever

22 000263 group
23 000248 most

24 000225 infections
25 000219 viruses

26 000219 infectious
27 000216 organism

28 000216 host
29 000215 this

30 000211 all

As Zipf would predict, the most frequent word, “the” occurs 3977 times, roughly twice as

often as the second most frequently occurring word, “and,” which occurs 1689 times. The

third most frequently occurring word “class” occurs 1091 times, or very roughly one-third

as frequently as the most frequently occurring word.

What can we learn about the text from which these word frequencies were calculated?

As discussed in Chapter 1 “stop” words are high frequency words that separate terms and

tell us little or nothing about the informational content of text. Let us look at this same list

with the “stop” words removed:
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03 001091 class
05 000925 chapter

07 000884 species
08 000580 virus

10 000503 disease
12 000427 organisms

14 000412 hierarchy
16 000329 humans

18 000319 proteobacteria
19 000309 human
21 000264 fever

22 000263 group
24 000225 infections

25 000219 viruses
26 000219 infectious

27 000216 organism
28 000216 host

What kind of text could have produced this list? Could there be any doubt that the list of

words and frequencies shown here came from a book whose subject is related to micro-

biology? As it happens, this word-frequency list came from a book that I previously wrote

entitled “Taxonomic Guide to Infections Diseases: Understanding the Biologic Classes of

Pathogenic Organisms” [1]. By glancing at a fewwords from a large text file, we gain a deep

understanding of the subject matter of the text. The words with the top occurrence fre-

quencies told us themost about the book, because these words are low-frequency inmost

books (e.g., words such as hierarchy, proteobacteria, organism). They occurred in high fre-

quency because the text was focused on a narrow subject (e.g., infectious diseases).

A clever analyst will always produce a Zipf distribution for categorical data. A glance at

the output reveals a great deal about the contents of the data.

Let us go onemore step, and produce a cumulative index for the occurrence of words in

the text, arranging them in order of descending frequency of occurrence.

01 003977 0.0559054232618291 the
02 001680 0.0795214934352948 and

03 001091 0.0948578818634204 class
04 000946 0.108155978520622 are

05 000925 0.121158874300655 chapter
06 000919 0.134077426972926 that

07 000884 0.146503978183249 species
08 000580 0.154657145266946 virus
09 000570 0.162669740504372 with

10 000503 0.169740504371784 disease
11 000434 0.175841322499930 for
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12 000427 0.181843740335686 organisms
13 000414 0.187663414771290 from

14 000412 0.193454974837640 hierarchy
15 000335 0.198164131687706 not

16 000329 0.202788945430009 humans
17 000320 0.207287244510669 have

18 000319 0.211771486406702 proteobacteria
19 000309 0.216115156456465 human

20 000300 0.220332311844584 can
21 000264 0.224043408586128 fever
22 000263 0.227740448143046 group

23 000248 0.231226629930558 most
24 000225 0.234389496471647 infections

25 000219 0.237468019904973 viruses
26 000219 0.240546543338300 infectious

27 000216 0.243582895217746 organism
28 000216 0.246619247097191 host

29 000215 0.249641541792010 this
30 000211 0.252607607748320 all
.

.

.

.

.

8957 000001 0.999873485338356 acanthaemoeba
8958 000001 0.999887542522984 acalculous

8959 000001 0.999901599707611 academic
8960 000001 0.999915656892238 absurd

8961 000001 0.999929714076865 abstract
8962 000001 0.999943771261492 absorbing
8963 000001 0.999957828446119 absorbed

8964 000001 0.999971885630746 abrasion
8965 000001 0.999985942815373 abnormalities

8966 000001 1.000000000000000 abasence

In this cumulative listing the third column is the fraction of the occurrences of the word

along with the preceding words in the list as a fraction of all the occurrences of every word

in the text.

The list is truncated after the thirtieth entry and picks up again at entry number 8957.

There are a total of 8966 different, sometimes called unique, words in the text. The total

number of words in the text happens to be 71,138. The last word on the list “abasence” has

a cumulative fraction of 1.0, as all of the preceding words, plus the last word, account for
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FIG. 12.1 A frequency distribution of word occurrences from a sample text. The bottom coordinates indicate that

the entire text is accounted for by a list of about 9000 different words. The steep and early rise indicates that a few

words account for the bulk of word occurrences. Graphs with this shape are sometimes referred to as Zipf

distributions.
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100% of word occurrences. The cumulative frequency distribution for the different words

in the text is shown (Fig. 12.1). As an aside, the tail of the Zip distribution, which typically

contains items occurring once only in a large data collection, are often “mistakes.” In the

case of text distributions, typographic errors can be found in the farthest and thinnest part

of the tail. In this case the word “abasence” occurs just once, as the last item in the

distribution. It is a misspelling for the word “absence.”

Notice that though there are a total of 8957 unique words in the text, the first thirty

words account for more than 25% of all word occurrences. The final ten words on the list

occurred only once in the text. Common statistical measurements, such as the average of

a population or the standard deviation, fail to provide any useful description of Zipf

distributions. [Glossary Nonparametric statistics]
Section 12.3. Outliers and Anomalies

The mere formulation of a problem is far more essential than its solution, whichmay

be merely a matter of mathematical or experimental skills. To raise new questions,

new possibilities, to regard old problems from a new angle requires creative imagina-

tion and marks real advances in science.
Albert Einstein
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On occasion themaxima or minima of a set of data will be determined by an outlier value;

a value lying nowhere near any of the other values in the data set. If you could just elim-

inate the outlier, then youmight enjoy amaxima andminima that were somewhat close to

your other data values (i.e., the second-highest data value and the second-lowest data

values would be close to themaxima and theminima, respectively). In these cases the data

analyst must come to a decision, to drop or not to drop the outlier. There is no simple

guideline for dealing with outliers, but it is sometimes helpful to know something about

the dynamic range of themeasurements. If a thermometer canmeasure temperature from

�20 to 140°F, and your data outlier has a temperature of 390°F, then you know that the

outlier must be an error; the thermometer does not measure above 140 degrees. The data

analyst can drop the outlier, but it would be prudent to determine why the outlier was

generated. [Glossary Dynamic range, Outlier, Case report, Dimensionality]

Outliers are extreme data values. The occurrence of outliers hinders the task of devel-

oping models, equations, or curves that closely fit all the available data. In some cases,

outliers are simplymistakes; while in other cases, outliersmay be themost important data

in the data set. Examples of outliers that have advanced science are many, including: the

observance of wobbly starts leading to the discovery of exoplanets; anomalous X-ray

bursts from space leading to the discovery of magnetars, highly magnetized neutron stars;

individuals with unusual physiological measurements leading to the discovery of rare dis-

eases. The special importance of outliers to Big Data is that as the size of data sets

increases, the number of outliers also increases.

True outliers (i.e., outliers not caused by experimental design error or errors in obser-

vation and measurement) obey the same physical laws as everything else in the universe.

Therefore a valid outlier will always reveal something that is generally true about reality.

Put another way, outliers are not exceptions to the general rules; outliers are the excep-

tions upon which the general rules are based. This assertion brings us to the sadly under-

appreciated and underutilized creation known as “the case report.”

The case report, also known as the case study, is a detailed description of a single event

or situation, often focused on a particular outlier, detail, or unique event. The concept of

the case study is important in the field of Big Data because it highlights the utility of seek-

ing general truths based on observations of outliers that can only be found in Big Data

resources. Case reports are common in themedical literature, often beginning with a com-

ment regarding the extreme rarity of the featured disease. You can expect to see phrases

such as “fewer than a dozen have been reported in the literature” or “the authors have

encountered no other cases of this lesion,” or such and such a finding makes this lesion

particularly uncommon and difficult to diagnose. The point that the authors are trying to

convey is that the case report is worthy of publication specifically because the observation

departs from normal experience. This is just wrong.

Too often, case reports serve merely as cautionary exercises, intended to ward against

misdiagnosis. The “beware this lesion” approach to case reportingmisses themost impor-

tant aspect of this type of publication; namely that science, and most aspects of human

understanding, involve generalizing from single observations to general rules. When Isaac
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Newton saw an apple falling, he was not thinking that he could write a case report about

how he once saw an apple drop, thus warning others not to stand under apple trees lest a

rare apple might thump them upon the head. Newton generalized from the apple to all

objects, addressing universal properties of gravity, and discovering the laws bywhich grav-

ity interacts with matter. Case reports give us an opportunity to clarify the general way

things work, by isolating one specific and rarely observed factor [2,3].
Section 12.4. Back-of-Envelope Analyses

Couldn’t Prove, Had to Promise.
Book title, Wyatt Prunty

It is often assumed that Big Data resources are too large and complex for human compre-

hension. The analysis of Big Data is best left to software programs. Not so. When data ana-

lysts go straight to the complex calculations, before they perform a simple estimation, they

will find themselves accepting wildly ridiculous calculations. For comparison purposes,

there is nothing quite like a simple, and intuitive estimate to pull an overly-eager analyst

back to reality. Often, the simple act of looking at a stripped-down version of the problem

opens a new approach that can drastically reduce computation time. In some situations,

analysts will find that a point is reached when higher refinements inmethods yield dimin-

ishing returns. After the numerati have used their most advanced algorithms to make an

accurate prediction, they may find that their best efforts offer little improvement over a

simple estimator. This chapter reviews simple methods for analyzing big and

complex data.

– Estimation-only analyses

The sun is about 93 million miles from the Earth. At this enormous distance, the light hit-

ting Earth arrives as near-parallel rays and the shadow produced by the earth is nearly

cylindrical. This means that the shadow of the earth is approximately the same size as

the Earth itself. If the Earth’s circular shadow on the moon, as observed during a lunar

eclipse, appears to be about 2.5 times the diameter of themoon itself, then themoonmust

have a diameter approximately 1/2.5 times that of the earth. The diameter of the earth is

about 8000 miles, so the diameter of the moon must be about 8000/2.5 or about

3000 miles.

The true diameter of the moon is smaller, about 2160 miles. Our estimate is inaccurate

because the Earth’s shadow is actually conical, not cylindrical. If we wanted to use a bit

more trigonometry, we’d arrive at a closer approximation. Still, we arrived at a fair approx-

imation of the moon’s size from one, simple division, based on a casual observation made

during a lunar eclipse. The distance was not measured; it was estimated from a simple

observation. Credit for the first astronomer to use this estimation goes to the Greek astron-

omer Aristarchus of Samos (310 BCE–230 BCE). In this particular case, a direct measure-

ment of the moon’s distance was impossible. Aristarchus’ only option was the rough
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estimate. His predicament was not unique. Sometimes estimation is the only recourse for

data analysts.

A modern-day example wherein measurements failed to help the data analyst is the

calculation of deaths caused by heat waves. People suffer during heat waves, and munic-

ipalities need to determine whether people are dying from heat-related conditions. If

heat-related deaths occur, then the municipality can justifiably budget for supportive ser-

vices such as municipal cooling stations, the free delivery of ice, and increased staffing for

emergency personnel. If the number of heat-related deaths is high, the governor may jus-

tifiably call a state of emergency.

Medical examiners perform autopsies to determine causes of death. During a heat

wave the number of deceased individuals with a heat-related cause of death seldom rises

as much as anyone would expect [4]. The reason for this is that stresses produced by heat

cause death by exacerbating pre-existing non-heat-related conditions. The cause of death

can seldom be pinned on heat. The paucity of autopsy-proven heat deaths can be relieved,

somewhat, by permitting pathologists to declare a heat-related death when the environ-

mental conditions at the site of death are consistent with hyperthermia (e.g., a high tem-

perature at the site of death, and a high body temperature of the deceased measured

shortly after death). Adjusting the criteria for declaring heat-related deaths is a poor rem-

edy. Inmany cases the body is not discovered anytime near the time of death, invalidating

the use of body temperature.More importantly, differentmunicipalitiesmay develop their

own criteria for heat-related deaths (e.g., different temperature threshold measures, dif-

ferent ways of factoring night-time temperatures and humidity measurements). Basically,

there is no accurate, reliable, or standard way to determine heat-related deaths at

autopsy [4].

How would you, a data estimator, handle this problem? It is simple. You take the total

number of deaths that occurred during the heat wave. Then you go back over your records

of deaths occurring in the same period, in the same geographic region, over a series of

years in which a heat wave did not occur. You average that number, giving you the

expected number of deaths in a normal (i.e., without heat wave) period. You subtract that

number from the number of deaths that occurred during the heat wave, and that gives you

an estimate of the number of people who died from heat-related mortality. This strategy,

applied to the 1995 Chicago heat wave, estimated that the number of heat-related deaths

rose from 485 to 739 [5].

– Mean-field averaging

The average behavior of a collection of objects can be applied toward calculations that

would exceed computational feasibility if applied to individual objects. Here is an exam-

ple. Years ago, I worked on a project that involved simulating cell colony growth, using a

Monte Carlo method [6]. Each simulation began with a single cell that divided, produc-

ing two cells, unless the cell happened to die prior to cell division. Each simulation

applied a certain chance of cell death, somewhere around 0.5, for each cell, at each cell

division. When you simulate colony growth, beginning with a single cell, the chance that
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the first cell will die on the first cell division would be about 0.5; hence, there is about a

50% chance that the colony will die out on the first cell division. If the cell survives the

first cell division, the cell might go through several additional cell divisions before it dies,

by chance. By that time, there are other progeny that are dividing, and these progeny

cells might successfully divide, thus enlarging the size of the colony. A Monte Carlo sim-

ulation randomly assigned death or life at each cell division, for each cell in the colony.

When the colony manages to reach a large size (e.g., ten million cells), the simulation

slows down, as the Monte Carlo algorithm must parse through ten million cells, calcu-

lating whether each cell will live or die, and assigning two offspring cells for each sim-

ulated division, and removing cells that were assigned a simulated “death.” When the

computer simulation slowed to a crawl, I found that the whole population displayed

an “average” behavior. There was no longer any need to perform a Monte Carlo simula-

tion on every cell in the population. I could simply multiply the total number of cells by

the cell death probability (for the entire population), and this would tell me the total

number of cells that survived the cycle. For a large colony of cells, with a death proba-

bility of 0.5 for each cell, half the cells will die at each cell cycle, and the other half will

live and divide, produce two progeny cells; hence the population of the colony will

remain stable. When dealing with large numbers, it becomes possible to dispense with

the Monte Carlo simulation and to predict each generational outcome with a pencil and

paper. [Glossary Monte Carlo simulation]

Substituting the average behavior for a population of objects, rather than calculating

the behavior of every single object, is called mean-field approximation. It uses a physical

law telling us that large collections of objects can be characterized by their average behav-

ior. Mean-field approximation has been used with great success to understand the behav-

ior of gases, epidemics, crystals, viruses, and all manner of large population problems.

[Glossary Mean-field approximation]
Section 12.5. Case Study: Predicting User Preferences

He has no enemies, but is intensely disliked by his friends.
Oscar Wilde

Imagine you have all the preference data for every user of a largemovie subscriber service,

such asNetflix. Youwant to develop a systemwhereby the preference of any subscriber, for

any movie, can be predicted. Here are some analytic options, listed in order of increasing

complexity; omitting methods that require advanced mathematical skills.

1. Ignore your data and use experts.

Movie reviewers are fairly good predictors of a movie’s appeal. If they were not good pre-

dictors, they would have been replaced by people with better predictive skills. For any

movie, go to the newspapers and magazines and collect about ten movie reviews. Average

the review scores and use the average as the predictor for all of your subscribers.
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You can refine this method a bit by looking at the average subscriber scores, after the

movie has been released. You can compare the scores of the individual experts to the aver-

age score of the subscribers. Scores from experts that closely matched the scores from the

subscribers can be weighted a bit more heavily than experts whose scores were nothing

like the average subscriber score.

2. Use all of your data, as it comes in, to produce an average subscriber score.

Skip the experts; go straight to your own data. In most instances, you would expect that a

particular user’s preference will come close to the average preference of the entire popu-

lation in the data set for any given movie.

3. Lump people into preference groups based on shared favorites.

If Ann’s personal list of top-favored movies is the same as Fred’s top-favored list, then it is

likely that their preferences will coincide. For movies that Ann has seen but Fred has not,

use Ann’s score as a predictor.

In a large data set, find an individual’s top tenmovie choices and add the individual to a

group of individuals who share the same top-ten list. Use the average score formembers of

the group, for any particular movie as that movie’s predictor for each of the members of

the group.

As a refinement, find a group of people who share the top-ten and the bottom-ten scor-

ing movies. Everyone in this group shares a love of the same top movies and a loathing for

the same bottom movies.

4. Focus your refined predictions.
Fo

lov

is n

un
r many movies, there really is not much of a spread in ratings. If just about everyone

es “StarWars” and “Raiders of the Lost Arc” and “It’s aWonderful Life,” then there really

o need to provide an individual prediction for such movies. Likewise, if a movie is

iversally loathed, or universally accepted as an “average” flick, then why would you

nt to use computationally intensive models for these movies?
wa

Most data sets have a mixture of easy and difficult data. There is seldom any good

reason to develop predictors for the easy data. In the case of movie predictors, if there

is very little spread in a movie’s score, then you can safely use the average rating as the

predicted rating for all individuals. By removing all of the “easy” movies from your

group-specific calculations, you reduce the total number of calculations for the data

collection.

This method of eliminating the obvious has application in many different fields. As a

program director at the National Cancer Institute, I was peripherally involved in efforts to

predict cancer treatment options for patients diagnosed in different stages of disease. Tra-

ditionally, large numbers of patients, at every stage of disease, were included in a predic-

tion model that employed a list of measurable clinical and pathological parameters

(e.g., age and gender of patient, size of tumor, the presence of local or distant metastases,

and so on). It turned out that early models produced predictions where none were
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necessary. If a patient had a tumor that was small, confined to its primary site of growth,

andminimally invasive at its origin, then the treatmentwas always limited to surgical exci-

sion; there were no options for treatment, and hence no reason to predict the best option

for treatment. If a tumor was widely metastatic to distant organs at the time of diagnosis,

then there were no available treatments known, at that time, that could cure the patient.

By focusing their analyses on the subset of patients who could benefit from treatment and

for whom the best treatment option was not predetermined, the data analysts reduced the

size and complexity of the data and simplified the problem.

The take-away lesson from this section is that predictor algorithms, so popular now

among marketers, are just one of many different ways of determining how individuals

and subgroups may behave, under different circumstances. Big Data analysts should

not be reluctant to try several different analytic approaches, including approaches of their

own invention. Sometimes the simplest algorithms, involving nothing more than arith-

metic, are the best.
Section 12.6. Case Study: Multimodality in Population Data

What is essential is invisible to the eye.
Antoine de saint-exupery

Big Data distributions are sometimes multi-modal with several peaks and troughs. Multi-

modality always says something about the data under study. It tells us that the population

is somehow non-homogeneous. Hodgkin lymphoma is an example of a cancer with a

bimodal age distribution. There is a peak in occurrences at a young age, and another peak

of occurrences at a more advanced age. This two-peak phenomenon can be found when-

ever Hodgkin Lymphoma is studied in large populations [7,8].

In the case of Hodgkin lymphoma, lymphomas occurring in the young may share

diagnostic features with the lymphomas occurring in the older population, but the

occurrence of lymphomas in two separable populations may indicate that some impor-

tant distinction may have been overlooked: a different environmental cause, or different

genetic alterations of lymphomas in the two age sets, or two different types of lympho-

mas that were mistakenly classified under one name, or there may be something wrong

with the data (i.e., misdiagnoses, mix-ups during data collection). Big Data, by providing

large numbers of cases, makes it easy to detect data incongruities (such as multi-

modality), when they are present. Explaining the causes for data incongruities is always

a scientific challenge.

Multimodality in the age distribution of human diseases is an uncommon but well-

known phenomenon. In the case of deaths resulting the Spanish flu of 1918, a tri-modal

distribution was noticed (i.e., a high death rate in young, middle aged, and old individ-

uals). In such cases, the observation of multimodality has provoked scientific interest,

leading to fundamental discoveries in disease biology [9].
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Section 12.7. Case Study: Big and Small Black Holes

If I didn’t believe it, I would never have seen it.
Anon

The importance of inspecting data for multi-modality also applies to black holes. Most

black holes have mass equivalents under 33 solar masses. Another set of black holes

are supermassive, with mass equivalents of 10 or 20 billion solar masses. When there

are objects of the same type, whose masses differ by a factor of a billion, scientists infer

that there is something fundamentally different in the origin or development of these two

variant forms of the same object. Black hole formation is an active area of interest, but

current theory suggests that lower-mass black holes arise from pre-existing heavy stars.

The supermassive black holes presumably grow from large quantities of matter available

at the center of galaxies. The observation of bimodality inspired astronomers to search for

black holes whose masses are intermediate between black holes with near-solar masses

and the supermassive black holes. Intermediates have been found, and, not surprisingly,

they come with a set of fascinating properties that distinguish them from other types of

black holes. Fundamental advances in our understanding of the universe may sometimes

follow from simple observations of multimodal data distributions.
Glossary
Case report The case report, also known as the case study, is a detailed description of a single event or

situation, often devoted to an outlier, or a detail, or a unique occurrence of an observation. The con-

cept of the case study is important in the field of data simplification because it highlights the utility of

seeking general truths based on observations of rare events. Case reports are common in the biomed-

ical literature, often beginning with a comment regarding the extreme rarity of the featured disease.

You can expect to see phrases such as “fewer than a dozen have been reported in the literature” or “the

authors have encountered no other cases of this lesion,” or such and such a finding makes this lesion

particularly uncommon and difficult to diagnose; and so on. The point that the authors are trying to

convey is that the case report is worthy of publication specifically because the observation is rare. Too

often, case reports serve merely as a cautionary exercise, intended to ward against misdiagnosis. The

“beware this lesion” approach to case reporting misses the most important aspect of this type of pub-

lication; namely that science, and most aspects of human understanding, involve generalizing from

the specific. When Isaac Newton saw an apple falling, he was not thinking that he could write a case

report about how he once saw an apple drop, thus warning others not to stand under apple trees lest a

rare applemight thump themupon the head. Newton generalized from the apple to all objects, addres-

sing universal properties of gravity, and discovering the laws by which gravity interacts with matter.

The case report gives us an opportunity to clarify the general way things work, by isolating one specific

and rarely observed factor [2]. Data scientistsmust understand that rare cases are not exceptions to the

general laws of reality; they are the exceptions upon which the general laws of reality are based.

Dimensionality The dimensionality of a data objects consists of the number of attributes that describe the

object.Dependingon thedesignand content of thedata structure that contains thedataobject (i.e., data-

base, array, list of records, object instance, etc.), the attributeswill be called by different names, including

field, variable, parameter, feature, or property. Data objects with high dimensionality create computa-

tional challenges, anddataanalysts typically reduce thedimensionality ofdataobjectswhereverpossible.
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Dynamic range Every measuring device has a dynamic range beyond which its measurements are with-

out meaning. A bathroom scale may be accurate for weights that vary from 50 to 250 pounds, but you

would not expect it to produce a sensible measurement for the weight of a mustard seed or an

elephant.

Mean-field approximation A method whereby the average behavior for a population of objects substi-

tutes for the behavior of each and every object in the population. This method greatly simplifies cal-

culations. It is based on the observation that large collections of objects can be characterized by their

average behavior. Mean-field approximation has been used with great success to understand the

behavior of gases, epidemics, crystals, viruses, and all manner of large population phenomena.

Monte Carlo simulation This technique was introduced in 1946 by John von Neumann, Stan Ulam, and

NickMetropolis [10]. For this technique, the computer generates random numbers and uses the resul-

tant values to simulate repeated trials of a probabilistic event. Monte Carlo simulations can easily sim-

ulate various processes (e.g., Markov models and Poisson processes) and can be used to solve a wide

range of problems [6,11]. The Achilles heel of the Monte Carlo simulation, when applied to enormous

sets of data, is that so-called random number generators may introduce periodic (non-random)

repeats over large stretches of data [12]. What you thought was a fine Monte Carlo simulation, based

on small data test cases, may produce misleading results for large data sets. The wise Big Data analyst

will avail himself of the best possible randomnumber generators, and will test his outputs for random-

ness. Various tests of randomness are available [13].

Nonparametric statistics Statistical methods that are not based on assumptions about the distribution of

the sample population (e.g., not based on the assumption that the sample population fits a Gaussian

distribution). Median, mode, and range are examples of common nonparametric statistics.

Outlier The term refers to a data point that lies far outside the value of the other data points in a distri-

bution. The outlier may occur as the result of an error, or it may represent a true value that needs to be

explained. When computing a line that is the “best fit” to the data, it is usually prudent to omit the

outliers; otherwise, the best fit line may miss most of the data in your distribution. There is no strict

rule for identifying outliers, but by convention, statisticians may construct a cut-off that lies 1.5 times

the range of the lower quartile of the data, for small outliers, or 1.5 times the upper quartile range for

large values.

Pareto’s principle Also known as the 80/20 rule, Pareto’s principle holds that a small number of items

account for the vast majority of observations. For example, a small number of rich people account

for the majority of wealth. Just 2 countries, India plus China, account for 37% of the world population.

Within most countries, a small number of provinces or geographic areas contain the majority of the

population of a country (e.g., East and West coastlines of the United States). A small number of books,

comparedwith the total number of published books, account for themajority of book sales. Likewise, a

small number of diseases account for the bulk of human morbidity and mortality. For example, two

common types of cancer, basal cell carcinomaof skin and squamous cell carcinoma of skin account for

about 1million new cases of cancer each year in the United States. This is approximately the sum total

of for all other types of cancer combined. We see a similar phenomenon when we count causes of

death. About 2.6 million people die each year in the United States [14]. The top two causes of death

account for 1,171,652 deaths (596,339 deaths from heart disease and 575,313 deaths from cancer [15]),

or about 45% of all United States deaths. All of the remaining deaths are accounted for by more than

7000 conditions. Sets of data that follow Pareto’s principle are often said to follow a Zipf distribution, or

a power law distribution. These types of distributions are not tractable by standard statistical descriptors

because they donot produce a symmetric bell-shaped curve. Simplemeasurements such as average and

standard deviation have virtually no practical meaning when applied to Zipf distributions. Furthermore,

theGaussian distribution does not apply, and noneof the statistical inferences built upon an assumption

of a Gaussian distribution will hold on data sets that observe Pareto’s principle [16].

Power law Amathematical formula wherein a particular value of some quantity varies as an inverse power

of some other quantity [17,18]. The power law applies to many natural phenomena and describes the

Zipf distribution or Pareto’s principle. The power law is unrelated to the power of a statistical test.
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Word lists Word lists are collections, usually in alphabetic order, of the different words that might appear

in a corpus of text or a language dictionary. Such lists are easy to create. Here is a short Python script,

words.py, that prepares an alphabetized list of the words occurring in a line of text. This script can be

easily modified to create word lists from plain-text files.

import string

line = "a way a lone a last a loved a long the riverrun past eve and adam's from swerve of
shore to bend of bay brings us by a commodius vicus"

linearray = sorted(set(line.split(" ")))

for item in linearray:

print(item)

Here is the output:

a

adam's

and

bay

bend

brings

by

commodius

eve

from

last

lone

long

loved

of

past

riverrun

shore

swerve

the

to

us

vicus

way

Aside from word lists you create for yourself, there are a wide variety of specialized knowledge domain

nomenclatures that are available to the public [19–24]. Linux distributions often bundle a wordlist,

under filename “words,” that is useful for parsing and natural language processing applications.

A copy of the Linux wordlist is available at: http://www.cs.duke.edu/�ola/ap/linuxwords

Curated lists of terms, either generalized or restricted to a specific knowledge domain, are indispensable

for a variety of applications (e.g., spell-checkers, natural language processors, machine translation,

coding by term, indexing.) Personally, I have spent an inexcusable amount of time creating my own

lists, when no equivalent public domain resource was available.

http://www.cs.duke.edu/~ola/ap/linuxwords
http://www.cs.duke.edu/~ola/ap/linuxwords
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Zipf distribution George Kingsley Zipf (1902–50) was an American linguist who demonstrated that, for

most languages, a small number of words account for the majority of occurrences of all the words

found in prose. Specifically, he found that the frequency of any word is inversely proportional to its

placement in a list of words, ordered by their decreasing frequencies in text. The first word in the fre-

quency list will occur about twice as often as the second word in the list, three times as often as the

third word in the list, and so on. Many Big Data collections follow a Zipf distribution (income distri-

bution in a population, energy consumption by country, and so on). Zipf distributions within Big Data

cannot be sensibly described by the standard statistical measures that apply to normal distributions.

Zipf distributions are instances of Pareto’s principle.

Here is a short Python script, zipf.py, that produces a Zipf distribution for a few lines of text.

import re, string

word_list=[];freq_list=[];format_list=[];freq={}

my_string = "Peter Piper picked a peck of pickled \

peppers. A peck of pickled peppers Peter Piper picked. \

If Peter Piper picked a peck of pickled peppers, \

Where is the peck of pickled peppers that Peter Piper \

picked?".lower()

word_list = re.findall(r'(\b[a-z]{1,}\b)', my_string)

for item in word_list:

count = freq.get(item,0)

freq[item] = count + 1

for key, value in freq.items():

value = "000000" + str(value)

value = value[-6:]

format_list += [value + " " + key]

format_list = reversed(sorted(format_list))

print("\n".join(format_list))

Here is the output of the zipf,py script:

000004 piper

000004 pickled

000004 picked

000004 peter

000004 peppers

000004 peck

000004 of

000003 a

000001 where

000001 the

000001 that

000001 is

000001 if
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Section 13.1. The Remarkable Utility of (Pseudo)Random
Numbers

Chaos reigns within.

Reflect, repent, and reboot.

Order shall return.
Computer haiku by Suzie Wagner

As discussed in Section 11.1, much of the difficulty that of Big Data analysis comes down

to combinatorics. As the number of data objects increases, along with the number of attri-

butes that describe each object, it becomes computationally difficult, or impossible, to

compute all the pairwise comparisons that would be necessary for analytics tasks (e.g.,

clustering algorithms, predictive algorithms). Consequently, Big Data analysts are always

on the lookout for innovative, non-combinatoric approaches to traditionally combina-

toric problems.

There are many different approaches to data analysis that help us to reduce the com-

plexity of data (e.g., principal component analysis) or transform data into a domain that

facilitates various types of analytic procedures (e.g., the Fourier transform). In this chap-

ter, wewill be discussing an approach that is easy to learn, easy to implement, andwhich is
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00013-3
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particularly well-suited to enormous data sets. The techniques that we will be describing

fall under different names, depending on how they are applied (e.g., resampling, Monte

Carlo simulations, bootstrapping), but they all make use of random number generators,

and they all involve repeated sampling from a large population of data, or from infinite

points in a distribution. Together, these heuristic techniques permit us to perform nearly

any type of Big Data analysis we might imagine in a few lines of Python code [1–4]. [Glos-
sary Heuristic technique, Principal component analysis]

In this chapter, we will explore:

– Random numbers (strictly, pseudorandom numbers) [Glossary Pseudorandom

number generator]

– General problems of probability

– Statistical tests

– Monte Carlo simulations

– Bayesian models

– Methods for determining whether there are multiple populations represented in a

data set

– Determining the minimal sample size required to test a hypothesis [Glossary Power]

– Integration (calculus)

Let us look at how a random number generator works in Python, with a 3-line random.py

script.

import random
for iterations in range(10):

print(random.uniform(0,1))

Here is the sample output, listing 10 random numbers in the range 0–1:

0.594530508550135
0.289645594799927

0.393738321195123
0.648691742041396

0.215592023796071
0.663453594144743

0.427212189295081
0.730280586218356
0.768547788018729

0.906096189758145

Had we chosen, we could have rendered an integer output by multiplying each random

number by 10 and rounding up or down to the closest integer.

Now, let us perform a few very simple simulations that confirm what we already know,

intuitively. Imagine that you have a pair of dice and you would like to know how often you

mightexpecteachof thenumbers (fromonetosix) toappearafter you’ve thrownonedie [5].
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Let us simulate 60,000 throws of a die using the Python script, randtest.py:

import random, itertools
one_of_six = 0
for i in itertools.repeat(None, 60000):

if (int(random.uniform(1,7))) > 5:
one_of_six = one_of_six + 1

print(str(one_of_six))

The script, randtest.pl, begins by setting a loop that repeats 60,000 times, each repeat sim-

ulating the cast of a die. With each cast of the die, Python generates a random integer, 1

through 6, simulating the outcome of a throw.

The script yields the total number die casts that would be expected to come up “6.”

Here is the output of seven consecutive runs of the randtest.py script

10020
10072

10048
10158

10000
9873

9899

As one might expect, a “6” came up about 1/6th of the time, or about 10,000 times in the

60,000 simulated roles. We could have chosen any of the other five outcomes of a die role

(i.e., 1, 2, 3, 4, or 5), and the outcomes would have been about the same.

Let us use a random number generator to calculate the value of pi, without measuring

anything, andwithout resorting to summing an infinite series of numbers. Here is a simple

python script, pi.py, that does the job.

import random, itertools

from math import sqrt
totr = 0; totsq = 0

for i in range(10000000):
x= random.uniform(0,1)

y= random.uniform(0,1)
r= sqrt((x*x) + (y*y))
if r < 1:

totr = totr + 1
totsq = totsq + 1

print(float(totr)*4.0/float(totsq))

The script returns a fairly close estimate of pi.

output: 3.1414256
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The value of pi is the ratio of a circle of unit radius (pi * r^2) divided by the area of a square

of unit radius (r 2̂). When we randomly select points within a unit distance in the x or the y

dimension, we are filling up a unit square. When we count the number of randomly

selected points within a unit radius of the origin, and compare this number with the num-

ber of points in the unit square, we are actually calculating a number that comes fairly

close to pi. In this simulation, we are looking at one quadrant, but the results are equiv-

alent, andwe come upwith a number that is a good approximation of pi (i.e., 3.1414256, in

this simulation).

With a few extra lines of code, we can send the output to a to a data file, named pi.dat,

that will helps us visualize how the script works. The data output (held in the pi.dat file)

contains the x, y data points, generated by the random number generator, meeting the “if”

statement’s condition that the hypotenuse of the x, y coordinates must be less than one

(i.e., less than a circle of radius 1). We can plot the output of the script with a few lines of

Gnuplot code:

gnuplot> set size square

gnuplot> unset key
gnuplot> plot 'c:\ftp\pi.dat'

The resulting graph is a quarter-circle within a square (Fig. 13.1).
FIG. 13.1 The data points produced by 10,000 random assignments of x and y coordinates in a range of 0–1. Randomly

assigned data points whose hypotenuse exceeds “1” are excluded.
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Let us see howwe can simulate calculus operations, using a randomnumber generator.

We will integrate the expression f(x) ¼ x^3 � 1. First, let us visualize the relationship

between f(x) and x, by plotting the expression. We can use a very simple Python script,

plot_funct.py, that can be trivially generalized to plot almost any expression we choose,

over any interval.

import math, random, itertools

import numpy as np
import matplotlib.pyplot as plt

x=0.000

def f(x):

return (x*x*x -1)

x = np.arange(0.7, 1.5, 0.01)
plt.plot(x, f(x))

plt.show()

The output is a graph, produced by Python’s matplotlib module (Fig. 13.2).

Let us use a random number generator, in the Python script integrator.py, to perform

the integration and produce an approximate evaluation of the integral (i.e., the area under

the curve of the equation).

import math, random, itertools

def f(x):
return (x*x*x -1)
FIG. 13.2 The plot of the function x^3 � 1, in the interval 0.7–1.5.
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range = 2 #let's evaluate the integral from x=1 to x=3
running_total = 0

for i in itertools.repeat(None, 1000000):
x = float(random.uniform(1,3))

running_total = running_total + f(x)
integral = (running_total / 1000000) * range

print(str(integral))

Here is the output:

18.001426696174935

The output comes very close to the exact integral, 18, calculated for the interval between 1

and 3. How did our short Python script calculate the integral? The integral of a function is

equivalent to the area under of the curve of the function, in the chosen interval. The area

under the cover is equal to the size of the interval (i.e., the x coordinate range) multiplied

by the average value of the function in the interval. By calculating a million values of the

function, from randomly chosen values of x in the selected interval, and taking the average

of all of those values, we get the average value of the function. When we multiply this by

the interval, we get the area, which is equal to the value of the integral.

Let us apply our newfound ability to perform calculus with a random number gener-

ator and calculate one of the most famous integrals in mathematics.

The integral of 1/x equals the natural logarithm of x (Fig. 13.3). This tells us that the

integral of (1/x)dx evaluated in the integral from 5 to 105 will be equal to ln(105) minus

ln(5). Let us evaluate the integral in the range from x ¼ 5 to x ¼ 105, using our random

number generator, alongside the calculation performed with Python’s numpy (math)

module, to see how close our approximation came. We will use the Python script, natu-

ral.py

import math, random, itertools

import numpy as np
def f(x):

return (1 / x)

range = 100
running_total = 0

for i in itertools.repeat(None, 1000000):
x = float(random.uniform(5,105))

running_total = float(running_total + f(x))
FIG. 13.3 The integral of the inverse of x is equal to the natural logarithm of x.
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integral = (running_total / 1000000) * range
print("The estimate produced with a random number generator is: " + str

(integral))
print("The value produced with Python's numpy function for ln(x) is: " +

str(np.log(105) - np.log(5)))

Here is the output of the natural.py script.

The estimate produced with a random number generator

is: 3.04209561069317
The value produced with Python's numpy function for ln(x)

is: 3.04452243772

Not bad. Of course, python programmers know that they do not need to use a random

number generator to solve calculus problems in python. The numpy and sympy modules

seem to do the job nicely. Here is a short example wherein the a classic integral equation is

demonstrated:

>>> import sympy as sy

>>> import numpy as np
>>> x = sy.Symbol('x')
>>> sy.integrate(1/x,x)

log(x)

Or, as any introductory calculus book would demonstrate: lnx ¼ integral 1/x dx

Why would anyone bother to integrate using a random number generator when they

can produce an exact solution using elementary calculus? It happens that integration by

repeated sampling using a random number generator comes in handy when dealing with

multi-dimensional functions, particularly when the number of dimensions exceeds 8 (i.e.,

when there are 8 or more quantitative attributes describing each variable). In Big Data,

where the variables have many attributes, standard computational approaches may fail.

In these cases the methods described in this section may provide the most exact and the

most practical solutions to a large set of Big Data computations. [Glossary Curse of

dimensionality]
Section 13.2. Repeated Sampling

Every problem contains within itself the seeds of its own solution.
Stanley Arnold

In Big Data analytics, we can use a random number generator to solve problems in the

areas of clustering, correlations, sample size determination, differential equations, inte-

gral equations, digital signals processing, and virtually every subdiscipline of physics

[3,1,6,5]. Purists would suggest that we should be using formal, exact, and robust
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mathematical techniques for all these calculations. Maybe so, but there is one general set

of problems for which the random number generator is the ideal tool; requiring no special

assumptions about the data being explored, and producing answers that are as reliable as

anything that can be produced with computationally intensive exact techniques. This set

of problems typically consists of hypothesis testing on sets of data of uncertain distribu-

tion (i.e., not Gaussian) that are not strictly amenable to classic statistical analysis. The

methods by which these problems are solved are the closely related techniques of resam-

pling (from a population or data set) and permutating, both of which employ random

number generators. [Glossary Resampling statistics, Permutation test, Resampling versus

Repeated Sampling, Modified random sampling]

Resampling methods are not new. The resampling methods that are commonly used

today by data analysts have been around since the early 1980s [3,1,2]. The underlying algo-

rithms for these methods are so very simple that they have certainly been in use, using

simple casts of dice, for thousands of years.

The early twentieth century saw the rise of mathematically rigorous statistical

methods, that enabled scientists to test hypotheses and draw conclusions from small

or large collections of data. These tests, which required nothing more than pencil and

paper to perform, dominated the field of analysis and are not likely to be replaced anytime

soon. Nonetheless, the advent of fast computers provides us with alternative methods of

analysis that may lack the rigor of advanced statistics, but have the advantage of being

easily comprehensible. Calculations that require millions of operations can be done

essentially instantly, and can be programmed with ease. Never before, in the history of

the world, has it been possible to design and perform resampling exercises, requiring mil-

lions or billions of iterative operations, in a matter of seconds, on computers that are

affordable to a vast number of individuals in developed or developing countries. The cur-

rent literature aboundswith resources for scientists with rudimentary programming skills,

who might wish to employ resampling techniques [7,8].

For starters, we need to learn a new technique: shuffling. Python’s numpymodule pro-

vides a simple method for shuffling the contents of a container (such as the data objects

listed in an array) to produce a random set of objects. Here is Python’s shuffle_100.py

script, that produces a shuffled list of numbers ranging from 0 to 99:

import numpy as np

sample = np.arange(100)
gather = []
for i in sample:

np.random.shuffle(sample)
print(sample)

Here is the output of the shuffle_100.py script:

[27 60 21 99 17 79 49 62 81 2 88 90 45 61 66 80 50 31 59 24 53 29 64 33 30
41 13 23 0 67 78 70 1 35 18 86 25 93 6 98 97 84 9 12 56 48 74 96 4 32
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44 11 19 38 26 52 87 77 39 91 92 76 65 75 63 57 8 94 51 69 71 7 73 34 20
40 68 22 82 15 37 72 28 47 95 54 55 58 5 3 89 46 85 16 42 36 43 10 83 14]

We will be using the shuffle method to help us answer a question that arises often, when-

ever we examine sets of data: “Does my data represent samples from one homogeneous

population of data objects, or does my data represent samples from different classes of

data objects that have been blended together in one collection?” The blending of distinc-

tive classes of data into one data set is one of the most formidable biases in experimental

design, and has resulted in the failures of many clinical trials, the misclassification of dis-

eases, and the misinterpretation of the significance of outliers. How often do we fail to

understand our data, simply because we cannot see the different populations lurking

within? In Section 12.6, we discussed the importance of finding multimodal peaks in data

distributions. Our discussion of multimodal peaks and separable subpopulations begged

the question as to howwe can distinguish peaks that represent subpopulations frompeaks

that represent random perturbations in our data. [Glossary Blended class]

Let us begin by using a random number generator tomake two separate populations of

data objects. The first population of data objects will have values that range uniformly

between 1 and 80. The second population of data objects will have values that range uni-

formly between 20 and 100. These two populations will overlap (between 20 and 80), but

they are different populations, with different populationmeans, and different sets of prop-

erties that must account for their differences in values. We’ll call the population ranging

from 1 to 80 our low_array and the population ranging from 20 to 100 as high_array.

Here is a Python script, low_high.py, that generates the two sets of data, representing

50 randomly selected objects from each population:

import numpy as np
from random import randint

low_array = []; high_array = []
for i in range(50):

low_array.append(randint(1,80))
print("Here's the low-skewed data set " + str(low_array))
for i in range(50):

high_array.append(randint(21,100))
print("\nHere's the high-skewed data set " + str(high_array))

av_diff = (sum(high_array)/len(high_array)) - (sum(low_array)/len
(low_array))

print("\nThe difference in average value of the two arrays is:
" + str(av_diff ))

Here is the output of the low_high.py script:

Here is the low-skewed data set [31, 8, 60, 4, 64, 35, 49, 80, 6, 9, 14, 15,

50, 45, 61, 77, 58, 24, 54, 45, 44, 6, 78, 59, 44, 61, 56, 8, 30, 34, 72, 33,
14, 13, 45, 10, 49, 65, 4, 51, 25, 6, 37, 63, 19, 74, 78, 55, 34, 22]
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Here is the high-skewed data set [36, 87, 54, 98, 33, 49, 37, 35, 100, 48,
71, 86, 76, 93, 98, 99, 92, 68, 29, 34, 64, 30, 99, 76, 71, 32, 77, 32, 73,

54, 34, 44, 37, 98, 42, 81, 84, 56, 55, 85, 55, 22, 98, 72, 89, 24, 43, 76,
87, 61]

The difference in average value of the two arrays is: 23.919999999999995

The low-skewed data set consists of 50 random integers selected from the interval 1–80.
The high-skewed data set consists of 50 random numbers selected from the interval

between 20 and 100. Notice that not all possible outcomes in these two intervals are repre-

sented (i.e., there is no number 2 in the low-skewed data set and there is no number 25 in

the high-skewed data set). If we were to repeat the low_high.py script, we would generate

two different sets of numbers. Also, notice that the two populations have different average

values. The difference between the average value of the low-skewed data population and

the high-skewed data population is 23.9, in this particular simulation.

Now, we are just about ready to determine whether the two populations are statistically

different. Let us repeat the simulation. This time, we will combine the two sets of data into

one array that we will call “total_array,” containing 100 data elements. Thenwewill shuffle

all of the values in total_array and we will create two new arrays: a left array consisting of

the first 50 values in the shuffled total_array and a right array consisting of the last

50 values in the total_array. Then we will find the difference between the average of the

50 values of the left array of the right array. We will repeat this 100 times, printing out

the lowest five differences in averages and the highest five differences in averages. Then

we will stop and contemplate what we have done.

Here is the Python script, pop_diff.py

import numpy as np

from random import randint
low_array = []

high_array = []
gather = []
for i in range(50):

low_array.append(randint(1,80))
for i in range(50):

high_array.append(randint(21,100))
av_diff = (sum(high_array)/len(high_array)) - (sum(low_array)/len

(low_array))
print("The difference in the average value of the high and low arrays is:

" + str(av_diff ))
sample = low_array + high_array
for i in sample:

np.random.shuffle(sample)
right = sample[50:]
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left = sample[:50]
gather.append(abs((sum(left)/len(left)) - (sum(right)/len

(right))))
sorted_gather = sorted(gather)

print("The 5 largest differences of averages of the shuffled arrays
are:")

print(str(sorted_gather[95:]))

output:
The difference in the average value of the high and low arrays is:

19.580000000000005

The 5 largest differences of averages of the shuffled arrays are:
[8.780000000000001, 8.899999999999999, 9.46, 9.82,

9.899999999999999]

Believe it or not, we just demonstrated that the two arrays that we began with (i.e., the

array with data values randomly distributed between 0 and 80; and the array with data

values randomly distributed between 20 and 100) represent two different populations

of data (i.e., two separable classes of data objects). Here is what we did and how we

reached our conclusion.

1. We recomputed two new arrays, with 50 items each, with data values randomly

distributed between 0 and 80; and the array with data values randomly distributed

between 20 and 100.

2. We calculated the difference of the average size of an item in the first array, compared

with the average size of an item in the second array. This came out to 19.58 in this

simulation.

3. We combined the two arrays into a new array of 100 items, and we shuffled these items

100 times, each time splitting the shuffle in half to produce two new arrays of 50 items

each., We calculated the difference in the average value of the two arrays (produced by

the shuffle).

4. We found the five sets of shuffled arrays (the two arrays produced by a shuffle of the

combined array) that had the largest differences in their values (corresponding to the

upper 5% of the combined and shuffled populations) and we printed these numbers.

The upper 5 percentile differences among the shuffled arrays (i.e., 8.78, 8.89, 9.46, 9.82,

9.89) came nowhere close to the difference of 19.58 we calculated for the original two sets

of data. This tells us that whenever we shuffle the combined array, we never encounter

differences anywhere near as great as what we observed in the original arrays. Hence,

the original two arrays cannot be explained by random selection from one population

(obtained when we combined the two original arrays). The two original arrays must rep-

resent two different populations of data objects.

A note of caution regarding scalability. Shuffling is not a particularly scalable function

[9]. Shuffling a hundred items is a lot easier than shuffling a million items. Hence, when
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writing short programs that test whether two data arrays are statistically separable, it is

best to impose a limit to the size of the arrays that you create when you sample from

the combined array. If you keep the shuffling size small, you can compensate by repeating

the shuffle nearly as often as you like.

– Sample Size and Power Estimates

In the prior exercise, we generated two populations, of 50 samples each, and we deter-

mined that the two populations were statistically separable from one another. Would

we have been able to draw the same conclusion if we had performed the exercise using

25 samples in each population in each population? How about 10 samples? We would

expect that as the population sizes of the two populations shrinks, the likelihood that

we could reliably distinguish one population from another will fall. How do we determine

the minimal population size necessary to perform our experiment?

The power of a trial is the likelihood of detecting a difference in two populations, if the

difference actually exists. The power is related to the sample size. At a sufficiently large

sample size, you can be virtually certain that the difference will be found, if the difference

exists. Resampling permits the experimenter to conduct repeated trials, with different

sample sizes, and under conditions that simulate the population differences that are

expected. For example, an experimenter might expect that a certain drug produces a

15% difference in the measured outcomes in the treated population compared with the

control population. By setting the conditions of the trials, and by performing repeated tri-

als with increasing sizes of simulated populations, the data scientist can determine the

minimum sampling size that consistently (e.g., in greater than 95% of the trials), demon-

strates that the treated population and the control population are separable. Hence, using

a random number generator and a few short scripts, the data scientist can determine

the sampling size required to yield a power that is acceptable for a “real” experiment.

[Glossary Sample size, Sampling theorem]
Section 13.3. Monte Carlo Simulations

One of the marks of a good model - it is sometimes smarter than you are.
Paul Krugman, Nobel prize-winning economist

Random number generators are well suited to Monte Carlo simulations, a technique

described in 1946 by John von Neumann, Stan Ulam, and Nick Metropolis [10]. For these

simulations, the computer generates random numbers and uses the resultant values to

represent outcomes for repeated trials of a probabilistic event. Monte Carlo simulations

can easily simulate various processes (e.g., Markov models and Poisson processes) and

can be used to solve a wide range of problems [11,12].

For example, consider how biologists may want to model the growth of clonal colonies

of cells. In the simplest case, wherein cell growth is continuous, a single cell divides, pro-

ducing two cells. Each of the daughter cells divides, producing a total of four cells. The size
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of the colony increases as powers of 2. A single liver cancer cell happens to have a volume

of about 30,000 cubic microns [13]. If the cell cycle time is one day, then the volume of a

liver cell colony, grown for 45 days, and starting at day 1with a single cell, would be 1m3. In

55 days, the volume would exceed 1000m3. If an unregulated tumor composed of malig-

nant liver cells were to grow for the normal lifetime of a human, it would come to occupy

much of the measured universe [14]. Obviously, unregulated cellular growth is unsustain-

able. In tumors, as in all systems that model the growth of cells and cellular organisms, the

rate of cell growth is countered by the rate of cell death.

With the help of a random number generator, we can model the growth of colonies of

cells by assigning each cell in the colony a probability of dying. If we say that the likelihood

that a cell will die is 50%, then we are saying that its chance of dividing (i.e., producing two

cells) is the same as its chance of dying (i.e., producing zero cells and thus eliminating

itself from the population). We can create aMonte Carlo simulation of cell growth by start-

ing with some arbitrary number of cells (let us say three), and assigning each cell an arbi-

trary chance of dying (let us say 49%). We can assign each imaginary cell to an array, and

we can iterate through the array, cell by cell. As we iterate over each cell, we can use a ran-

dom number generator to produce a number between 0 and 1. If the random number is

less than 0.49, we say that the cell must die, dropping out of the array. If a cell is randomly

assigned a number that is greater than 0.49, then we say that the cell can reproduce, to

produce two cells that will take their place in the array. Every iteration over the cells in

the array produces a new array, composed of the lucky winners and their offspring, from

the prior array. In theory, we can repeat this process forever. More practically, we can

repeat this process until the size of the colony reduces to zero, or until the colony becomes

so large that additional iterations become tedious (even for a computer).

Here is the Python script, clone.py, that creates aMonte Carlo simulation for the growth

of a colony, beginning with three cells, with a likelihood of cell death for all cells, during

any generation, of 0.41. The script exits if the clone size dwindles to zero (i.e., dies out) or

reaches a size exceeding 800 (presumably on the way to growing without limit).

import numpy.random as npr
import sys

death_chance = 0.41; cell_array = [1, 1, 1]; cell_array_incremented =
[1,1,1]

while(len(cell_array) > 0):
for cell in cell_array:

randnum = npr.randint(1,101)

if randnum > 100 * death_chance:
cell_array_incremented.append(1)

else:
cell_array_incremented.remove(1)

if len(cell_array_incremented) < 1:
sys.exit()
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if len(cell_array_incremented) > 800:
sys.exit()

cell_array = cell_array_incremented
print(len(cell_array_incremented), end = ", ")

For each cell in the array, if the random number generated for the cell exceeds the likeli-

hood of cell death, then the colony array is incremented by one. Otherwise, the colony

array is decremented by 1. This simple step is repeated for every cell in the colony array,

and is repeated for every clonal generation.

Here is a sample output when death_chance ¼ 0.49

multiple outputs:

First trial:

2, 1, 1, 1,

Second trial:
4, 3, 3, 1,

Third trial:
6, 12, 8, 15, 16, 21, 30, 37, 47, 61, 64, 71, 91, 111, 141, 178, 216, 254,

310, 417, 497, 597, 712,

Fourth trial:
2, 4, 4, 4, 3, 3, 4, 4, 8, 5, 6, 4, 4, 6, 4, 10, 19, 17, 15, 32, 37, 53, 83, 96,

128, 167, 188, 224, 273, 324, 368, 416, 520, 642,

Fifth trial
4, 3, 7, 9, 19, 19, 26, 36, 45, 71, 88, 111, 119, 157, 214, 254, 319, 390,
480, 568, 675,

Sixth trial:

2, 1, 2, 2, 1,

Seventh trial:
2, 1,

Eighth trial:
2, 1, 1, 1, 4, 8, 10, 8, 10, 9, 10, 15, 11, 12, 16, 15, 21, 21, 35, 44, 43, 41,

47, 68, 62, 69, 90, 97, 121, 181, 229, 271, 336, 439, 501, 617, 786,

In each case the clone increases or decreases with each cell cycle until the clone reaches

extinction or exceeds our cut off limit. These simulations indicate that clonal growth

is precarious, under conditions when the cell death probability is approximately

50%. In these two simulations the early clones eventually die out. Had we repeated the

simulation hundreds of times, we would have seen that most clonal simulations end in

the extinction of the clone; while a few rare simulations yield a large, continuously
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expanding population, with virtually no chance of reaching extinction. In a series of

papers by Dr. WilliamMoore andmyself, we developedMonte Carlo simulations of tumor

cell growth. Those simulations suggested that very small changes in a tumor cell’s death

probability (per replication generation) profoundly affected the tumor’s growth rate

[11,12,15]. This simulation suggested that chemotherapeutic agents that can incre-

mentally increase the death rate of tumor cells may have enormous treatment benefit.

Furthermore, simulations showed that if you simulate the growth of a cancer from a single

abnormal cancer cell, most simulations result in the spontaneous extinction of the tumor,

an unexpected finding that helps us to understand the observed high spontaneous

regression rate of nascent growths that precede the development of clinically malignant

cancers [16,17].

This example demonstrates how simpleMonte Carlo simulations, written in littlemore

than a dozen lines of Python code, can simulate outcomes that would be difficult to com-

pute using any other means.
Section 13.4. Case Study: Proving the Central Limit Theorem

The solution to a problem changes the nature of the problem.
John Peers (“Peer’s Law” 1,001 Logical Laws)

The Central Limit Theorem is a key concept in probability theory and statistics. It asserts

that when independent random variables are added, their sum tends toward a normal dis-

tribution (i.e., a “bell curve”). The importance of this theorem is that statistical methods

designed for normal distributions will also apply in some situations wherein variables are

chosen randomly from non-normal distributions.

For many years, the Central Limit Theorem was a personal stumbling block for me;

I simply could not understand why it was true. It seemed tome that if you randomly select

numbers in an interval, you would always get a random number, and if you summed and

averaged two random numbers, you’ll get another random number that is equally likely to

by anywhere within the interval (i.e., not distributed along a bell curve with a central

peak). According to the Central Limit Theorem, the sum of repeated random samplings

will produce lots of numbers in the center of the interval, and very few or no numbers

at the extremes.

As previouslymentioned, repeated sampling allows us to draw inferences about a pop-

ulation, without examining every member of the population; a handy trick for Big Data

analyses. In addition, repeated sampling allows us to test hypotheses that we are too dumb

to understand (speaking for myself ). In the case of the Central Limit Theorem, we can

simulate a proof of the Central Limit Theorem by randomly selecting numbers in an inter-

val (between 0 and 1) many times (say 10,000), and averaging their sum. We can repeat

each of these trials 10,000 times, and then plot where the 10,000 values lie. If we get a Bell

curve, then the Central Limit Theoremmust be correct. Here is the Python script, central.

py, that computes the results of the simulation, and plots the points as a graph.
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import random, itertools
from matplotlib import numpy

import matplotlib.pyplot as plt
out_file = open('central.dat',"w")

randhash = {}
for i in itertools.repeat(None, 10000):

product = 0
for n in itertools.repeat(None, 10000):

product = product + random.uniform(0,1)
product = int(product)
if product in randhash:

randhash[product] = randhash[product] + 1
else:

randhash[product] = 1
lists = sorted(randhash.items())

x, y = zip(*lists)
plt.plot(x, y)

plt.show()

Here is the resultant graph (Fig. 13.4).
FIG. 13.4 The results of the simulation of the Central Limit Theorem (as executed in the Python script central.py), is a

bell-shaped curve.
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Without bludgeoning the point, after performing the simulation, and looking at the

results, the Central Limit Theorem suddenly makes perfect sense to me. The reader can

draw her own conclusion.
Section 13.5. Case Study: Frequency of Unlikely String
of Occurrences

Luck is believing you’re lucky.
Tennessee Williams

Imagine this scenario. A waitress drops a serving tray three times while serving each of

three consecutive customers on the same day. Her boss tells her that she is incompetent,

and indicates that he should fire her on the spot. Thewaitress objects, saying that the other

staff drops trays all the time. Why should she be singled out for punishment simply

because she had the bad luck of dropping three trays in a row. The manager and the wait-

ress review the restaurant’s records and find that there is a 2% drop rate, overall (i.e., a tray

is dropped 2% of the time when serving customers), and that the waitress who dropped

the three trays in one afternoon had had a low drop rate prior to this day’s performance.

She cannot explain why three trays dropped consecutively, but she supposes that if any-

one works the job long enough, the day will come when they drop three consecutive trays.

We can resolve this issue, very easily, with the Python script runs.py, that simulates a

million customer wait services and determines how often we are likely to see a string of

three consecutive dropped trays.

import random, itertools
errorno = 0;

for i in itertools.repeat(None, 1000000): #let's do 1 million table
services

x = int(random.uniform(0,100)) #x any integer from 0 to 99
if (x < 2): #x simulates a 2% error rate

errorno = errorno + 1

else:
errorno = 0

if (errorno == 3):
print("Uh oh. 3 consecutive errors")

errorno = 0

Here is the output from one execution of runs.py

Uh oh. 3 consecutive errors

Uh oh. 3 consecutive errors
Uh oh. 3 consecutive errors
Uh oh. 3 consecutive errors
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Uh oh. 3 consecutive errors
Uh oh. 3 consecutive errors

Uh oh. 3 consecutive errors
Uh oh. 3 consecutive errors

The 11-line Python script simulates 1million table services. Each service is assigned a ran-

dom number between 0 and 100. If the randomly assigned number is less than 2 the sim-

ulation counts as a dropped tray (because the drop rate is 2%). Now we watch to see the

outcome of the next two served trays. If three consecutive trays are dropped, we print out

“Uh oh. 3 consecutive errors”) and we resume our simulations.

In this trial of 1 million table services, using a 2% error rate, the modeled waitress had

eight runs of three consecutive tray drops. Since a million table services might possibly

represent the total number of customers served by a waitress in her entire career, one

can say that she should be allowed at least eight episodes of three consecutive tray drops,

in her lifetime.
Section 13.6. Case Study: The Infamous Birthday Problem

I want to thank you for making this day necessary.
Yogi Berra

Let us use our random number generator to tackle the infamous birthday problem. It may

seem unintuitive, but if you have a room holding 23 people, the odds are about even that

two ormore of the groupwill share the same birth date. The solution of the birthday prob-

lem has become a popular lesson in introductory probability courses. The answer involves

an onerous calculation, involving lots of multiplied values, divided by an enormous

exponential (Fig. 13.5).

If we wanted to know the probability of finding two or more individuals with the same

birthday, in a group of 30 individuals, we could substitute 365 for n and 30 for k, and we

would learn that the odds are about 70%.Or, we could design a simple little program, using

a random number generator, to create an intuitively obvious simulation of the problem.

Here is the Python script, birthday.py, that conducts 10,000 random simulations of the

birthday problem:

import random, itertools
success = 0

for i in itertools.repeat(None, 10000):
FIG. 13.5 Calculating the general solution of the birthday problem. “n” is the number of days in a year. “k” is the

number of people.
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date_hash = {}
for j in itertools.repeat(None, 30):

date = int(random.uniform(1,365))
if date in date_hash:

date_hash[date] = date_hash[date] + 1
else:

date_hash[date] = 1
if (date_hash[date] == 2):

success = success + 1
break

print(str(success / 10000))

Here is the output from six consecutive runs of birthday.py, with 10,000 trials in each run:

0.7076
0.7083

0.7067
0.7101

0.7087
0.7102

The calculated probability is about 70%. The birthday.py script created variables, assign-

ing each variable a birth date selected at random from a range of 1–365 (the number of

days in the year). The script then checked among the 30 assigned variables, to see if

any of them shared the same birthday (i.e., the same randomly assigned number). If

so, then the set of 30 assigned variables was deemed a success. The script repeated this

exercise 10,000 times, incrementing, by one, the number of successes whenever a match

was found in the 30 assignments. At the end of it all, the total number of successes (i.e.,

instances where there is a birthday match in the group of 30) divided by the total number

of simulations (10,000 in this case) provides the likelihood that any given simulation will

find a birthday match. The answer, which happens to be about 70%, is achieved without

the use of any knowledge of probability theory.
Section 13.7. Case Study (Advanced): The Monty Hall Problem

Of course I believe in luck. How otherwise to explain the success of some people you

detest?
Jean Cocteau

This is the legendary Monty Hall problem, named after the host of a televised quiz show,

where contestants faced a similar problem: “The player faces three closed containers, one

containing a prize and two empty. After the player chooses, s/he is shown that one of the

other two containers is empty. The player is now given the option of switching from
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her/his original choice to the other closed container. Should s/he do so? Answer: Switch-

ing will double the chances of winning.”

Marilyn vos Savant, touted by some as the world’s smartest person, correctly solved the

Monty Hall problem in her newspaper column. When she published her solution, she

received thousands of responses, many from mathematicians, disputing her answer.

Basically, this is one of those rare problems that seems to defy common sense.

Personally, whenever I have approached this problem using an analytic approach based

on probability theory, I come up with the wrong answer.

In desperation, I decided to forget everything I thought I knew about probability, in

favor of performing the Monty Hall game, with a 10-line Python script, montyhall.py, that

uses a random number generator to simulate outcomes.

import random, itertools

winner = 0; box_array = [1,2,3]

for i in itertools.repeat(None, 10000):

full_box=int(random.uniform(1,4)) #randomly picks 1,2,or 3 as prize box

guess_box=int(random.uniform(1,4))#represents your guess, for prize box

del box_array[full_box - 1] #prize box deletes itself from array

if guess_box in box_array: #if your first guess is in the remaining array

#(which excludes prize and includes the second

#empty box), then you must have won

#when you chose to switch your choice

winner = winner + 1

box_array = [1,2,3]

print(winner)

Here are the outputs of nine consecutive runs of montyhall.py script:

6710
6596

6657
6698

6653
6684

6661
6607
6674

The script simulates the Monty Hall strategy where the player takes the option of

switching her selection. By taking the switch option, she wins nearly two thirds of the time

(about 6600 wins in 10,000 simulations), twice as often as when the switch option is

declined. The beauty of the resampling approach is that the programmer does not need

to understand why it works. The programmer only needs to know how to use a random

number generator to create an accurate simulation of the Monte Hall problem that can

be repeated thousands and thousands of times.
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How does the Monty Hall problem relate to Big Data? Preliminary outcomes of exper-

imental trials are often so dramatic that the trialists choose to re-design their protocol

mid-trial. For example, a drug or drug combination may have demonstrated sufficient

effectiveness to justify moving control patients into the treated group. Or adverse reac-

tions may necessitate switching patients off a certain trial arm. In either case, the decision

to switch protocols based on mid-trial observations is a Monty Hall scenario.
Section 13.8. Case Study (Advanced): A Bayesian Analysis

It’s hard to detect good luck - it looks so much like something you’ve earned.
Frank A. Clark

The Bayes theorem relates probabilities of events that are conditional upon one another

(Fig. 13.6). Specifically, the probability of A occurring given that B has occurredmultiplied

by the probability that B occurs is equal to the probability of B occurring, given that A has

occurred multiplied by the probability that A occurs. Despite all the hype surrounding

Bayes theorem, it basically indicates the obvious: that if A and B are conditional, then

A won’t occur unless B occurs and B won’t occur unless A occurs.

Bayesian inferences involve computing conditional probabilities, based on having

information about the likelihood of underlying events. For example, the probability of rain

would be increased if it were known that the sky is cloudy. The fundamentals of Bayesian

analysis are deceptively simple. In practice, Bayesian analysis can easily evade the grasp of

intelligent data scientists. By simulating repeated trials, using a random number genera-

tor, some of the toughest Bayesian inferences can be computed in a manner that is easily

understood, without resorting to any statistical methods.

Here is a problem that was previously posed by William Feller, and adapted for resam-

pling statistics by Julian L. Simon [1]. Imagine a world wherein there are two classes of

drivers. One class, the good drivers, comprise 80% of the population, and the likelihood

that a member of this class will crash his car is 0.06 per year. The other class, the bad

drivers, comprise 20% of the population, and the likelihood that a member of this class

will crash his car is 0.6 per year. An insurance company charges clients $100 times the

likelihood of having an accident, as expressed as a percentage. Hence, a member of the

good driver class would pay $600 per year; a member of the bad driver class would pay

$6000 per year. The question is: If nothing is known about a driver other than that he had

an accident in the prior year, then what should he be charged for his annual car insur-

ance payment?

The Python script, bayes.py, calculates the insurance cost, based on 10,000 trial

simulations:
FIG. 13.6 Bayes’ theorem relating probabilities of event that are conditional upon one another.



298 PRINCIPLES AND PRACTICE OF BIG DATA
import random, itertools

accidents_next_year = 0

no_accidents_next_year = 0

for i in itertools.repeat(None, 10000):

group_likelihood = random.uniform(0,1)

if (group_likelihood<0.2): #puts trial in poor-judgment group

bad_likelihood=random.uniform(0,1) #roll the dice to see if accident occurs

if (bad_likelihood<0.6): #an accident occurred, simulating an initial

#condition of poor-judgment with accident

next_bad_likelihood = random.uniform(0,1)

if (next_bad_likelihood < 0.6):

accidents_next_year = accidents_next_year + 1

else:

no_accidents_next_year = no_accidents_next_year + 1

else: #othwerwise we bump the trial into the good-judgment group

bad_likelihood=random.uniform(0,1) #simulates an accident accident

if (bad_likelihood < 0.06): #an accident with good-judgment

next_bad_likelihood = random.uniform(0,1)

if (next_bad_likelihood < 0.06):

accidents_next_year = accidents_next_year + 1

else:

no_accidents_next_year = no_accidents_next_year + 1

cost=int(((accidents_next_year)/(accidents_next_year+no_accidents_next_year)

*100*100))

print("Insurance cost is $" + str(cost))

outputs of 7 executions of bayes.py script:

Insurance cost is 4352

Insurance cost is 4487

Insurance cost is 4406

Insurance cost is 4552

Insurance cost is 4454

Insurance cost is 4583

Insurance cost is 4471

In all eight executions of the script, each having 10,000 trials, we find that the insurance

cost, based on initial conditions, should be about $4500.
What does our bayes.py do? First, it creates a loop for 10,000 trial simulations. Within

each simulation, it begins by choosing a random number between 0 and 1. If the random

number is less than 0.2, then this simulates an encounter with amember of the bad-driver

class (i.e., the bottom 20% of the population). In this case the random number generator

produces another number between 0 and 1. If this number is less than 0.6 (the annual like-

lihood of a bad driver having an accident), then this would be simulate a member of the

bad-driver class who had an accident and who is applying for car insurance. Now, we run
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the random number generator one more time, to simulate whether the bad driver will

have an accident during the insurance year. If the generated random number is less than

0.6, we will consider this a simulation of a bad-driver, who had an accident prior to asking

for applying for car insurance, having an accident in the subsequent year. We will do the

same for the simulations that apply to the good drivers (i.e., the trials for which our group

likelihood randomnumber was greater than 0.2). After the simulations have looped 10,000

times, all that remains is to use our tallies to calculate the likelihood of an accident, which

in turn gives us the insurance cost. In this example, as in all our other examples, we really

did not need to know any statistics. We only needed to know the conditions of the prob-

lem, and how to simulate those conditions as Monte Carlo trials.
Glossary
Blended class Also known as class noise. Blended class refers to inaccuracies (e.g., misleading results)

introduced in the analysis of data due to errors in class assignments (e.g., inaccurate diagnosis). If

you are testing the effectiveness of an antibiotic on a class of people with bacterial pneumonia, the

accuracy of your results will be forfeit when your study population includes subjects with viral pneu-

monia, or smoking-related lung damage. Errors induced by blending classes are often overlooked by

data analysts who incorrectly assume that the experiment was designed to ensure that each data group

is composed of a uniform and representative population. A common source of class blending occurs

when the classification upon which the experiment is designed is itself blended. For example, imagine

that you are a cancer researcher and you want to perform a study of patients with malignant fibrous

histiocytomas (MFH), comparing the clinical course of these patients with the clinical course of

patients who have other types of tumors. Let us imagine that the class of tumors known as MFH does

not actually exist; that it is a grab-bag term erroneously assigned to a variety of other tumors that hap-

pened to look similar to one another. This being the case, it would be impossible to produce any valid

results based on a study of patients diagnosed as MFH. The results would be a biased and irreproduc-

ible cacophony of data collected across different, and undetermined, classes tumors. Believe it or not,

this specific example, of the blendedMFHclass of tumors, is selected from the real-life annals of tumor

biology [18–20]. The literature is rife with research of dubious quality, based on poorly designed clas-

sifications and blended classes. One caveat; efforts to reduce class blending can be counterproductive

if undertaken with excess zeal. For example, in an effort to reduce class blending, a researcher may

choose groups of subjects who are uniform with respect to every known observable property. For

example, suppose you want to actually compare apples with oranges. To avoid class blending, you

might want to make very sure that your apples do not included any cumquats, or persimmons. You

should be certain that your oranges do not include any limes or grapefruits. Imagine that you go even

further, choosing only apples and oranges of one variety (e.g., Macintosh apples and Navel oranges),

size (e.g., 10cm), and origin (e.g., California). How will your comparisons apply to the varieties of

apples and oranges that you have excluded from your study? You may actually reach conclusions that

are invalid and irreproducible for more generalized populations within each class. In this case, you

have succeeded in eliminated class blending at the expense of having representative populations of

the classes.

Curse of dimensionality As the number of attributes for a data object increases, the distance between

data objects grows to enormous size. The multidimensional space becomes sparsely populated,

and the distance between any two objects, even the two closest neighbors, becomes absurdly large.

When you have thousands of dimensions, the space that holds the objects is so large that distances

between objects become difficult or impossible to compute, and computational products becomeuse-

less for most purposes.
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Heuristic technique A way to solve problems with inexact but quick methods, sufficient for most prac-

tical purposes.

Modified random sampling Whenwe think of random sampling, we envision a simple, unbiased random

selection from all the data objects within a collection. Consider a population of 7 billion people, where

the number of individuals aged 60 and above account for 75% of the population. A random sampling of

this population would be skewed to select senior citizens, andmight yield very few children in kinder-

garten. Depending on the study, the data analyst may want to change the sampling rules to attain a

random sampling that produces a population that fits the study goals. In this example the population

might be partitioned into age groups (by decade), with an individual in any partitioned group having

the same chance of being randomly selected as an individual in any other partitioned age group.

There aremany differentways inwhich the rules of random sampling can bemodified to accommodate an

analytic approach [21]. Here are a few:

– Event-based sampling, in which data are collected only at specific moments, when the data being

received meet particular criteria or exceed a preset threshold

– Adaptive random sampling, in which the rules for selection are determined by prior observations on the

selected samples

–Attribute-based sampling, inwhich the probability of selection is weighted by a feature attribute of a data

object

Of course, when we introduce amodification to the simple process of random selection, we risk introduc-

ing new and unexpected biases and confounders, and we open ourselves to criticism and the possi-

bility that our conclusions cannot be repeated in other populations. It is another of those damned if

you do and damned if you don’t scenarios that we can expect in nearly every Big Data analysis.

Permutation test A method whereby the null hypothesis is accepted or rejected after testing all possible

outcomes under rearrangements of the observed data elements.

Power In statistics, power describes the likelihood that a test will detect an effect, if the effect actually

exists. In many cases, power reflects sample size. The larger the sample size, the more likely that

an experiment will detect a true effect; thus correctly rejecting the null hypothesis.

Principal component analysis One popular methods for transforming data to reduce the dimensionality

of data objects is multidimensional scaling, which employs principal component analysis [22]. With-

out going into themathematics, principal component analysis takes a list of parameters and reduces it

to a smaller list, with each component of the smaller list constructed from variables in the longer list

(as a sum of variables multiplied by weighted coefficients). Furthermore, principal component anal-

ysis provides an indication of which variables are least correlated with the other variables (as deter-

mined by the size of the coefficients). Principal component analysis requires operations on large

matrices. Such operations are computationally intensive and can easily exceed the capacity of most

computers [22].

Pseudorandom number generator It is impossible for computers to produce an endless collection of

truly random numbers. Eventually, algorithms will cycle through their available variations and begins

to repeat themselves, producing the same set of “random” numbers, in the same order; a phenomenon

referred to as the generator’s period. Because algorithms that produce seemingly random numbers are

imperfect, they are known as pseudorandom number generators. The Mersenne Twister algorithm,

which has an extremely long period, is used as the default random number generator in Python. This

algorithm performs well on most of the tests that mathematicians have devised to test randomness.

Resampling statistics A technique whereby a sampling of observations is artifactually expanded by ran-

domly selecting observations and adding them to the original data set; or by creating new sets of data

by randomly selecting, without removing, data elements from the original data.

Resampling versus Repeated Sampling In resampling statistics, a limited number of datameasurements

is expanded by randomly selecting data and adding them back to the original data. In Big Data, there

are so many data points that statistical tools cannot quickly evaluate them. Repeated sampling
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involves randomly selecting subpopulations of enormous data sets, over and over again, and perform-

ing statistical evaluations on these multiple samplings, to arrive at some reasonable estimate of the

behavior of the entire set of data. Although random sampling is involved in resampling statistics

and repeated sampling statistics, the latter does not resample the same data points.

Sample size The number of samples used in a study. Methods are available for calculating the required

sample size to rule out the null hypothesis, when an effect is present at a specified significance level, in

a population with a known population mean, and a known standard deviation [23]. The sample size

formula should not be confused with the sampling theorem,which deals with the rate of sampling that

would be required to adequately digitize an analog (e.g., physical or electromagnetic) signal.

Sampling theorem A foundational principle of digital signal processing, also known as the Shannon sam-

pling theorem or the Nyquist sampling theorem. The theorem states that a continuous signal can be

properly sampled, only if it does not contain components with frequencies exceeding one-half of the

sampling rate. For example, if you want to sample at a rate of 4000 samples per second, you would

prefer a signal containing no frequencies greater than 2000 cycles per second.
References
[1] Simon JL. Resampling: the new statistics. 2nd ed., 1997. Available at: http://www.resample.com/

intro-text-online/ [viewed September 21, 2015].

[2] Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton: CRC Press; 1998.

[3] Diaconis P, Efron B. Computer-intensive methods in statistics. Sci Am 1983;116–30.

[4] Anderson HL. Metropolis, Monte Carlo and the MANIAC. Los Alamos Sci 1986;14:96–108.

[5] Berman JJ. Biomedical informatics. Sudbury, MA: Jones and Bartlett; 2007.

[6] Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag March
2008;21:.

[7] Berman JJ. Methods in medical informatics: fundamentals of healthcare programming in Perl,
Python, and Ruby. Boca Raton: Chapman and Hall; 2010.

[8] Berman JJ. Data simplification: taming information with open source tools. Waltham, MA: Morgan
Kaufmann; 2016.

[9] Van Heel M. A fast algorithm for transposing large multidimensional image data sets.
Ultramicroscopy 1991;38:75–83.

[10] Cipra BA. The best of the 20th century: editors name top 10 algorithms. SIAM News May 2000;33(4).

[11] Berman JJ, Moore GW. The role of cell death in the growth of preneoplastic lesions: a Monte Carlo
simulation model. Cell Prolif 1992;25:549–57.

[12] Berman JJ, Moore GW. Spontaneous regression of residual tumor burden: prediction by Monte Carlo
Simulation. Anal Cell Pathol 1992;4:359–68.

[13] Elias H, Sherrick JC. Morphology of the liver. Cambridge, MA: Academic Press; 1969.

[14] Berman JJ. Neoplasms: principles of development and diversity. Sudbury: Jones & Bartlett; 2009.

[15] Moore GW, Berman JJ. Cell growth simulations that predict polyclonal origins for ‘monoclonal’
tumors. Cancer Lett 1991;60:113–9.

[16] Berman JJ, Albores-Saavedra J, Bostwick D, Delellis R, Eble J, Hamilton SR, et al. Precancer: a concep-
tual working definition results of a consensus conference. Cancer Detect Prev 2006;30(5):387–94.

[17] Berman JJ. Precancer: the beginning and the end of cancer. Sudbury: Jones and Bartlett; 2010.

[18] Al-Agha OM, Igbokwe AA. Malignant fibrous histiocytoma: between the past and the present. Arch
Pathol Lab Med 2008;132:1030–5.

http://www.resample.com/intro-text-online/
http://www.resample.com/intro-text-online/
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0015
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0020
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0025
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0030
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0035
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0035
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0040
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0040
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0045
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0045
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0050
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0050
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0055
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0060
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0060
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0065
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0065
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0070
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0075
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0080
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0080
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0085
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0085
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0090
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0095
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0095


302 PRINCIPLES AND PRACTICE OF BIG DATA
[19] Nakayama R, Nemoto T, Takahashi H, Ohta T, Kawai A, Seki K, et al. Gene expression analysis of soft
tissue sarcomas: characterization and reclassification ofmalignant fibrous histiocytoma. Mod Pathol
2007;20:749–59.

[20] Daugaard S. Current soft-tissue sarcoma classifications. Eur J Cancer 2004;40:543–8.

[21] National Research Council. Frontiers in massive data analysis. Washington, DC: The National Acad-
emies Press; 2013.

[22] Janert PK. Data analysis with open source tools. O’Reilly Media; 2010.

[23] How to determine sample size, determining sample size. Available at: http://www.isixsigma.com/
tools-templates/sampling-data/how-determine-sample-size-determining-sample-size/ [viewed
July 8, 2015].

http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0100
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0100
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0100
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0105
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0110
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0110
http://refhub.elsevier.com/B978-0-12-815609-4.00013-3/rf0115
http://www.isixsigma.com/tools-templates/sampling-data/how-determine-sample-size-determining-sample-size/
http://www.isixsigma.com/tools-templates/sampling-data/how-determine-sample-size-determining-sample-size/


14
Special Considerations in Big Data
Analysis
OUTLINE
Section 14.1. Theory in Search of Data........................................................................................ 303

Section 14.2. Data in Search of Theory........................................................................................ 304

Section 14.3. Bigness Biases ......................................................................................................... 305

Section 14.4. Data Subsets in Big Data: Neither Additive Nor Transitive ................................. 310

Section 14.5. Additional Big Data Pitfalls .................................................................................... 311

Section 14.6. Case Study (Advanced): Curse of Dimensionality................................................. 314

Glossary ......................................................................................................................................... 316

References ..................................................................................................................................... 318

Section 14.1. Theory in Search of Data

If triangles had a god, they would give him three sides.
Voltaire

Here is a riddle: “Which came first, the data, or the data analyst?” The intuitive answer

would be that data precedes the data analyst. Without data, there really is no reason

for the data analyst to exist. In the Big Data universe nothing is as it seems, and the data

analyst commonly precedes the data. All too often the analyst develops a question or a

hypothesis or a notion of what the facts “should be,” and then goes about rummaging

through the Big Data resource until he or she has created a data set that proves the point.

Several intrinsic flaws plagueBigData statistics.When the amount of data is sufficiently

large, you can find almost anything you seek lurking somewherewithin. Such findingsmay

have statistical significance without having any practical significance. Also, whenever you

select a subset of data from an enormous collection, you may have no way of knowing the

relevance of the data that you excluded. Most importantly, Big Data resources cannot be

designed to examine every conceivable hypothesis. Many types of analytic errors ensue

when a Big Data resource is forced to respond to questions that it cannot possibly answer.

The purpose of this chapter is to provide general recommendations for the responsible use

of analytic methods, while avoiding some of the pitfalls in Big Data analysis.

We cannot escape the dangerous practice of imposing models on selected sets of data.

Historians, who have the whole of human history to study, are just as guilty as technical

data analysts in this regard. Consider this hypothetical example: theUnited States is on the
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00014-5
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brink of a military intervention against entrenched and hostile revolutionaries on the

other side of the globe. Two historians are asked to analyze the situation and render their

opinions. The first historian compares the current crisis to the entrance of the United

States into World War II. World War II worked out well for the United States. The first his-

torian insists that WorldWar II is a useful model for today’s emergency and that we should

engage our military against the current threat. The second historian says that the current

crisis is very much like the crisis that preceded the VietnamWar. The VietnamWar did not

turn out well for United States interests, and it would be best if we avoided direct military

involvement in the current emergency.When you have all of history fromwhich to choose,

you can select any set of data that supports your biases. As humans, we do this all the time,

whenever we make decisions.

Scientists have accused their peers of developingmodels for the purpose of reinforcing

belief in their own favorite paradigms [1]. BigData will not help advance science if analysts

preferentially draw data to support their previously held biases. One of the important tasks

for Big Data analysts will involve developing methods for creating unbiased models from

Big Data. In the meantime, there is no practical way to validate conclusions drawn from

Big Data, other than to test the hypothesis on additional data sets.
Section 14.2. Data in Search of Theory

Without highly specified a-priori hypotheses, there are hundreds of ways to analyse

the dullest data set.
John P A Ioannidis [2]

In the prior section the point was made that data analysts can abuse Big Data if data is

selected to confirm a hypothesis. In this section the point is made that scientists must

enter their analysis with amodel theory; otherwise theywill choose a hypothesis to fit their

data, even if the hypothesis makes no sense. [Glossary Multiple comparisons bias]

Here is a good example. Suppose I am at a shooting range and shoot ten shots at a bull’s

eye target. I can measure the distance of each bullet from the center of the target, from

which I would develop some type of score with which I could compare mymarksmanship

against that of others. Now, imagine shooting ten shots at a wall that has no target. I may

find that six of the bullets clustered very close together. I could then superimpose the bul-

let holes with a bull’s eye target, placing the center of the target over the center of the tight

clusters of bullet holes. A statistician analyzing the datamight find that the six tightly clus-

tered bullet holes at the center of the bull’s eye indicated that I scored very well and that it

was highly likely that I had better aim than others (who had actually aimed at the target).

Scientists who troll large data sets will always find clusters of data upon which they can

hang a bull’s eye. Statisticians provided with such data can be tricked into confirming a

ridiculous hypothesis that was contrived to fit the data. This deceptive practice is referred

to as moving the target to the bullet hole.

Big Data analysts walk a thin line. If they start their project with a preconceived theory,

then they run the risk of choosing a data set that confirms their bias. If they start their
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project without a theory, then they run the risk of favoring a false hypothesis that happens

to fit their data. [Glossary Type errors]

Is there a correct approach to Big Data analysis? It is important to remember that a sci-

entific theory is a plausible explanation of observations. Theories are always based on

some set of pre-existing principles that are generally accepted as truth. When a scientist

approaches a large set of data, he or she asks whether a set of commonly held principles

will extend to the observations in the current set of data. Reconciling what is known with

what is observed accounts for much of the activity of scientists.

For Big Data projects, holding an a prior theory or model is almost always necessary;

otherwise, the scientist is overwhelmed by the options. Adequate analysis can be ensured

if three conditions are met:

1. All of the available data is examined, or a subset is prepared from a random sampling

(i.e., no cherry-picking data to fit the theory).

2. The analyst must be willing to modify or abandon the theory, if it does not fit the data.

3. The analyst must not believe that fitting the theory to the data validates the theory.

Theories must be tested against multiple sets of data.

4. The analyst must accept that the theorymay bewrong, even if it is validated. Validation

is not proof that a theory is correct. It is proof that the theory is consistent with all of the

observed data. A better theory may also be consistent with the observed data and may

provide a true explanation of the observations.

One of the greatest errors of Big Data analysts is to believe that datamodels are tethered to

reality; they seldom are. Models are made to express data sets as formulas or as a system

that operates under a set of rules. When the data are numeric representations of physical

phenomenon, it may sometimes be possible to link themodel to a physical law. For exam-

ple, repeated measurements of force, mass, and acceleration observed on moving bodies

might produce a formula that applies consistently, at any time, any place, and with any

object (i.e., f ¼ ma). Most mathematical models are abstract, and cannot be ranked as

physical laws. At best, they provide a quick glimpse of an ephemeral reality.
Section 14.3. Bigness Biases

Every increased possession loads us with new weariness.
John Ruskin

Because Big Data methods use enormous sets of data, there is a tendency to give the

results more credence than would be given to a set of results produced from a small

set of data. This is almost always a mistaken belief. In fact, Big Data is seldom a complete

or accurate data collection. You can expect most Big Data resources to be selective, inten-

tionally or not, for the data that is included and excluded from the resource. When dealing

with Big Data, expect missing values, missing records, “noisy” data, huge variations in the

quality of records, plus any and all of the inadequacies found in small data resources.
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Nevertheless, the belief that Big Data is somehow more reliable, and more useful than

smaller data is pervasive in the science community.

When a study is done on a very large number of human subjects (or with a very large

number of samples), each annotated with a large number of observations, there is a ten-

dency to accept the results, even when the results defy intuition. In 2007, a study using the

enormous patient data set held by the U.S. Veterans Administration Medical Centers

reported that the use of statins reduced the risk of developing lung cancer by about half

[3]. The study, which involved nearly half a million patients, showed that the reduction in

cancer risk held whether patients were smokers or non-smokers. The highest reduction in

lung cancers (77%) occurred in people who had taken statins for four years or longer [3].

The potential importance of this study cannot be overestimated. Lung cancer is the

most common cause of cancer deaths in the United States. A 77% reduction in lung cancer

incidence would prevent the cancer deaths of about 123,000 U.S. residents each year. This

number is equivalent to the total number of cancer deaths attributed each year to prostate

cancer, breast cancer and colon cancer combined [4]!

As it happens these marvelous findings were as unintuitive as they were exciting. Sta-

tins are a widely used drugs that reduce the blood levels of cholesterol and various other

blood lipids. There is absolutely nothing known about the biology of statins that would

lead anyone to suspect that this drug would lower the incidence of lung cancer, or any

other cancer, for that matter. It is always risky to accept a scientific conclusion without

some sort of biological mechanism to explain the results.

In 2011, a second study, by another group of researchers, was published on the effect of

statins on lung cancer incidence. This study was also big, using about 133,000 patients.

The results failed to show any effect of statins on lung cancer incidence [5]. That same

year, a third study, using a population of about 365,000 people, also failed to find any influ-

ence of statins on the incidence of lung cancer [6]. The authors of the negative studies

blamed time-window bias on the misleading results of the first study.

To understand time-window bias, consider the undisputed observation that Nobel

prize laureates live longer than other scientists. It would seem that scientists who want

to live a long life should try their utmost to win a Nobel prize. Likewise, Popes live longer

than other clergymen. If you are a priest, and you want to live long, aim for the Papacy.

Both these biases are based on time-window conditions. The Nobel prize committee typ-

ically waits decades to determine whether a scientific work is worthy of the Nobel prize,

and the prize is only awarded to living scientists. Would-be Nobelists who die before their

scientific career begins, and accomplished scientists who die before their works are

deemed Nobel-worthy, are omitted from the population of potential winners. Similarly,

the Vatican seldom confers the Papacy on its junior clergy. The time-window surrounding

Nobel winners and Popes skews their observed longevities upwards. Time-window bias is

just one of a general class of biases wherein studies are invalidated by the pre-conditions

imposed on the studies [7]. [Glossary Time-window bias]

Time-windowbias affected the original large patient-based study because a population

that had taken a statin for four years, without dying in the interim, was compared to a
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general population. Basically, the study imposed a cancer-free 4-year window for the trea-

ted population, artifactually conferring a lower cancer incidence on the statin-

treated group.

The point here is simply that analytic errors occur just as easily in studies of large popu-

lations as they do in studies involving a small number of individuals. Because Big Data

analysis tends to be complex, and difficult for anyone to thoroughly review, the chances

of introducing Big Data errors is larger than the chances of introducing small data errors.

In the late 1990s, interest was growing in the medical research community and in bio-

markers for cancers. It was believed then, as it is believed now, that the different types of

cancers must contain biological markers to tell us everything we need to know about their

clinical behaviors. Such biomarkers would be used to establish the presence of a cancer,

the precise diagnosis of the cancer, the stage of the cancer (i.e., the size and the extent of

spread of the cancer), and to predict the response of the cancer to any type of treatment.

By the turn of the century, there was a sense that useful cancer biomarkers were not forth-

coming; the pipeline for new biomarkers had apparently dried up [8–11]. What was the

problem? A gnawing suspicion held that biomarkers failed because we weren’t collecting

enough data. A consensus had grown that we were wasting cancer research funds on

small-scale studies that were irreproducible. What we needed, or so everyone thought,

were Big Data studies, producing lots of data, yielding trustworthy results based on many

observations. If researchers abandoned their small studies, in favor of large studies, then

the field would surely move forward at a rapid pace.

In the past two decades, biomarker studies have seen enormous successes. Surpris-

ingly, though, much of the recent progress has come from relatively small genomic stud-

ies, on very rare cancers, with limited numbers of specimens [2,12–14]. Why has Big Data

not yielded the kind of progress that nearly everyone expected?

When a new potential biomarker is discovered using large and complex sets of data and

advanced analytic tools, it needs to be validated; and validation involves repeating the

original study, and drawing the same set of conclusions [15,16]. As a general rule the more

complex the experiment, the data, and the analysis, the less likely that it can be repro-

duced. In addition to these basic limitations on conclusions drawn fromBigData, wemust

remember that it can be very difficult to analyze systems whose complexity exceeds our

comprehension. We assume, quite incorrectly, that given sufficient data, we can under-

stand complex systems. There is nothing to support this kind of self-confidence. Biological

systems are highly complex, and we do not, at this time, have a deep understanding of

their workings. For that matter, we have very little understanding of the kinds of data that

ought to be collected. We are slowly learning that it seldom helps to throw Big Data at a

problem, before we have a thorough understanding of what we need to find. In the case of

cancer biomarkers, it was much easier to find the key mutations that accounted for rare

tumors than it was to find common biomarkers in a general population [12,13].

Still unconvinced that Bigness bias is a real concern for Big Data studies? In the United

States, our knowledge of the causes of death in the population is based on death certificate

data collected by the Vital Statistics Program of the National Center for Health Statistics.
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Death certificate data is notoriously faulty [17–19]. In most cases, the data in death cer-

tificates is supplied by clinicians, at or near the time of the patient’s death, without benefit

of autopsy results. In many cases, the clinicians who fill out the death certificate are not

well trained for the task, often mistaking the mode of death (e.g., cardiac arrest, cardio-

pulmonary arrest), with cause of death (e.g., the disease process leading to cardiac arrest

or cardiopulmonary arrest), thus nullifying the intended purpose of the death certificate.

Thousands of instructional pages have been written on the proper way to complete a

death certificate. Nonetheless, these certificates are seldom completed in a consistent

manner. Clinicians become confused when there aremultiple, sometimes unrelated, con-

ditions that contribute to the patient’s death. Though the death certificates are standard-

ized throughout the United States, there are wide variations from state to state in the level

of detail provided on the forms [20]. Despite all this the venerable death certificate is the

bedrock of vital statistics. What we know, or think we know, about the causes of death in

the United States population, is based on an enormous repository, collected since 1935, of

many millions of death certificates.

Why do we believe death certificate data when we know that death certificates are

highly flawed? Again, it is the bigness factor that prevails. There seems to be a belief, based

on nothing but wishful thinking, that if you have a very large data set, bad measurements

will cancel themselves out, leaving a final result that comes close to a fair representation of

reality. For example, if a clinician forgets to list a particular condition as a cause of death,

another physician will mistakenly include the condition on another death certificate, thus

rectifying the error.

The cancel-out hypothesis puts forward the delightful idea that whenever you have

huge amounts of data, systemic errors cancel out in the long run, yielding conclusions that

are accurate. Sadly, there is neither evidence nor serious theory to support this hypothesis.

If you think about it, you will see that it makes no sense. One of the most flagrant weak-

nesses is the fact that it is impossible to balance something that must always be positive.

Every death certificate contains a cause of death. You cannot balance a false positive cause

of death with a false negative cause of death (i.e., there is no such thing as a negative cause

of death). The same applies to numeric databases. An incorrect entry for 5000 pairs of

shoes cannot be balanced by a separate incorrect entry for negative 5000 pairs of shoes;

there is no such thing as a negative shoe. [Glossary Negative study bias]

Perhaps the most prevalent type of bigness bias relates to the misplaced faith that

complete data is representative data. Certainly, youmight think that if a Big Data resource

contains every measurement for a data domain, then biases imposed by insufficient sam-

pling are eliminated. Danah Boyd, a social media researcher, draws a sharp distinction

between Big-ness and Whole-ness [21]. She gives the example of a scientist who is explor-

ing a huge data set of tweets collected by Twitter. If Twitter removes tweets containing

expletives, or tweets composed of non-word character strings, or containing certain types

of private information, then the resulting data set, no matter how large it may be, is not

representative of the population of senders. If the tweets are available as a stripped-down

set of messages, without any identifier for senders, then the compulsive tweeters (those
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who send hundreds or thousands of tweets) will be over-represented, and the one-time

tweeters will be under-represented. If each tweet were associated with an account and

all the tweets from a single account were collected as a unique record, then there would

still be the problem created by tweeters who maintain multiple accounts. Basically, when

you have a Big Data resource, the issue of sample representation does not disappear; it

becomes more complex and less controlled. For Big Data resources lacking introspection

and identifiers, data representation becomes an intractable problem.

– Too Much Data

Intuitively, youmight think that themoredatawehave atourdisposal, themorewecan learn

about the system that we are studying. This is not always the case. There are circumstances

whenmore data simply takes you further and further from the solution you seek. As a trivial

example, consider the perennial task of finding a needle in a haystack. As you addmore hay,

you make the problem harder to solve. You would be much better off if the haystack were

small, consisting of a single straw, behind which lies your sought-after needle [22].

In the field of molecular biology the acquisition of whole genome sequencing onmany

individual organisms, representing hundreds of different species, has brought a flood of

data, but many of the most fundamental questions cannot be answered when the data is

complex andmassive. Evolutionary biologists have invented a new term for a certain type

of sequence data: “non-phylogenetic signal.” The term applies to DNA sequences that

cannot yield any useful conclusions related to the classification of an organism, or its evo-

lutionary relationships to other organisms.

Evolutionary geneticists draw conclusions by comparing DNA sequences in organism,

looking for similar, homologous regions (i.e., sequences that were inherited from a

common ancestor). Because DNAmutations arise stochastically over time (i.e., at random

locations in the gene, and at random times), unrelated organisms may attain the same

sequence in a chosen stretch of DNA, without inheritance through a common ancestor.

Such occurrences could lead to false inferences about the relatedness of different organ-

isms. When mathematical phylogeneticists began modeling inferences for gene data sets,

they assumed that most class assignment errors would be restricted to a narrow range of

situations. This turned out not to be the case. In practice, errors due to non-phylogenetic

signal occur due to just about any mechanism that causes DNA to change over time (e.g.,

random mutations, adaptive convergence) [23,24]. At the moment, there seems to be an

excess of genetic information. The practical solution seems to involve moving away from

purely automated data analyses and using a step-by-step approach involving human

expertswho take into account independently acquired knowledge concerning the relation-

ships among organisms and their genes.

– Overfitting

Overfitting occurs when a formula describes a set of data very closely, but does not predict

the behavior of comparable data sets. In overfitting, the formula is said to describe the

noise of the system, rather than the characteristic behavior of the system. Overfitting
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commonly occurs with models that perform iterative approximations on training data.

Neural networks are an example of a data modeling strategy that is prone to overfitting.

In general, the bigger the data set, the easier it is to overfit the model.

Overfitting is discovered by testing your predictor or model on one or several new sets

of data [25]. If the data is overfitted the model will fail with the new data. It can be heart-

breaking to spend months or years developing a model that works like a charm for your

training data and for your first set of test data (collected from the same data set as your

training data), but fails completely for a new set of data.

Overfitting can sometimes be avoided by evaluating themodel before it has been fitted

to a mathematical formula, often during the data reduction stage. There are a variety of

techniques that will produce a complex formula fitted to all your variables. It might be

better to select just a few variables from your data that you think are most relevant to

the model. You might try a few mathematical relationships that seem to describe the data

plotted for the subset of variables. A formula built from an intuitive understanding of the

relationships among variables may sometimes serve much better than a formula built to

fit a multi-dimensional data set. [Glossary Data reduction]
Section 14.4. Data Subsets in Big Data: Neither Additive Nor
Transitive

If you’re told that a room has 3 people inside, and you count 5 people exiting the

room, a mathematician would feel compelled to send in 2 people to empty it out.
Anon

It is often assumed that Big Data has one enormous advantage over small data: that sets of

Big Data can be merged to create large populations that reinforce or validate conclusions

drawn from small studies. This assumption is simply incorrect. In point of fact, it is pos-

sible to draw the same conclusion from two sets of data, only to draw an opposite con-

clusion when the two sets of data are combined. This phenomenon, well known to

statisticians as Simpson’s paradox, has particular significance when Big Data resources

combine observations collected from multiple populations.

One of the most famous examples of Simpson’s paradox was demonstrated in the 1973

Berkeley gender bias study [26]. A preliminary review of admissions data indicated that

women had a lower admissions rate than men:

Men Number of applicants.. 8,442 Percent applicants admitted.. 44%
Women Number of applicants.. 4,321 Percent applicants admitted.. 35%

A nearly 10% lower overall admission rate for women, compared with men, seemed

significant, but what did it mean? Was the admissions office guilty of gender bias?

A look at admissions department-by-department (in distinction to admissions for the

total number of applicants to the university, by gender) showed a very different story.

Women were being admitted at higher rates than men, in almost every department.
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The department-by-department data seemed incompatible with the data obtained when

the admissions from all the departments were combined.

The explanation was simple.Women tended to apply to themost popular and oversub-

scribed departments, such as English and History, that had a high rate of admission

denials. Men tended to apply to departments that the women of 1973 avoided, such as

mathematics, engineering, and physics, that had high relatively few applicants and high

acceptance rates. Though women had an equal footing with men in departmental admis-

sions, the high rate of rejections in the large departments, accounted for an overall lower

acceptance rate for women at Berkeley.

Simpson’s paradox demonstrates that data is not additive. It also shows us that data is

not transitive; you cannot make inferences based on subset comparisons. For example in

randomized drug trials, you cannot assume that if drug A tests better than drug B, and drug

B tests better than drug C, then drug A will test better than drug C [27]. When drugs

are tested, even in well-designed trials, the test populations are drawn from a general pop-

ulation specific for the trial. When you compare results from different trials, you can never

be sure whether the different sets of subjects are comparable. Each set may contain indi-

viduals whose responses to a third drug are unpredictable. Transitive inferences (i.e., if A is

better than B, and B is better than C, then A is better than C), are unreliable.

Simpson’s paradox has particular significance for Big Data research, wherein data sam-

ples are variously recombined and reanalyzed at different stages of the analytic process.
Section 14.5. Additional Big Data Pitfalls

Any problem in Computer Science can be solved with another level of indirection.
Butler Lampson
...except the problem of indirection complexity.

Bob Morgan

There is a large literature devoted to the pitfalls of data analysis. It would seem that all of

the errors associated with small data analysis will apply to Big Data analysis. There are,

however, a collection of Big Data errors that do not apply to small data, such as:

– The misguided belief that Big Data is good data

For decades, it was common for scientists to blame their failures on the paucity of their

data. You would often here, at public meetings and in private, statements such as “It was a

small study, using just a few samples and limited number of measurements on each sam-

ple.We really should not generalize at themoment. Let us wait for a definitive study based

on a large group of samples.”

There has always been the sense, based on nothing in particular, that a small study can-

not be validated by another small study. A small study must be validated by a big study.
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Anyone who has ever worked on a project that collects large, complex, quickly streaming

data knows that such efforts are much more prone to systemic flaws in data collection

than are smaller projects. In Section 16.1, “First Analysis (Nearly) Always Wrong,” we will

see why conclusions drawn from Big Data are notoriously misleading.

Big Data comes from many different sources, produced by many different protocols,

and must undergo a series of tricky normalizations, transformation, and annotations,

before it has any value whatsoever. Data analysts can never assume that Big Data is accu-

rate. Competent analysts will always validate their conclusions based on alternate, inde-

pendently collected data; big or small.

– Blending bias

If you are studying the properties of a class of records (e.g., records of individuals with a

specific disease or data collected on a particular species of fish), then any analysis of the

data, no matter how large the data set, will be biased if your class assignments are erro-

neous (e.g., if the disease wasmisdiagnosed, or if youmistakenly included other species of

fish in your collection). Classifications can be deeply flawed when individual classes are

poorly defined, or not based on a well-understood set of scientific principles, or are

assembled through the use of poor analytic techniques.

Let us look at one example in some depth. Suppose you are a physician living in South-

ern Italy, in the year 1640, where people are dying in great number, from amysterious dis-

ease characterized by recurring fevers, delirium, and pain. You are approached by an

explorer who has just returned from a voyage to South America, in an area corresponding

to modern-day Brazil. He holds a bag containing an herbal extract, and says “Give this to

your patients, and they will quickly recover.”

Ithappensthatthedrug isextractedfromthebarkof theCinchonatree. It isasure-firecure

for malaria. Unknown to you, many of your patients are suffering frommalaria, and would

benefit greatly from this miraculous drug. Nonetheless, you are skeptical and would like to

test this newdrug before subjecting your patients to any unanticipated horrors. Though you

are not a statistician, you do know something about designing clinical trials. In short order,

you collect 100 patients, all of whom have the symptoms of fever and delirium. You admin-

ister thecinchonapowder, alsoknownasquinine, toall thepatients. A few improve, butmost

donot. Knowing that somepatients recoverwithout anymedical assistance, youcall the trial

a wash-out. In the end, you decide not to administer quinine to your patients.

What happened? We know that quinine arrived as a miracle cure for malaria. It should

have been effective in a population of 100 malarial patients. The problem with this hypo-

thetical clinical trial is that the patients under studywere assembled based on theirmutual

symptoms: fever and delirium. These same symptoms could have been accounted for by

any of hundreds of other diseases that were prevalent in England at the time. The criterion

employed at the time to classify diseases was imprecise, and the trial population was

diluted with non-malarial patients who were guaranteed to be non-responders. Conse-

quently, the trial failed, and youmissed a golden opportunity to treat yourmalaria patients

with quinine, a new, highly effective, miracle drug.
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Back in Section 5.5, we discussed Class Blending, an insidious flaw found inmany clas-

sifications, that virtually guarantees that any analysis will yield misleading results. Having

lots and lots of data will not help you. The only way to overcome the bias introduced by

class blending is to constantly test and refine your classification.

– Complexity bias

The data in Big Data resources comes frommany different sources. Data from one source

may not be strictly comparable to data from another source. The steps in data selection,

including data filtering, and data transformation, will vary among analysts. Together,

these factors create an error-prone analytic environment for all Big Data studies that does

not apply to small data studies.

– Statistical method bias

Statisticians can apply different statistical methods to one set of data, and arrive at any of

several different, even contradictory, conclusions. Statistical method biases are particu-

larly dangerous for Big Data. The standard statistical tests that apply to small data and

to data collected in controlled experiments, may not apply to Big Data. Analysts are faced

with the unsatisfying option of applying standard methods to non-standard data, or of

developing their ownmethodologies for their Big Data project. History suggests that given

a choice, scientists will adhere to the analysis that reinforces their own scientific

prejudices [28].

– Ambiguity of system elements

Big Data analysts want to believe that complex systems are composed of simple elements,

having well-defined attributes and functions. Clever systems analysts, using advanced

techniques, enjoy believing that algorithms can predict the behavior of complex systems,

when the elements of the system are understood. We learn from biological systems that

the components of complex systems have ambiguous functionalities, changing from one

moment to the next, rendering our best predictions tentative, at best. [Glossary Deep

analytics]

For example, living cells are complex systems in whichmany different metabolic path-

ways operate simultaneously. A metabolic pathway is a multi-step chemical process

involving more than one enzyme and various additional substrate and non-substrate che-

micals. Depending on the conditions within a cell, a single enzymemay participate in sev-

eral different metabolic pathways; and any given pathway may exert any of a number of

different biological effects [29–32]. As we learnmore andmore about cells, we are stunned

by their complexities [33,13]. Big Data analysts, working with highly complex systems,

cannot assume that any of the elements of their system have a single, defined function.

This tells us that all Big Data analyses on living systems (e.g., all biomedical systems

and all non-biomedical data that depends in any way on the predictability or reproduc-

ibility of biomedical data) may be intractable to the kinds of systems analysis techniques

that we have come to understand.
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Despite all the potential biases, at the very least Big Data offers us an opportunity to

validate predictions based on small data studies. As a ready-made source of observations,

Big Data resources may provide the fastest, most economical, and easiest method to

“reality test” limited experimental studies. Testing against large, external data sets, on

independently collected data, and coming upwith the equivalent conclusions, is a reason-

able way to validate scientific assertions [34,35].
Section 14.6. Case Study (Advanced): Curse of Dimensionality

As the number of spatial dimensions goes up, finding things or measuring their size

and shape gets harder.
The Curse of Dimensionality, attributed to Richard Bellman, and sometimes called Bellman’s curse

Any serious student of Big Data will eventually fall prey to the dreadful Curse of Dimen-

sionality. This curse cannot be reversed, and cannot be fully fathomed by 3-dimensional

entities. Luckily, we can see the tell-tale signs that indicate where the curse is strongest,

and thus avoid the full force of its evil power.

First, let’s understand what we mean when we talk about n-dimensional data objects.

Each attribute of an object is a dimension. The object might have three attributes: height,

width, and depth; and these three attributes would correspond to the familiar three

dimensional measurements that we are taught in geometry. The object in a Big Data col-

lection might have attributes of age, length of left foot, width of right foot, hearing acuity,

time required to sprint 50 yards, and yearly income. In this case the object is described by 6

attributes and would occupy 6 dimensions of Big Data space.

Let us say that we have normalized the values of every attribute so that each attribute

value lies between zero and two (i.e., the age is between 0 and 2; the length of the left foot is

between 0 and 2; the width of the right foot is between 0 and 2, and so on for every dimen-

sion in the object.

The 6-dimensional cube that encloses the set of data objects with attributes measur-

ing between 0 and 2 will have sides measuring 2 units in length. The general formula for

the volume of an n-dimensional cube is the length of a side raised to the nth power. In the

case of a 260 dimensional cube, this would give us a volume of 2 2̂60. Just to give you some

idea of the size of this number, 2 2̂60 is roughly the estimated number of atoms contained

in our universe. So the volume of the 260-dimensional cube, of side 2 units, is large enough

to hold the total number of atoms in the universe, spaced one unit apart in every dimen-

sion. Because there aremanymore atoms in the universe than there are data objects in our

Big Data resources, we can infer that all high-dimensional volumes of data will be sparsely

populated (i.e., lots of space separating data objects from one another). In our physical

universe, there is muchmore empty space than there is matter; in the infoverse, it’s much

the same thing, only moreso. [Glossary Euclidean distance]

Sowhat? What does it matter that n-dimensional data space ismostly empty, so long as

every data object has an n-coordinate location somewhere within the hypervolume?
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Let us consider the problem of finding a data object that lies within one unit of a ref-

erence object located in the exact center of the data space. As an example, wewill continue

to use an n-dimensional data object composed of attributes with normalized values

between 0 and 2. We will begin by looking at a two dimensional data space.

If the data objects in the 2-dimensional data space are uniformly distributed in the

space, then the chances of finding a data object within one unit of the center of the space

(i.e., at coordinate 1,1) will be the ratio of the circle of radius one unit around the center

divided by the area of the square that contains the data space (i.e., a square whose sides

have length of 2). This works out to pi/4, or 0.785. This tells us that in two dimensions, we’ll

have an excellent chance of finding an object within 1 unit of the center (Fig. 14.1).

We can easily imagine that as the number of the dimensions of our data space

increases, with an exponentially increasing n-dimensional volume, so too will the volume

of the hypersphere that accounts for all the objects lying within 1 radial unit from the cen-

ter. Regardless of how fast the volume of the space is growing, our hypersphere will keep

apace, and we will always be able to find data objects in a 1-radial unity vicinity. Actually,

no. Here is where the Curse of Dimensionality truly kicks in.

The general formula for the volume of an n-dimensional sphere is shown in Fig. 14.2.
FIG. 14.1 A two-dimensional representation of the a circle, of radius length 1, in a square, of side length 2. The

fraction of the square’s area occupied by the circle is (pi * r^2)/4 or 3.1416/4 or 0.7854.

FIG. 14.2 General formula for the volume of sphere of radius R, in n dimensions.
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Let’s not get distracted by the lambda function in the denominator. It suffices to know

that the volume of a hypersphere in n dimensions is easily computable. Using the formula,

here are the volumes of a 1 radial unit sphere in multiple dimensions [36].

Hypersphere volumes when radius = 1, in higher dimensions

n=1, V = 2
n=2, V = 3.1416

n=3, V = 4.1888
n=4, V = 4.9348

n=5, V = 5.2638
n=6, V = 5.1677

n=7, V = 4.7248
n=8, V = 4.0587

n=9, V = 3.2985
n=10, V = 2.5502

As the dimensionality increases, the volume of the sphere increases until we reach the fifth

dimension. After that, the volumes of the 1-unit radius sphere begin to shrink. At

10 dimensions, the volume is down to 2.5502. From there on, the volume decreases faster

and faster. The 20-dimension 1-radial unit sphere has a volume of only 0.0285, while the

volume of the sphere in 100 dimensions is on the order of 10^-40 [36].

How is this possible? If the central hypersphere has a radius of one unit, and the coor-

dinate space is a hypercube that is 2 units on each side, then we know that, for any dimen-

sion, the hypersphere touches each and every face of the hypersphere at one point. In the

two dimensional example shown above, the inside circle touches the enclosing square on

all four sides: at points (1,0), (1, 2), (1, 2), and (0,1). If an n-dimensional sphere touches one

point on every face of the enclosing hypercube, then how could the sphere be infinites-

imally small while the hypercube is immensely large?

The secret of the curse is that as the dimensionality of the space increases, most of the

volume of the hypercube comes to lie in the corners, outside the central hypersphere. The

hypersphere misses the corners, just like the 2-dimensional circle misses the corners of

the square. This means that as the dimensionality of data objects increases, the likelihood

of finding similar objects (i.e., object at a close n-dimensional proximity from one

another) drops to about zero. When you have thousands of dimensions, the space that

holds the objects is so large that distances between objects become difficult or impossible

to compute. Basically, you can’t find similar objects if the likelihood of finding two objects

in close proximity is always zero.

Glossary
Data reduction When a very large data set is analyzed, itmay be impractical or counterproductive towork

with every element of the collected data. In such cases, the data analyst may choose to eliminate some

of the data, or develop methods whereby the data is approximated. Some data scientists reserve the

term “data reduction” for methods that reduce the dimensionality of multivariate data sets.
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Deep analytics Insipid jargon occasionally applied to the skill set needed for Big Data analysis. Statistics

andmachine learning are often cited as two of themost important areas of deep analytic expertise. In a

recent McKinsey report, entitled “Big data: The next frontier for innovation, competition, and

productivity,” the authors asserted that the United States “faces a shortage of 140,000 to 190,000 people

with deep analytical skills” [37].

Euclidean distance Two points, (x1, y1), (x2, y2) in Cartesian coordinates are separated by a hypotenuse

distance, that being the square root of the sum of the squares of the differences between the respective

x-axis and y-axis coordinates. In n-dimensional space, the Euclidean distance between two points is

the square root of the sumof the squares of the differences in coordinates for each of the n dimensional

coordinates. The significance of the Euclidean distance for Big Data is that data objects are often

characterized by multiple feature values, and these feature values can be listed as though they were

coordinate values for an n-dimensional object. The smaller the Euclidian distance between two

objects, the higher the similarity to each other. Several of the most popular correlation and clustering

algorithms involve pairwise comparisons of the Euclidean distances between data objects in a data

collection.

Multiple comparisons bias When you compare a control group against a treated group using multiple

hypotheses based on the effects of many different measured parameters, you will eventually

encounter statistical significance, based on chance alone. For example, if you are trying to deter-

mine whether a population that has been treated with a particular drug is likely to suffer a serious

clinical symptom, and you start looking for statistically significant associations (e.g., liver disease,

kidney disease, prostate disease, heart disease, etc.), then eventually you will find an organ in

which disease is more likely to occur in the treated group than in the untreated group. Because

Big Data tends to have high dimensionality, biases associated with multiple comparisons must

be carefully avoided. Methods for reducing multiple comparison bias are available to Big Data

analysts. They include the Bonferroni correction, the Sidak correction and the Holm-Bonferroni

correction.

Negative study bias When a project produces negative results (fails to confirm a hypothesis), there may

be little enthusiasm to publish the work [38]. When statisticians analyze the results from many differ-

ent published manuscripts (i.e., perform a meta-analysis), their work is biased by the pervasive

absence of negative studies [39]. In the field of medicine, negative study bias creates a false sense that

every kind of treatment yields positive results.

Time-window bias A bias produced by the choice of a time measurement. In medicine, survival is mea-

sured as the interval between diagnosis and death. Suppose a test is introduced that provides early

diagnoses. Patients given the test will be diagnosed at a younger age than patients who are not given

the test. Such a test will always produce improved survival simply because the interval between diag-

nosis and deathwill be lengthened. Assuming the test does not lead to any improved treatment, the age

at which the patient dies is unchanged by the testing procedure. The bias is caused by the choice of

timing interval (i.e., time from diagnosis to death). Survival is improved without a prolongation of life

beyond what would be expected without the test. Some of the touted advantages of early diagnosis are

the direct result of timing bias.

Type errors Statistical tests should not be confused with mathematical truths. Every statistician under-

stands that conclusions drawn from statistical analyses are occasionally wrong. Statisticians, resigned

to accept their own fallibilities, have classified their errors into five types: Type 1 error—Rejecting the

null hypothesis when the null hypothesis is correct (i.e., seeing an effect when there was none). Type 2

error—Accepting the null hypotheseswhen the null hypothesis is false (i.e., seeing no effect when there

was one). Type 3 error—Rejecting the null hypothesis correctly, but for the wrong reason, leading to an

erroneous interpretation of the data in favor of an incorrect affirmative statement. Type 4 error—

Erroneous conclusion based on performing the wrong statistical test. Type 5 error—Erroneous conclu-

sion based on bad data.
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Section 15.1. Failure Is Common

As a rule, software systems do not workwell until they have been used, and have failed

repeatedly, in real applications.
Dave Parnas

There are many ways in which a complex system can be broken. In 2000, a Concorde

crashed on take-off from Charles de Gaulle Airport, Paris. The Concorde was a supersonic

transport jet, one of themost advanced and complex planes ever built. Some debris left on

the runway had flipped up and tore a tire and some of the underside of the hull. All pas-

sengers were killed.

Big Data resources are complex; they are difficult to build and easy to break. After they

break, they cannot be easily fixed.

Most Big Data failures do not result from accidents. Most failures occur when the Big

Data resource is never completed, or never attains an acceptable level of performance.

What goes wrong? Let us run down the reasons for failure that have been published

in blogs, magazine articles and books on the subject of Big Data disappointments: Inap-

propriate selection and use of human resources (wrong leadership, wrong team, wrong

people, wrong direction, wrongmilestones, wrong deadlines); Incorrect funding (too little

funding, too much funding, incorrect allocation of resources, wrong pay scales, wrong

incentives); Legal snags (patent infringements, copyright infringements, inept technology

transfer, wrong legal staff, inadequate confidentiality and privacy measures, untenable
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consent forms, poor contracts with unhelpful non-compete clauses, non-compliance

with applicable laws and regulations, inadequate financial records and poor documenta-

tion of protocol compliances); Bad data (inaccurate and imprecise data, data obtained

without regard to established protocols, data that is not fully specified, un-representative

data, data that is not germane to the purpose of the resource), poor data security (purposely

corrupted data, data stolen by malevolent entities, data inadvertently copied and distrib-

uted by staff, non-compliance with internal security policies, poor internal security

policies). The list goes on. Generally, we see failure in terms of our ownweaknesses: funders

see failure as the result of improper funding; managers see failure as the result of poor

management; programmers see deficiencies in programming methods, informaticians

see deficiencies in metadata annotations, and so on. The field of Big Data is still young;

the most senior members of a Big Data team are little more than newbies, and there’s

plenty of room for self-doubt. [Glossary Fair use]

It may be useful to accept every imaginable defect in a Big Data project as a potential

cause of failure. For convenience sake, these defects can be divided into two general cat-

egories: (1) failures due design and operation flaws in Big Data resource, and (2) failures

due to improper analysis and interpretation of results. Analytic and interpretive errors

were discussed in Chapter 14. This chapter deals with the problems that arise when Big

Data resources are poorly planned and operated.

Big Data resources are new arrivals to the information world. With rare exceptions,

database managers are not trained to deal with the layers of complexity of Big Data

resources. It is hard to assemble a teamwith the composite skills necessary to build a really

good Big Data resource. At this time, all data managers are reflexively acquiring new soft-

ware applications designed to deal with Big Data collections. Far fewer data managers are

coming to grips with the fundamental concepts discussed in earlier chapters (e.g., iden-

tifier systems, introspection, metadata annotation, immutability, and data triples). It may

take several decades before these fundamental principles sink in, allowing Big Data

resources to reach their highest potential.

In the field of hospital informatics, costs run very high. It is not unusual for large, aca-

demic medical centers to purchase information systems that cost in excess of $500 mil-

lion. Bad systems are costly and failures are frequent [1–3]. About three quarters of

hospital information systems are failures [4]. Successfully implemented electronic health

record systems have not been shown to improve patient outcomes [5]. Based on a study of

the kinds of failures that account for patient safety errors in hospitals, it has been sug-

gested that hospital information systems will not greatly reduce the incidence of

safety-related incidents [6]. Clinical decision support systems, built into electronic health

record systems, have not had much impact on physician practice [7]. These systems tend

to be too complex for the hospital staff to master and are not well utilized.

The United Kingdom’s National Health Service embarked on a major overhaul of its

information systems, with the goal of system-wide interoperability and data integration.

After investing $17 billion dollars, the project was ditched when members of Parliament

called the effort “unworkable” [8–10].
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It is difficult to determine the failure rate of Big Data projects. Organizations herald

their triumphs but hide their misadventures. There is no registry of Big Data projects that

can be followed to determine which projects fail over time. There is no formal designation

“Big Data project” that is bestowed on some projects and withheld from others. Further-

more, we have no definition for failure, as applied to Big Data. Would we require a project

to be officially disbanded, with all funds withdrawn, before we say that it is defunct? Or

would we say that a Big Data project has failed if it did not meet its original set of goals?

If a Big Data resource is built, and operates as planned, can we say that it has failed if

nobody actually uses the resource? With these caveats in mind, it is believed that the

majority of information technology projects fail, and that failure is positively correlated

with the size and cost of the projects [11]. We know that public projects costing hundreds

of billions of dollars have failed quietly, without raising much attention [12]. Big Data pro-

jects are characterized by large size, high complexity, and novel technology, all of which

aggravate any deficiencies in management, personnel, or process practices [11].
Section 15.2. Failed Standards

Don’t be afraid ofmissing opportunities. Behind every failure is an opportunity some-

body wishes they had missed.
Lily Tomlin

Most standards fail. Examples are easy to find. OSI (Open Systems Interconnection) was a

seven-layer protocol intended as the Internet standard. It was backed by the U.S. govern-

ment and approved by the ISO/IEC (International Organization for Standardization) and

the International Electrotechnical Commission). It has been supplanted by TCP/IP

(Transmission Control Protocol/Internet Protocol), preferred by Unix. Simply because a

standard has been developed by experts, backed by the U.S. government, and approved

by an international standards organization, there is no guarantee that it will be accepted

by its intended users.

In the realmof format standards (e.g., for documents, images, sound,movies), there are

hundreds of standards. Some of these standards were developed for specific devices (e.g.,

cameras, image grabbers, word processors), and served a specific purpose in a small win-

dow of time. Today, most of these standard formats are seldom used. A few dozen remain

popular. There is an on-going effort to incorporate all of the various image andmedia for-

mats under one standard and one horrifying term: the BLOB (Binary Large OBject). [Glos-

sary BLOB]

Every new programming language is born with the hope that it will be popular and

immortal. In the past half century, well over 2000 programming languages have been

devised. Most of these languages are seldom used and often forgotten. In 1995, Ada 95

became an ANSI/ISO standard programming language, a distinction held by only a few

programming languages. The U.S. National Institute of Standards announced that Ada

would be used by Federal departments and agencies in software applications that involve
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control of real-time or parallel processes, very large systems, and systems with require-

ments for very high reliability [13]. The official announcement was entitled, Announcing

the Standard for ADA. The programming language, Ada, was named for Ada Lovelace

(1815–52), who wrote the first computer program (an algorithm for computing Bernoulli

numbers) for Charles Babbage’s prototype computer (the so-called analytic engine).

Every Ada programmer knows that Ada is not an acronym; they bristle whenever

Ada is spelled with all-uppercase letters. The federal government’s announcement of

the new “ADA” standard did not bode well. Ada is a fine programming language, but

declaring it a government standard could not guarantee error-free implementations;

nor could it guarantee its popularity among programmers. Following its ascension to

standards status, the popularity of Ada declined rapidly. Today, it is rare to find an Ada

programmer.

Even the best standards seldom meet expectations. Consider the metric system. It is

used throughout the world, and it is generally acknowledged as a vast improvement over

every preceding measurement standard. Nonetheless, in the United States our height is

measured in feet and inches, not meters and centimeters, and our weight is measured

in pounds, not kilograms. Here in the United States, it would be difficult to find a bath-

room scale marked with metric graduations. The next time you look at your calendar,

remember that about half the world uses a solar calendar. Most other earthlings follow

a lunar calendar. Some base their calendars on a combination of solar and lunar

observations.

When a standard is ignored, or improperly implemented, the results may be cata-

strophic. On June 4, 1996, the maiden flight of the French Ariane 5 exploded 37 seconds

after launch. A software exception occurred during a data conversion from a 64-bit float-

ing point to 16-bit signed integer value. The data conversion instructions (in Ada code)

were not protected from causing an Operand Error [14].

On September 23, 1999, the United States launched the Mars Climate Orbiter, which

crashed on impact on the red planet. An official investigation, by theMars Climate Orbiter

Mishap Investigation Board, concluded that the crash occurred due to a software glitch

that arose when English units of measurement were used in the software when Metric

units were supplied as input [15]. The flight software was coded in Ada.

The most successful standards are specifications that achieved popularity before they

achieved the status of “standard.” The best of these filled a need, enjoyed broad use, had

few or no barriers to implementation (e.g., free and easy to use), and had the bugs ironed

out (i.e., did not require excessive modifications and version updates). The most unsuc-

cessful standards are those prepared by a committee of special interests who create the

standard ab initio (i.e., without a pre-existing framework), without a user community,

and without a proven need. The altogether worst standards seem to be those that only

serve the interests of the standards committee members.

Robert Sowa has written a useful essay entitled “The Law of Standards” [16]. His

hypothesis is, “Whenever a major organization develops a new system as an official
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standard for X, the primary result is the widespread adoption of some simpler system as a

de facto standard for X.” He gives many examples. The PL/I standard, developed by IBM

was soon replaced by Fortran and COBOL. The Algol 68 standard was replaced by Pascal.

Ada, promoted by the U.S. Department of Defense, was replaced by C. The OS/2 operating

system produced by IBM was replaced by Windows.

For small data projects and for software applications, the instability of data standards is

not a major problem. Small data projects are finite in length and will seldom extend

beyond the life span of the standards implemented within the project. For software

designers, a standard implemented within an application can be replaced in the next

upgrade. Any costs are passed onto the licensed user. Instability in standards serves the

interests of software developers by coercing customers to purchase upgrades that comply

with the new versions of included standards.

For Big Data resources, instability in standards is always bad news. A failed standard

may invalidate the data model for the resource; undoing years of work. How can the data

manager copewith failed standards? Over twenty years ago, I was approached by a pathol-

ogist whowas tasked with annotating his diagnostic reports with a standard vocabulary of

diseases. The principal options at the time were ICD (International Classification of Dis-

eases), SNOMED (Systematized Nomenclature of Medicine) and MeSH (Medical Subject

Headings produced by the National Library of Medicine). The ICD seemed too granular

(i.e., not enough names of diseases). SNOMED was constantly changing; newer versions

were incompatible with older versions, and he worried that annotations under an old ver-

sion of SNOMED could not be integrated into the newer hospital information systems.

MeSH was a well-curated public nomenclature, analogous to the Dewey Decimal System

for the health informatics community, but it was not widely adopted by the pathology

community.

I suggested all of his options were untenable. His best bet, under the circumstances,

was to write his reports in simple, declarative sentences, using canonical diagnostic terms

(i.e., terms expressed in a form suitable for a nomenclature). Reduced sentences could be

easily parsed into constituent parts and accurately translated or mapped to any chosen

vocabulary, as needed [17].

Consider the following sentence:

The patient has an scc, and we see invasion to the subcutaneous tissue, all the way to

the deep margins, but the lateral margins are clear.

This sentence, which is understandable to clinicians, would not be understandable to a

computer program that parsed text. Among other impediments, a computer would not

know that the abbreviation “scc” corresponds to the diagnostic term “squamous cell

carcinoma.” A computer that has an index listmatching abbreviations to termsmay falsely

map the abbreviation to the wrong expansion term (e.g., small cell carcinoma rather than

squamous cell carcinoma).



326 PRINCIPLES AND PRACTICE OF BIG DATA
The complex sentence could be rewritten as six declarative statements:

Diagnosis: squamous cell carcinoma.

Invasion is present.

Invasion extends to subcutaneous tissue.

Margin is involved.

Tumor extends to deep margin.

Tumor does not extend to lateral margins.

It would be relatively easy to write a computer program that could autocode these very

simple sentences. Every surgical pathology case entered in the hospital information sys-

tem could be coded again and again, using any new version of any nomenclature. [Glos-

sary Autocoding, Autoencoding]

We could go one step further, expressing every statement as a triple consisting of an

identifier, a metadata term, and a data value. As discussed in Section 4.3, “Semantics

and Triples,” if all of the data in the resource is available as simple triples, and if the model

provides amethod whereby data objects can be assigned to classes, then every data object

can be fully specified. Specified data objects, expressed as a simple triples, can be ported

into any old or new data standard, as needed. [Glossary Class-oriented programming]

It is best to keep in mind two general principles of data management:

1. Data objects can be well specified, without a standard. You do not need to store your

data in a format that is prescribed by a standard.

2. Data standards are fungible. If you know the rules for standards, you can write a

program that converts to the standard, as needed.

In many instances, a simple, generic data model may free the Big Data manager from the

problems that ensue when a data standard becomes obsolete.
Section 15.3. Blaming Complexity

Complexity is the worst enemy of security.
Bruce Schneier [18]

Big Data is complex, and complexity is dangerous. It is easy towrite software that attains a

level of complexity that exceeds anything encountered in the physical realm. Likewise,

there is no limit to the complexity of operational methods, security standards, data

models, and virtually every component of a Big Data resource. When a Big Data resource

somehowmanages to cope with complexity, it can be just a matter of time before key per-

sonnel depart to follow other opportunities, errors are introduced into the system, and a

once-great resource grinds to a halt.

When errors occur in complex systems, even catastrophic errors, they can be very

difficult to detect. A case in point is the Toyota Lexus ES 350 Sedan. Thousands of

vehicle owners experienced unintended vehicle acceleration; the complex electronic

control system was the chief suspect [19]. Over the years, Toyota expended enormous
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resources trying to understand and solve the problem [20]. A host of agencies and

authorities were involved in the investigation; first came the Department of Trans-

portation and the National Highway Traffic Safety Administration. Then, owing to

its expertise in software integrity, computer control systems, and electromagnetic

interference, the National Aeronautics and Space Administration was called into the

fray. Later, the National Academy of Sciences launched its own study of unintended

acceleration in the auto industry. During these investigations, Toyota paid about

$50 million in fines and recalled about 9 million cars. The dust may never settle

completely on this problem, but it now appears that most, if not all, problems were

due to sticky pedals, driver error, or improperly placed floor mats; no errors were uncov-

ered in the complex electronic control system.

The most vexing problems in software engineering involve “sometimes” errors; soft-

ware that runs perfectly under most circumstances, but fails at apparently random inter-

vals. Finding the source of the problem is virtually impossible, because themost thorough

evaluations will indicate that everything is working well. Sometimes the mistake occurs

because of the chaotic and unpredictable quality of complex systems. Sometimes mis-

takes occur because the numbers get too big, or too small, or too impossible (division

by zero); sometimes the order by which events occur are unexpected, causing the system

to behave oddly. In all these situations, finding the problem is very difficult and could have

been avoided if the system had been less complex. Knowing this, you might expect that

data managers try their best to reduce the complexity of their resources. Actually, no.

For most resources, increasing complexity is the normal state because it is easier to solve

problems with more complexity than with more simplicity.

Every Big Data project should be designed for simplicity. The design team should con-

stantly ask “Canwe achieve this functionality with less complexity?” When the complexity

cannot be reduced for a desired level of functionality, a trade-off might be reached. The

team is justified in asking, “Do we need this level of functionality? Might we achieve a

reduced but adequate level of functionality with a less complex system?” After the design

phase, every addition, and every modification to the system should be examined for com-

plexity. If complexity needs to be added to the system, then the team must analyze the

consequences of the increased complexity.

– When does complexity help?

There are times when complexity is necessary. Think of the human mind and the human

body. Our achievements as individuals and as a species come as the result of our complex-

ity. This complexity was achieved over 4 billion of years of evolution, during which time

disadvantageous traits were lost and advantageous traits were retained. The entire process

was done incrementally. The complexity of a Big Data resource is created in amoment.We

do not have four billion years to debug the system.When can complexity be permitted in a

Big Data resource? There are several scenarios:

– When approximate or locally accurate solutions are not acceptable.

In the case of weather forecasting, the purpose is to attain predictions of ever-increasing

accuracy. Each new forecasting model contains more parameters than the prior model,
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requiresmore computing power, and is expected to provide accurate forecasts that extend

further and further into the future. Complex models that do not yield greater accuracy

than simpler models are abandoned. The whole process mimics evolution.

– When complexity is achieved incrementally.

Many of the most important devices implemented in society are complex (televisions,

computers, smartphones, jet airplanes, magnetic resonance imaging devices). They all

started as simpler devices, with complexity added incrementally. These complex devices

did not require 4 billion years to evolve, but they did require the intense participation of

many different individuals, teams, corporations, and users to attain their current utility.

The venerable U-2 U.S. spy plane is an example of incrementally achieved complexity.

The U-2 was born in the 1950s and designed as a cold war spy plane. Despite its advanced

age, the U-2 has stubbornly resisted obsolescence by incrementally increasing in com-

plexity and utility. Today, it is still in service, with a functionality far greater than anything

imaginable when it was created [21]. The value of incremental complexity has been emu-

lated in some modern Big Data technologies [22].

– When your model really needs to match, item by item, the complexity of the real

system that it is modeling.

Biologists have learned, in the past decade, that cellular processes are much more

complex than they had originally imagined. Genes are controlled by interactions

with other genes, with RNA, with proteins, and with chemical modifications to

DNA. Complex chemical interactions that occur in the cell’s nucleus and the cyto-

plasm have made it impossible to find simple genetic variants that account for many

biologic processes. The entire field of gene research has shifted to accommodate pre-

viously unanticipated complexities that have thwarted our earlier analyses [23]. Our

progress in disease biology, developmental biology, and aging seems to hinge on

our willingness to accept that life is complex, and cannot be reduced to a sequence

of nucleotides in a strand of DNA.

There are occasions when we cannot “wish away” complexity. The best we can do is to

prepare a model that does not amplify the irreducible complexity that exists in reality.
Section 15.4. An Approach to Big Data ThatMayWork for You

The most likely way for the world to be destroyed, most experts agree, is by accident.

That’s where we come in; we’re computer professionals. We cause accidents.
Nathaniel Borenstein

The old saying, “You can bring a horse to water, but you can’t make it drink,” aptly

describes the situation for many Big Data resources. Sometimes Big Data projects fail

because the intended users simply do not know what to do with the data. They have

no approach that matches the available data, and they blame the Resource for their
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inability to succeed. After a few would-be data miners give up, the Resource gets a repu-

tation of being useless. Funding is withdrawn, and the Resource dies.

At this point, you may feel completely overwhelmed by the complexities of Big Data

resources. It may seem that analysis is humanly impossible. The best way to tackle a large

and complex project is to divide it into a smaller, less intimidating tasks. The approach to

data analysis described in this chapter involves nine sequential steps.

– Step 1. A question is formulated

It takes a certain talent to ask a goodquestion. Sometimes, a question, even abrilliant ques-

tion, cannot be answereduntil it is phrased in amanner that clarifies themethods bywhich

the question can be solved. For example, suppose I am interested in how much money is

spent, eachyear, onmilitarydefense, in theUnitedStates. I couldprobably search the Inter-

net and find the budget for theDepartment of Defense, in the year 2011. The budget for the

Department ofDefensewouldnot reflect the costs associatedwith other agencies that have

a close relationship with the military, such as intelligence agencies and the State Depart-

ment. The Department of Defense budget would not reflect the budget of the Veterans

Administration (an agency that is separate from the Department of Defense). The budget

for the Department of Defense might include various items that have no obvious relation-

ship tomilitary defense. Because I amasking for the “annual” budget, Imight need to know

how to deal with projects whose costs are annualized over 5, 10, or 15 years. If large com-

mitmentsweremade, in 2005, topay for long-termprojects,with increasing sumsofmoney

paid out over the next decade, then the 2018 annual budget may reflect payouts on 2010

commitments. A 2018 budget may not provide a meaningful assessment of costs incurred

by 2018 activities. After a little thought, it becomes obvious that the question: “Howmuch

money is spent, each year, onmilitary defense, in theUnited States?” is complex, and prob-

ably cannot be answered by any straightforward method.

At this point, it may be best to table the question for a while, and to think deeply about

what you can reasonably expect fromBigData.Many analysts start with the following gen-

eral question: “How can this Big Data resource provide the answer to my question?”

A more fruitful approach may be: “What is the data in this resource trying to tell me?”

The two approaches are quite different, and I would suggest that data analysts begin their

analyses with the second question.

– Step 2. Resource evaluation

Every good Big Data resource provides users with a detailed description of its data con-

tents. This might be done through a table of contents or an index, or through a detailed

“readme” file, or a detailed user license. It all depends on the type of resource and its

intended purposes. Resources should provide detailed information on their methods

for collecting and verifying data, and their protocols supporting outsider queries and data

extractions. Big Data resources that do not provide such information generally fall into

two categories: (1) highly specialized resources with a small and devoted user base who

are thoroughly familiar with every aspect of the resource andwho do not require guidance;

or (2) bad resources.
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Before developing specific queries related to your research interest, data analysts

should develop queries designed to evaluate the range of information contained in the

resource (discussed in detail in Chapter 9, “Assessing the Adequacy of a Big Data

Resource”. Even the best Big Data resources may contain systemic biases. For example,

PubMed contains abstracted data on about 20 million research articles. Research articles

are published on positive findings. It is very difficult for a scientist to publish a paper that

reports on the absence of an effect or the non-occurrences of a biological phenomenon.

PubMed has a positive result bias. The preferential exclusion or inclusion of specific types

of data is very common, and data analysts must try to identify such biases.

Every Big Data resource has its blind spots; areas in which data is missing or scarce, or

otherwise unrepresentative of the data domain. Often, the BigDatamanagers are unaware

of such deficiencies. In some cases, Big Data managers blame the data analyst for

“inventing” a deficiency that pertains exclusively to unauthorized uses of the resource.

When a data analyst wishes to use a Big Data resource for something other than its

intended purposes (e.g., using PubMed to predict NIH funding priorities over the next

decade, using the Netflix query box to determine what kinds of actors appear in zombie

movies), then the Big Data manager may be reluctant to respond to the analyst’s

complaints.

Simply having access to large amounts of subject data does not guaranteed that you

have all the data you would need to draw a correct conclusion.

– Step 3. A question is re-formulated
“If you can dream - and not make dreams your master”
From If (poem), by Rudyard Kipling

The available data cannot always answer the exact question you started with. After you

have assessed the content and design of your Big Data resource(s), you will want to cal-

ibrate your question to your available data sources. In the case of our original question,

from Step 1, we wanted to know howmuchmoney is spent, each year, onmilitary defense,

in the United States. If we are unable to answer this question, we may be able to answer

questions related to the budget sizes of individual government agencies that contribute to

military spending. If we knew the approximate portion of each agency budget that is

devoted to military spending, we might be able to produce a credible total for the amount

devoted to military activities, without actually finding the exact answer.

After exploring the resource, the data analyst learns the kinds of questions that can best

be answered with the available data. With this insight, he or she can re-formulate the orig-

inal set of questions.

– Step 4. Determine the adequacy of your query’s returned output

Big Data resources can often produce an enormous output in response to a data query.

When a data analyst receives a large amount of data, he or she is likely to assume that



Chapter 15 • Big Data Failures and How to Avoid (Some of ) Them 331
the query output is complete and valid. A query output is complete when it contains all

of the data held in the BigData resource that answers the query, and a query output is valid

if the data in the query output yields a correct and repeatable answer.

A Google query is an example of an instance wherein query output is seldom seriously

examined. When you enter a search term and receive millions of “hits”, you may tend to

assume that your query output is adequate. When you’re looking for a particular Web

page, or an answer to a specific question, the first output page on your initial Google query

may meet all your needs. A thoughtful data analyst will want to submit many related

queries to see which queries produce the best results. The analyst may want to combine

the query outputs frommultiple related queries, andwill almost certainly want to filter the

combined outputs to discard response items that are irrelevant. The process of query out-

put examination is often arduous, requiring many aggregation and filtering steps.

After satisfying yourself that you’ve taken reasonable measures to collect a complete

query output, you will still need to determine whether the output you have obtained is

fully representative of the data domain you wish to analyze. For example, you may have

a large query output file related to the topic of poisonous mushrooms. You’ve aggregated

query outputs on phrases such as “mushroom poisoning”, “mushroom poisons”,

“mushroom poison”, “mushroom toxicity”, and “fungal toxins”. You pared down queries

on “food poisoning,” to include only mushroom-related entries. Now you want to test

the output file to see if it has a comprehensive collection of information related to your

topic of interest. You find a nomenclature of mushrooms, and you look for the occurrence

of each nomenclature term in your aggregated and filtered output file. You find that there

are no occurrences of many of the mushrooms found in the mushroom nomenclature,

including mushrooms known to be toxic. In all likelihood, this means that the Big Data

resource simply does not contain the level of detail you will need to support a thorough

data analysis on topics related to poisonous mushrooms.

There is no standard way of measuring the adequacy of a query output; it depends on

the questions you want to answer, and the analytic methods you will employ. In some

cases, a query output will be inadequate because the Big Data resource simply does

not contain the information you need; at least not in the detail you require. In other cases,

the Big Data resource will contain the information you need, but does not provide a useful

pathway by which your query can access the data. Queries cannot thoroughly access data

that is not fully annotated, assigned to classes, and constructed as identified data objects.

Data analysts must be prepared to uncover major flaws in the organization, annota-

tion, and content of Big Data resources. When a flaw is found, it should be promptly

reported to the data manager for the resource. A good data manager will have a policy

for accepting error reports, conducting investigations, instituting corrections as necessary,

and documenting every step in the process.

– Step 5. Describe your data

Is the output data numeric or is it categorical? If it is numeric, is it quantitative? For exam-

ple, telephone numbers are numeric, but not quantitative. If the data is numeric and
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quantitative, then your analytic options are many. If the data is categorical information

(e.g., male or female, true or false), then the analytic options are limited. The analysis

of categorical data is first and foremost an exercise in counting; comparisons and predic-

tions are based on the occurrences of features.

Are all of your data objects comparable? Big Data collects data objects from many dif-

ferent sources, and the different data objects may not be directly comparable. The objects

themselves may be annotated with incompatible class hierarchies (e.g., one data object

described as a “chicken” may be classed as “Aves”, while another “chicken” object may

be classed as “Food.” One data object described as “child” may have the “age” property

divided into three-year increments up to age 21. Another “child” object may have “age”

divided into 4-year increments up to age 16. The data analyst must be prepared to nor-

malize assigned classes, ranges of data, subpopulations of wildly different sizes, different

nomenclature codes, and so on.

After the data is normalized and corrected formissing data and false data, youwill need

to visualize data distributions. Be prepared to divide your data into many different group-

ings, and to plot and re-plot your data with many different techniques (e.g., histograms,

smoothing convolutions, cumulative plots, etc.). Look for general features (e.g., linear

curves, non-linear curves, Gaussian distributions, multi-modal curves, convergences,

non-convergences, Zipf-like distributions). Visualizing your data with numerous alternate

plotting methods may provide fresh insights and will reduce the likelihood that any one

method will bias your objectivity.

– Step 6. Data reduction

An irony of Big Data analysis is that the data analyst mustmake every effort to gather all of

the data related to a project, followed by an equally arduous phase during which the data

analyst must cull the data down to its bare essentials.

There are very few situations wherein all of the data contained in a Big Data resource is

subjected to analysis. Aside from the computational impracticalities of analyzing massive

amounts of data, most real-life problems are focused on a relatively small set of local

observations drawn from a large number of events. The process of extracting a small

set of relevant data from a Big Data resource is referred to by a variety of names, including

data reduction, data filtering, and data selection. The reduced data set that you will use in

your project should obey the courtroom oath “the whole truth, and nothing but the truth.”

Methods for reducing the dimensionality of data are described in Section 10.5 “Reduc-

ing Your Data”. As a practical point, when the random and redundant variables have been

expunged, the remaining data set may still be too large for a frontal computational attack

using advancedmethods. A good data analyst knowswhen to retreat and regroup. If some-

thing can be calculated to great precision on a large number of variables and data points,

then it should be calculated with somewhat less precision with somewhat fewer variables

and fewer data points. Why not try the small job first, and see what it tells you?

– Step 7. Select analytic algorithms (if absolutely necessary)

Algorithms are perfect machines. They work to produce consistent solutions; they never

make mistakes; they need no fuel; they never wear down; they are spiritual, not physical.
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Every computer scientist loves algorithms; if they could be re-assigned to their favorite

position, most computer scientists would devote their careers to writing new algorithms.

If you peruse the titles of books in the Big Data field, you will find that most of these

books emphasize data analysis. They focus on parallel processing, cloud computing, high-

power predictive analytics, combinatorics methods, and the like. It is very easy to believe

that the essential feature of Big Data, that separates it from small data, relates to analytic

algorithms. [Glossary Cloud computing, Grid]

As algorithms become more and more clever, they become more and more enigmatic.

Some of themost popular statistical methods can be used injudiciously, and these include

p values and linear regression [24,25]. Journal editors know this. Consequently, when a

scientist submits an article to a journal, he or she can expect the editor to insist that a stat-

istician be included as a co-author. The editors have a valid point, but is it really helpful to

forcibly insert a statistician into an unfamiliar project? Isn’t there some risk that the inclu-

sion of a statistician will provide a thin veneer of scientific credibility, without necessarily

attaining a valid scientific conclusion? [Glossary P value, Linear regression]

The field of Big Data comes with a dazzling assortment of advanced analytic options.

Who is really qualified to judge whether the correct method is chosen; whether the chosen

method is implemented properly; and whether the results are interpreted correctly?

Analysts in search of analytic algorithms should consider these simple options:

– Stick with simple estimates.

If you have taken to heart the suggestion in Section 12.4, “Back-of-Envelope Analyses”, to

estimate your answers early in project development, then you have already found simple

estimators for your data. Consider this option: keep the estimators, and forget about

advanced algorithms. For many projects, estimators can be easily understood by project

staff, andwill provide a practical alternative to exact solutions that are difficult to calculate

and impossible to comprehend.

– Pick better metrics, not better algorithms.

Sabermetrics is a sterling example of analysis using simple metrics that are chosen to cor-

relate well with a specific outcome; a winning ball game. In the past several decades, base-

ball analysts have developed a wide variety of new performance measurements for

baseball players. These include: base runs, batting average on balls in play, defense inde-

pendent pitching statistics, defense-independent earned run average, fielding indepen-

dent pitching, total player rating, or batter-fielder wins, total pitcher index, and

ultimate zone rating. Most of these metrics were developed empirically, tested in the field,

literally, and optimized as needed. They are all simple linear metrics that use combina-

tions of weighted measures on data collected during ballgames. Though sabermetrics

has its detractors, everyone would agree that it represents a fascinating and largely suc-

cessful effort to bring objective numeric techniques to the field of baseball. Nothing in

sabermetrics involves advanced algorithms. It is all based on using a deep understanding

of the game of baseball to develop a set of simplemetrics that can be easily calculated and

validated.
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– Micromanage your macrodata.

Much of the success of Big Data is attained by making incremental, frequent changes to

your system in response to your metrics. An example of successful micromanagement for

Big Data is the municipal CompStat model, used by Police Departments and other gov-

ernment agencies [26,27]. A promising metric is chosen, such as 911 response time,

and a team closely monitors the data on a frequent basis, sometimes several times a

day. Slow 911 response times are investigated, and the results of these investigations typ-

ically generate action items intended to correct systemic errors. When implemented suc-

cessfully, the metric improves (e.g., the 911 response time is shortened), and a wide range

of systemic problems are solved. Micromanaging a single metric can improve the overall

performance of a department.

Departments with imagination can choose very clever metrics upon which to build an

improvement model (e.g., time from license application to license issuance, number of

full garbage cans sitting on curbs, length of toll booth lines, numbers of broken street

lights, etc.) It is important to choose useful metrics, but the choice of the metric is not

as important as the ability to effectively monitor and improve the metric.

As a personal aside, I have used this technique in the medical setting and found it

immensely effective. During a period of about 5 years at the Baltimore VA Medical center,

I had access to all the data generated in our Pathology Department. Using a variety ofmet-

rics such as case turn-around time, cases requiring notification of clinician, cases positive

formalignancy, and diagnostic errors, our pathologists were able to improve themeasured

outcomes. More importantly, the process of closely monitoring for deficiencies, quickly

addressing the problem, and reporting on the outcome of each correction produced a staff

that was sensitized to the performance of the department. There was an overall perfor-

mance improvement.

Like anything in the Big Data realm, the data micromanagement approach may not

work for everyone, but it serves to show that great things may come when you carefully

monitor your Big Data resource.

– Let someone else find an algorithm for you; crowd-source your project.

There is a lot of analytic talent in this world. Broadcasting your project via the Web may

attract the attention of individuals or teams of researchers who have already solved a

problem isomorphic to your own, or who can rapidly apply their expertise to your specific

problem [28].

– Offer a reward.

Funding entities have recently discovered that they can solicit algorithmic solutions, offer-

ing cash awards as an incentive. For example, the InnoCentive organization issues chal-

lenges regularly, and various sponsors pay awards for successful implementations [29].

[Glossary Predictive modeling contests]



Chapter 15 • Big Data Failures and How to Avoid (Some of ) Them 335
– Develop your own algorithm that you fully understand. You should know your data

better than anyone else. With a little self-confidence and imagination, you can develop

an analytic algorithm tailored to your own needs.
– Step 8. Results are reviewed and conclusions are asserted

When the weather forecaster discusses the projected path of a hurricane, he or she will

typically show the different paths projected by different models. The forecaster might

draw a cone-shaped swath bounded by the paths predicted by the several different fore-

casts. A central line in the cone might represent the composite path produced by averag-

ing the forecasts from the different models. The point here is that Big Data analyses never

produce a single, undisputed answer. There aremanyways of analyzing BigData, and they

all produce different solutions.

A good data analyst should interpret results conservatively. Here are a few habits that

will keep you honest and will reduce the chances that your results will be discredited.

– Never assert that your analysis is definitive.

If you have analyzed the BigDatawith severalmodels, include your results for eachmodel.

It is perfectly reasonable to express your preference for one model over another. It is not

acceptable to selectively withhold results that could undermine your conclusions.

– Avoid indicating that your analysis provides a causal explanation of any physical

process.

In most cases, Big Data conclusions are descriptive, and cannot establish physical causal-

ity. This situation may improve as we develop better methods to make reasonable asser-

tions for causality based on analyses of large, retrospective data sets [30,31]. In the

meantime, the primary purpose of Big Data analysis is to provide a hypothesis that can

be subsequently tested, usually through experimentation, and validated.

– Disclose your biases.

It can be hard to resist choosing an analytic model that supports your pre-existing

opinion. When your results advance your own agenda, it is important to explain that

you have a personal stake in the outcome or hypothesis. It is wise to indicate that

the data can be interpreted by other methods and that you would be willing to coop-

erate with colleagues who might prefer to conduct an independent analysis of your

data. When you offer your data for re-analysis, be sure to include all of your data:

the raw data, the processed data, and step-by-step protocols for filtering, transforming,

and analyzing the data.

– Do not try to dazzle the public with the large number of records in your Big Data

project.
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Large studies are not necessarily good studies, and the honest data analyst will present the

facts and the analysis, without using the number of data records as a substitute for

analytic rigor.

– Step 9. Conclusions are examined and subjected to validation
“Sometimes you gotta lose ’til you win”
From “Little Miss” (song) by Sugarland

Validation involves demonstrating that the conclusions that come from data analyses are

reliable. You validate conclusions by showing that you draw the same conclusion repeat-

edly in comparable data sets.

Real science can be validated, if true, and invalidated, if false. Pseudoscience is a pejo-

rative term that applies to scientific conclusions that are consistent with some observa-

tions, but which cannot be confirmed or tested. For example, there is a large body of

information that would suggest that earth has been visited by flying saucers. The evidence

comes in the form of many eyewitness accounts, numerous photographs, and cover-up

conspiracy theories. Without commenting on the validity of UFO claims, it is fair to say

that these assertions fall into the realm of pseudoscience because they are untestable

(i.e., there is no way to prove that flying saucers do not exist), and there is no definitive

data to prove their existence (i.e., the “little green men” have not been forthcoming).

Big Data analysis always stands on the brink of becoming a pseudoscience. Our finest

Big Data analyses are only valid to the extent that they have not been disproven. A good

example of a tentative and clever conclusion drawn from data is the Titius-Bode Law.

Titius and Bode developed a simple formula that predicted the locations of planets orbit-

ing a star. It was based on data collected on all of the planets known to Johann Daniel

Titius and Johann Elert Bode, two eighteenth century scientists. These planets included

Mercury through Saturn. In 1781, Uranus was discovered. Its position fit almost perfectly

into the Titius-Bode series, thus vindicating the predictive power of their formula. The law

predicted a fifth planet, between Mars and Jupiter. Though no fifth planet was found,

astronomers found a very large solar-orbiting asteroid, Ceres, at the location predicted

by Titius and Bode. By this time, the Titius-Bode Law was beyond rational disputation.

Then came the discoveries of Neptune and Pluto, neither of which remotely obeyed the

Law. The data had finally caught up to the assertion. The Titius-Bode Law was purely

descriptive; not based on any universal physical principles. It served well for the limited

set of data to which it was fitted, but was ultimately discredited.

Let us look at a few counter-examples. Natural selection is an interesting theory, pub-

lished by Charles Darwin, in 1859. It was just one among many interesting theories aimed

at explaining evolution and the origin of species. The Lamarckian theory of evolution pre-

ceded Darwin’s natural selection by nearly 60 years. The key difference between Darwin’s

theory and Lamarck’s theory comes down to validation. Darwin’s theory has withstood
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every test posed by scientists in the fields of geology, paleontology, bacteriology,mycology,

zoology, botany, medicine, and genetics. Predictions based on Darwinian evolution dove-

tail perfectly with observations from diverse fields. The Lamarckian theory of evolution,

proposed well before DNA was established as the genetic template for living organisms,

held that animals passed experiences to succeeding generations through germ cells; thus

strengthening intergenerational reliance on successful behaviors of the parent. This the-

ory was groundbreaking in its day, but subsequent findings failed to validate the theory.

Neither Darwin’s theory nor Lamarck’s theory could be accepted on their ownmerits. Dar-

win’s theory is correct, as far as we can know, because it was validated by careful scientific

observations collected over the ensuing 150 years. Lamarck’s theory is incorrect, because it

failed the validation process.

The value of big data is not so much to make predictions, but to test predictions on a

vast number of data objects. Scientists should not be afraid to create and test their pre-

diction models in a Big Data environment. Sometimes a prediction is invalidated, but

an important conclusion can be drawn from the data anyway. Failed predictions often lead

to new, more successful predictions.

Of course, every analysis project is unique, and the steps involved in a successful pro-

ject will vary. Nonetheless, a manageable process, built on techniques introduced in pre-

ceding chapters, might be helpful. My hope is that as Big Data resources mature and the

methods for creating meaningful, well annotated, and verified data become common-

place, some of the steps listed in this chapter can be eliminated. Realistically, though, it

is best to assume that the opposite will occur; more steps will be added.
Section 15.5. After Failure

Programming can be fun, so can cryptography; however they should not be

combined.
Charles B. Kreitzberg and Ben Shneiderman

In 2001, funds were appropriated to develop the National Biological Information Infra-

structure. This Big Data project was a broad cooperative effort intended to produce a fed-

erated system containing biological data from many different sources, including Federal

and State government agencies, universities, natural history museums, private organiza-

tions, and others. The data would be made available for studies in the field of resources

management. On January 15, 2012, the resource was officially terminated, due to budget

cuts. A Website announcement sits vigil, like a tombstone, marking the passage of an

ambitious and noble life (Fig. 15.1).

Like the humans who create the resources, Big Data lives for a time, and then it dies.

Humans often carry life insurance, or savings, to pay the costs of burial and tomanage the

distribution of an estate. Inmost cases, no preparations aremade for the death of BigData.

One day it is there, and the next day it is gone.



FIG. 15.1 A U.S. government website announcing the demise of the National Biological Information Infrastructure

project, in 2012.
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Abandonware is a term that is often applied to software developed under a grant. When

the grant funding ceases, the software is almost always abandoned. Nobody assumes the

responsibility of tying up loose ends, finding and removing bugs, distributing the software,

or using the software in new projects. Similarly, when a BigData project dies, the program-

mers and staff scrabble to find new jobs; nobody remains to clean up the leftovers. The

software is abandoned. The identifier system and the data model for the resource are

almost always lost to posterity. All those charts and all those registration numbers simply

disappear. The data in the failed resource either slips into the bit-void or becomes legacy

data; stored on disks, shelved, and forgotten. Legacy data can be resurrected, but it seldom

happens.

Here are a two precautions that can salvage some of the pieces of a failed Big Data

project.

– Write utilities, not applications.

Software applications can be envisioned as utilities with a graphic user interface. One soft-

ware applicationmay have the functionality of three or four utilities (e.g., spreadsheet plus

graph plotter plus statistics suite, with the graphic user interface of a word processor).

When a Big Data Resource is built, it will usually be accessed under an umbrella applica-

tion. This application will support user queries, while shielding the user from the com-

plexities of the data and the mechanics of passing the query over multiple, networked

servers. When a Big Data resource is terminated, applications with a user interface to

the resource retain no value.However, the small utility programs built into the application,
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may have enormous value to the builders of related Big Data resources. The best applica-

tions aremodularized; built fromworking parts that can be extracted and used asmodules

or utilities. Utilities that apply generally to many data-related projects are valuable assets.

When you write code, employ responsible coding practices. There is a vast literature on

coding etiquette. Programmers are always advised to write simple code, to comment their

code (i.e., explain the software steps and algorithms within the programs, as well as any

modifications to the software), and to avoid using variable names that have no obvious

meaning. This book will not dwell on good programming practices, but suffice it to say

that as programs become more and more complex, good software practices become

essential.

– Pay up-front to preserve your legacy data and your identifiers.

Big Data resources are very expensive. It makes sense to put aside funds to preserve the

data, in the event of failure. Datameans nothing unless it is properly identified; hence, the

data held in a Big Data resource must be preserved with its identifiers. If the data is iden-

tified and well annotated, it will be possible to re-integrate the data objects into a succes-

sor resource.

Preserving legacy data is particularly important in hospital information systems, which

have a very high failure rate [3]. It is unacceptable to lose patient histories, just because the

hospital bought bad software. Hospitals, medical centers and all Big Data systems that

serve critical missions should set aside money, in an escrow fund, for this purpose.
Section 15.6. Case Study: Cancer Biomedical Informatics Grid,
a Bridge Too Far

In a software project team of 10, there are probably 3 people who produce enough

defects to make them net negative producers.
Gordon Schulmeyer

Some governments do an excellent job at analyzing their own failures. After the Ariane 5

exploded 37-post launch on its maiden space flight, the French government issued the

results of their investigation [14]. When the Mars Climate Orbiter crashed on Mars, the

U.S. government issued a report on their investigation [15]. The world might be a better

place if we, as individuals, published our own investigative reports when we disappoint

our friends and co-workers or fail to meet our personal goals; but self-accountability

has never been a human strength.

In 2004, the National Cancer Institute launched an ambitious project, known as the

Cancer Biomedical Informatics Grid (CaBig™), aimed at developing standards for anno-

tating and sharing biomedical data, and tools for data analysis. An unusual aspect of this

government project was that it had its own business model, “to create a front end that will

make caBIG attractive for others to invest in and take on responsibility for downstream
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events” [32]. Further, it was “anticipated at the time that the caBIG effort would evolve into

a self-sustaining community” [32].

When the effort began, its goals seemed relatively focused, but over the next 6 years, the

scope of the project grew; it eventually covered software interoperability and Web-based

services for sharing and analyzing data produced by virtually every biomedical specialty,

from gene sequencing to radiology imaging to tissue specimens.

For a time, the project received generous support from academia and industry. In 2006,

the Cancer Biomedical Informatics Grid was selected as a laureate in ComputerWorld’s

honors program [33]. ComputerWorld described the project as “Effectively forming a

World Wide Web of cancer research,” with “promises to speed progress in all aspects of

cancer research and care.” The laudable ambitions of the project came with a hefty price

tag. By 2010, the National Cancer Institute had sunk at least 350 million dollars into the

effort [32]. Though the project was ambitious, there were rumblings in the cancer infor-

matics community that very little had been achieved. In view of past and projected costs,

an ad hoc committee was assigned to review the program.

In the report issued to the public, in 2011, the committee found that the project had

major deficiencies and suggested a yearlong funding moratorium [32]. Soon thereafter,

the project leader left the National Cancer Institute, and the Cancer Bioinformatics Grid

was terminated [34].

The ad hoc committee report went into considerable detail to explain the deficiencies

of the program. Their observations serve as a general warning for overly ambitious Big

Data efforts.

The caBIG program has grown rapidly without adequate prioritization or a cost-

effective business model, has taken on a continuously increasing and unsustainable

portfolio of development and support activities, and has not gained sufficient trac-

tion in supporting critical cancer research community needs. The working group

interviews indicate that the program has developed some extremely expensive soft-

ware solutions that have not been adopted in a meaningful way by the NCI desig-

nated Cancer Centers, have competed unnecessarily with existing solutions

produced by industry leaders that hold a 60% to 70% market share in the NCI-

designated Cancer Centers, and ultimately have created an enormous long-term

maintenance, administration, and deployment load for the NCI that is financially

unsustainable [32].

Regarding analysis tools, the working group found that “the level of impact for most of the

tools has not been commensurate with the level of investment. For example, many tools,

such as caArray ($9.3M), have been developed at significant expense and without a clear

justification, particularly since a number of similar commercial and open software tools

already existed. It is indeed noteworthy and a lesson for the future that the more widely

adopted Life Sciences tools have their roots in projects that were already fairly successfully

developed by academic research institutions, whereas most of the caBIG™-initiated
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projects have been less successful and, ironically, much more expensive. Similarly, enor-

mous effort was devoted to the development of caGRID ($9.8M), an environment for grid-

based cloud computing, but the working group did not find evidence that it has empow-

ered a new class of tools to ‘accelerate the discovery of new approaches for the detection,

diagnosis, treatment, and prevention of cancer’ as envisioned” [32].

The working group found that the project participants were attracted to new techno-

logical innovations, even when those innovations provided no advantages. “In particular,

the interviews suggest that the strategic goals of the programwere determined by techno-

logical advances rather than by key, pre-determined scientific and clinical requirements.

Thus, caBIG™ ended up developing powerful and far-reaching technology, such as

caGRID, without clear applications to demonstrate what these technologies could and

would do for cancer research.” Regarding the value of new technology, the working group

“struggled to find projects that could not have been implemented with alternative less

expensive or existing technologies and software tools” [32].

I was a program director at the National Cancer Institute during the first two years of

the project and had a front-row seat for the CaBig pageant. At the time, I thought that the

project was too big, too complex, too ambitious, that it served too many interests (the

intramural community at NIH, the extramural community of academic researchers, a pro-

fusion of industry contractor, and the Office of the Director at the National Cancer Insti-

tute), enlisted the assistance of too many people, had too muchmoney, was lavished with

too much hype, had initiated too many projects, and that the program directors operated

with insufficient accountability. In a word, I was envious.

In the case of the Cancer Biomedical Informatics Grid, hindsight would suggest that the

project may have benefited from the following:

1. Start small [35].

Projects should begin with a relatively small number of highly dedicated and energetic

people. Studies have shown that as more and more money and personnel are added to

a software project, the chances of success drop precipitously [36]. When you stop and

think about it, most of the great programming languages, some of the most important

operating systems, the design of the Internet, the language of the world wide Web, com-

puter hardware advances, innovational corporations, and virtually all of the great algo-

rithms in computer science, were created by one individual, or a small group of people

(usually less than 5).

Some Big Data projects are necessarily large. The Human Genome project, touted

as one of the largest and most successful Big Data projects in human history, involved

hundreds of scientists. But when it came down to organizing the pieces of data into a

coherent sequence, the job fell to one man. In a report published by the Center for

Biomolecular Science and Engineering at UC Santa Cruz, Jim Kent “developed in just

4 weeks a 10,000-line computer program that assembled the working draft of the human

genome” [37]. “Kent’s assembly was celebrated at a White House ceremony on June 26,

2000” [37].
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The Cancer Biomedical Informatics Grid began with teams of workers: contractors,

government employees, academics, and advisors from various related informatics pro-

jects. The project sprang into existence too big to build.

2. Complete your initial goals.

Projects that are closely tied to a community (the cancer research community in the case

of CaBIG™, tend to expand their goals based on the interests of enthusiastic community

members. It is very common for project managers to be approached by individuals and

small groups of people asking that their pet projects be added to the list of project goals.

Requests that come from powerful and influential members of the community cannot be

ignored. Somehow project managers must placate their constituents without losing focus

on their original goals. It is not sufficient to show that the resource is managing to do a lot

of different things; managers must be able to complete their critical goals. Failing to do so

was a problem for CaBig™. As a counter-example, consider the amazing success of Goo-

gle. Today, we enjoy the benefits of Google Earth, Google Maps, Google Books, and so one.

But the Google people started with a simple, albeit large and all encompassing, search

engine. Projects were added after the search engine had been created and popularized.

3. Do not try to do everything yourself.

There is a tendency today for large projects to seek representation in every ongoing effort

that relates in any way to the project. For example, a standards effort in the cancer

community might send representatives to every committee and standards project

in the general area of health technology interoperability. Likewise, narrowly focused stan-

dards efforts (e.g., gene array specifications, microscopy specifications) often attract

representatives from large corporations and from other standards committees. The push

toward internecine activity is based on the belief that the ultimate goal of software inter-

operability and data integration can only be achieved by broadening the level of partici-

pation. In practice, these interchanges make it difficult for project managers to achieve

any kind of focus. Each workday is diluted with de-briefings on other projects, confer-

ences, and committee meetings.

Life is about balance. Managers need to have some sense of what is happening in

the world outside of their own project, but they must not digress from their own

goals. In many cases, careful attention to the Big Data fundamentals (e.g., specifying data

fully, identifying and classifying data objects, achieving introspection), should suffice in

creating a functional resource that can operate with other resources. Data is fungible; a

well-specified data model can often to ported to other formats, other standards and other

specifications, as needed.

4. Do not depend on things that you cannot depend on.

This tautology should never be forgotten or trivialized. It is quite common for Big Data

resources to choose hardware, software, standards, and specifications that cannot possi-

bly serve their needs. Oblivious to reality, they will choose a currently popular, but flawed
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methodology, hoping some miracle will save them. So strong is this belief that things will

somehow “work out” that virtually every type of project proposal (e.g., grant application,

business proposal, book deal) contains a hidden deus exmachina; an implied request that

the reviewer suspend his disbelief. Allowing for human nature, some grant reviewers

extend a “one-miracle per grant” policy. An applicant can ask for onemiracle, but nomore.

After CaBig™ was terminated, Barry Smith, a big thinker in the rather small field of

ontology, wrote an editorial entitled “CaBIG™ has another fundamental problem: it relies

on “incoherent” messaging standard” [38]. In his editorial Smith suggested that HL7, a

data model specification used by CaBig™ could not possibly work, and that it had proven

to be a failure by those people who actually tried to implement the specification and use it

for its intended purposes [38]. At about the same time that CaBig was being terminated,

the $17 billion interoperability project undertaken by the U.K.’s National Health Service

was scuttled. This failed program had been called “the world’s biggest civil information

technology program” [8]. Back in 2001, a report published by theNHS Information Author-

ity cited fundamental flaws inHL7 [39]. These flaws included intrinsic difficulties in estab-

lishing a workable identifier system. The report concluded that despite these problems,

choosing HL7 was strategically correct, as it was the only data model with a process of

continual review and update [39]. At the time, everyone was hoping for amiracle. Themir-

acle did not come for CaBig™; nor had it come for the UK’s interoperability project. No

one can say towhat degree, if any, HL7 flaws contributed to the downfall of these projects;

but flaws in the data model could not have been very helpful.

5. Use existing, thoroughly tested open source technologies wherever possible.

There is a healthy appetite among information technologists for new and improved tech-

nologies. Though this preference may serve well for small and short-term projects, it is

often counterproductive for Big Data efforts. All Big Data projects are complex, and there

is seldom room to compound complexities by tossing innovative software into the mix.

Unless there is a compelling reason to use new technology, it is usually much safer to

use older technology that it adequate for the tasks at hand. Stable open source solutions,

particularly when there is an active community that supports the software, is often the

best choice. Aside from cost considerations (most open source software is free), there

is the added benefit of longevity. Unlike commercial software, which can be discontinued

or replaced by applications that are incompatible with installed versions, popular open

source software tends to stay viable. In the case of CaBig™, the working group indicated

that the project chose new technologies, when older technologies would suffice.

6. Avoid developing solutions for problems that nobody really cares about.

I have a colleague whoworks in the field of computer-aided diagnosis, an interesting field

that has not yet garnered widespread acceptance in the medical community. Apparently,

clinicians still prefer to reach their diagnoses through their own efforts, without the aid of

computer software [40]. Perhaps, he thought, the aid of a computer program might be

appreciated in areas where physicians were in short supply; such as developing countries.



344 PRINCIPLES AND PRACTICE OF BIG DATA
He thought that it would be useful to find amarket for computer aided diagnostic software

somewhere in Africa. Of course, healthcare limitations in developing countries are often

basic availability issues (e.g., access to hospitals, beds, antibiotics, sterilematerials, equip-

ment, and so forth). Access to diagnostic computer programs, developed on clinical data

sets collected on U.S. patients, may not be “what the doctor ordered.”

In the case of CaBig, the working group found that CaBig™ was developing powerful

new technologies for which there was no apparent need. It is only human nature to want

to make a difference in the world. For Big Data project managers, it is sometimes best to

wait until the world asks you for your input.

7. A Big Data resource should not focus its attention on itself.

Big data projects often involve a great number of people. Those involved in such efforts

may come to believe that the resource itself has an intrinsic value that exceeds the value

of its rendered services [41]. Experience would indicate that most users, even avid users,

are not interested in the details. The couch potato may sit transfixed in front of his tele-

vision for hours on end, but he is not likely to pursue an interest in the technologies under-

lying signal transmissions, or high definition image construction. Likewise, the public has

no interest in knowing any of the protocols and models that underlie a Big Data resource.

As someonewhowas asked to reviewmanuscripts published by the scientific contributors

to CaBig™, it wasmy impression that publications emanating from this effort were largely

self-congratulatory pieces describing various aspects of the project, in details that would

have meaning only to the fellow members of the team [42].

Program managers should never forget that a Big Data resource is all about the data,

and how the data is analyzed. The resource itself, rightly or wrongly, should not be the

focus of public attention.
Section 15.7. Case Study: The Gaussian Copula Function

America is the only country where a significant proportion of the population believes

that professional wrestling is real but the moon landing was faked.
David Letterman

It is important to remember that mathematics only describes observed relationships. It

does not explain how those relationships are achieved. A clever physicist such as James

Clerk Maxwell can write a set of equations that describe how electric charges and electric

currents create electric and magnetic fields, but equations cannot tell us what the mean-

ing is of magnetism. I would venture to say that there isn’t a physicist who truly under-

stands the meaning of magnetism, or electricity, or matter, or time.

What applies to the physicist applies to the economist. Recent experience with the

Gaussian copula function provides a cautionary tale [43]. This formerly honored and cur-

rently vilified formula, developed for Wall Street, was used to calculate the risk of default

correlation (i.e., the likelihood that two investment vehicles would default together) based



FIG. 15.2 For any readers who may be curious, this formula represents the density of the Gaussian copula function

[45]. The Gaussian copula is a distribution over the unit multidimensional cube. R is the parameter matrix. I is the

identity matrix. Theta is the inverse cumulative distribution function of a standard normal.
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on the current market value of the vehicles, and without factoring in historical data

(Fig. 15.2). The Gaussian copula function was easy to implement, and became a favorite

model for predicting risk in the securitization market. Though the formula had its early

detractors, it soon became the driving model on Wall Street. In about 2008, the function

simply stopped working. At about the same time, stock markets collapsed everywhere on

planet earth. In some circles, the Gaussian copula function is blamed for the global eco-

nomic disaster [44]. [Glossary Correlation distance, Nongeneralizable predictor]
Glossary
Autocoding When nomenclature coding is done automatically, by a computer program, the process is

known as “autocoding” or “autoencoding”.

Autoencoding Synonym for autocoding.

BLOB A large assemblage of binary data (e.g., images, movies, multimedia files, even collections of exe-

cutable binary code) that are associated that have a common group identifier and that can, in theory,

be moved (from computer to computer) or searched as a single data object. Traditional databases do

not easily handle BLOBs. BLOBs belong to Big Data.

Class-oriented programming A type of object-oriented programming for which all object instances and

all object methods must belong to a class. Hence, in a class-oriented programming language, any new

methods and instances that do not sensibly fall within an existing class must be accommodated with a

newly created subclass. All invocations of methods, even those sent directly to a class instance, are

automatically delivered to the class containing the instance. Class-oriented programming languages

embody a specified representation of the real world in which all objects reside within defined classes.

Important features such as method inheritance (through class lineage), and introspection (through

object and class identifiers) can be very simply implemented in class-oriented programming lan-

guages. Powerful scripts can be written with just a few short lines of code, using class-oriented pro-

gramming languages, by invoking the names of methods inherited by data objects assigned to

classes. More importantly, class-oriented languages provide an easy way to discover and test relation-

ships among objects.

Cloud computing According to the U.S. National Institute of Standards (NIST) and Technology cloud

computing enables “ubiquitous, convenient, on-demand network access to a shared pool of config-

urable computing resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider interaction”

[46]. As the NIST definition would suggest, cloud computing is similar to BigData, but there are several

features that are expected in one and not the other. Cloud computing typically offers an interface and a

collection of in-cloud computational services. Cloud data is typically contributed by a large commu-

nity, and the contributed data is deposited often for no reason other than to provide convenient stor-

age. These features are not expected in Big Data resources. Perhaps the most important distinction
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between a cloud computing and Big Data relates to mutability. Because cloud data is contributed by

many different entities, for many purposes, nobody expects much constancy; data can be freely

extracted from the cloud, or modified in place. In the cloud, the greatest emphasis is placed on con-

trolling computational access to cloud data; with less emphasis on controlling the content of the cloud.

In contrast, Big Data resources are designed to achieve a chosen set of goals using a constructed set of

data. In most cases, the data held in a Big Data resource is immutable. Once it is entered into the

resource, it cannot be modified or deleted without a very good reason.

Correlation distance Also known as correlation score. The correlation distance provides a measure of

similarity between two variables. Two similar variables will rise and fall together [47,48]. The Pearson

correlation score is popular, and can be easily implemented [49,50]. It produces a score that varies

from �1 to 1. A score of 1 indicates perfect correlation; a score of -1 indicates perfect anti-correlation

(i.e., one variable rises while the other falls). A Pearson score of 0 indicates lack of correlation. Other

correlation measures can be applied to Big Data sets [47,48].

Fair use Copyright and Patent are legal constructs designed to provide intellectual property holders with

the uninfringed power to profit from their creative labors, while still permitting the public to have full

access to the holders’ property. When Public use of copyrighted material does not limit its profitability

to the copyright holder, then the “fair use” of thematerial is generally permitted, even when those uses

exceed customary copyright limits. Most countries have some sort of “fair use” provisions for copy-

righted material. In the United States, Fair Use is described in the Copyright Act of 1976, Title 17,

U.S. Code, section 107, titled, Limitations on exclusive rights: Fair use. Here is an excerpt of the

Act: “Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work,

including such use by reproduction in copies or phonorecords or by any other means specified by that

section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies

for classroom use), scholarship, or research, is not an infringement of copyright. In determining

whether the use made of a work in any particular case is a fair use the factors to be considered shall

include (1) the purpose and character of the use, including whether such use is of a commercial nature

or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and

substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of

the use upon the potential market for or value of the copyrighted work. The fact that a work is unpub-

lished shall not itself bar a finding of fair use if such finding ismade upon consideration of all the above

factors” [51].

Grid A collection of computers and computer resources (typically networked servers) that are coordi-

nated to provide a desired functionality. In the most advanced Grid computing architecture, requests

can be broken into computational tasks that are processed in parallel on multiple computers and

transparently (from the client’s perspective) assembled and returned. The Grid is the intellectual pre-

decessor of Cloud computing. Cloud computing is less physically and administratively restricted than

Grid computing.

Linear regression Amethod for obtaining a straight line through a two-dimensional scatter plot. It is not,

as it is commonly a “best fit” technique, but it does minimize the sum of squared errors (in the y-axis

values) under the assumption that the x-axis values are correct and exact. This means that you would

get a different straight line if you regress x on y; rather than y on x. Linear regression is a popular

method that has been extended, modified, and modeled for many different processes, including

machine learning. Data analysts who use linear regression should be cautioned that it is a method,

much like the venerable P-value, that is commonly misinterpreted [25].

Nongeneralizable predictor Sometimes data analysis can yield results that are true, but non-

generalizable (i.e., irrelevant to everything outside the set of data objects under study). Themost useful

scientific findings are generalizable (e.g., the laws of physics operate on the planet Jupiter or the star

Alpha Centauri much as they do on earth). Many of the most popular analytic methods are not gen-

eralizable because they produce predictions that only apply to highly restricted sets of data; or the
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predictions are not explainable by any underlying theory that relates input data with the calculated

predictions. Data analysis is incomplete until a comprehensible, generalizable and testable theory

for the predictive method is developed.

P value The P value is the probability of getting a set of results that are as extreme or more extreme as the

set of results you observed, assuming that the null hypothesis is true (that there is no statistical dif-

ference between the results). The P-value has come under great criticism over the decades, with a

growing consensus that the P-value is often misinterpreted, used incorrectly, or used in situations

wherein it does not apply [24]. In the realm of Big Data, repeated samplings of data from large data

sets will produce small P-values that cannot be directly applied to determining statistical significance.

It is best to think of the P-value as just another piece of information that tells you something about how

sets of observations compare with one another; and not as a test of statistical significance.

Predictive modeling contests Everyone knows that science is competitive, but very few areas of science

have been constructed as a competitive game. Predictive analytics is an exception. Kaggle is aWeb site

that runs predictive-modeling contests. Their motto is “We’re making data science a sport.” Compet-

itors with the most successful predictive models win prizes. Prizes vary from thousands to millions of

dollars, and hundreds of teams may enter the frays [52].
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Section 16.1. First Analysis (Nearly) Always Wrong

A new thing is just an old thing that hasn’t had an opportunity to disappoint you.
Anon

As we were celebrating the many scientific breakthroughs attributed to Big Data analyses,

a disquieting observation intruded upon the festivities. It seems that many of the funda-

mental studies in the fieldhadyielded irreproducible results. Expensive studies, onmassive

volumes of data, were providing conclusions that were no more reliable than coin tosses.

Whenwe tried to understandwhy thiswas happening, we discovered that just about every-

thing thatcouldgowrongwas indeedgoingwrong.Manyof the faulty studiescamefromthe

field of medicine, but medical failures are easy to spot when patients do not respond to

treatment as hoped. We really have no idea as to how many Big Data conclusions from

the fields of business, politics, economics, and marketing have been leading us astray.

Consider these shocking headlines.

– “Unreliable research: Trouble at the lab” [1]. The Economist, in 2013 ran an article

examining flawed biomedical research. Themagazine article referred to anNIHofficial

who indicated that “researchers would find it hard to reproduce at least three-quarters

of all published biomedical findings, the public part of the process seems to have

failed.” The article described a study conducted at the pharmaceutical company

Amgen, wherein 53 landmark studies were repeated. The Amgen scientists were

successful at reproducing the results of only 6 of the 53 studies. Another group, at Bayer

HealthCare, repeated 63 studies. The Bayer group succeeded in reproducing the results

of only one-fourth of the original studies.
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00016-9
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– “A decade of reversal: an analysis of 146 contradicted medical practices” [2]. The

authors reviewed 363 journal articles, re-examining established standards of medical

care. Among these articles were 146 manuscripts (40.2%) claiming that an existing

standard of care had no clinical value.

– “Cancer fight: unclear tests for new drug” [3]. This New York Times article examined

whether a common test performed on breast cancer tissue (Her2) was repeatable. It

was shown that for patients who tested positive for Her2, a repeat test indicated that

20% of the original positive assays were actually negative (i.e., falsely positive on the

initial test) [3].

– “Reproducibility crisis: Blame it on the antibodies” [4]. Biomarker developers are

finding that they cannot rely on different batches of a reagent to react in a consistent

manner, from test to test. Hence, laboratory analytic methods, developed using a

controlled set of reagents, may not have any diagnostic value when applied by other

laboratories, using different sets of the same analytes [4].

– “Why most published research findings are false” [5]. Modern scientists often search

for small effect sizes, using a wide range of available analytic techniques, and a flexible

interpretation of outcome results. The manuscript’s author found that research

conclusions are more likely to be false than true [5,6].

– “We found only one-third of published psychology research is reliable—now what?”

[7]. The manuscript authors suggest that the results of a first study should be

considered preliminary.

– “A reasonable doubt, the false promise of DNA testing” [8]. An account published in

The Atlantic highlights the errors in the analysis of DNA mixtures.

It is now abundantly clear that many scientific findings, particularly those findings based

on analyses of large and complex data sets, are yielding irreproducible results [9]. The eco-

nomic cost attributed to irreproducibility in preclinical studies (i.e., preliminary medical

research that occurs before testing on human subjects can begin), is estimated at $28 bil-

lion dollars per year, in the United States alone [10].

Anyone who attempts to stay current in the sciences soon learns that much of the pub-

lished literature is irreproducible [9]; and that almost anything published today might be

retracted tomorrow. This appalling truth applies to some of the most respected and

trusted laboratories in the world [11–18]. Those of us who have been involved in assessing

the rate of progress in disease research are painfully aware of the numerous reports indi-

cating a general slowdown in medical progress [19–26]. For the optimists, it is tempting to

assume that the problems that we may be experiencing today are par for the course, and

temporary. It is the nature of science to stall for a while and lurch forwards in sudden fits.

Errors and retractions will always be with us so long as humans are involved in the scien-

tific process. For the pessimists among us, there seems to be something going on that is

really new and different; a game changer. This game changer is the “complexity barrier”, a

term credited to Boris Beizer, who used it to describe the impossibility of managing

increasingly complex software applications [27]. The complexity barrier applies to every

modern Big Data project [28–30].
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Some of the mistakes that lead to erroneous conclusions in complex, data-intensive

research are well known, and include the following:

– Errors in sample selection, labeling, and measurement

Data errors and data documentation errors are common, and there are many examples,

from the scientific literature, where such errors are documented [31–35]. Setting aside

sampling errors, data analysts must contend with the problem of insufficient sampling

[36]. Experimental acumen cannot compensate for a statistically inadequate number of

sample specimens.

– Outright fraud

We do not know the frequency of scientific fraud, but there is no reason to believe that

fraud is rare [18,37–39].When a scientist’s career is on the line, the temptations to fabricate

or fudge data can be overwhelming. The literature is rich with examples of fraud commit-

ted in some of the most respected laboratories on earth [12,39–49]. Considering that Big

Data is collected from a multitude of researchers, it should come as no great surprise to

learn that some of the data included in Big Data resources is fabricated or fraudulent.

– Misinterpretation of the data

The most common source of scientific error is post-analytic, arising from misinterpreta-

tion of results [5,24,50–56]. Virtually every journal article contains, hidden in the introduc-

tion and discussion sections, some distortion of fact or misleading assertion. Scientists

cannot be objective about their own work. As humans, we tend to interpret observations

to reinforce our beliefs and prejudices and to advance our agendas [39].

Large, multi-institutional studies involving many human subjects, many specimens,

and large collections of data, analyzed by teams of statisticians and computer scientists,

carry the veneer of respectability. Manuscript reviewers may be reluctant to reject a

work submitted by a group of 100 scientists. Nonetheless, large studies are just as suscep-

tible to errors of data misinterpretation as are studies performed by a single investigator,

on a small set of data. Today, some of the largest experimental studies and clinical trials

produce results with very small differences between the experimental group and the con-

trol group (e.g., an extension of cancer survival time of two weeks, a 10% difference in

biomarker levels). When the stakes are high, as is always the case with expensive multi-

institutional studies, scientists will be inclined to exaggerate the benefits of a positive

finding, no matter how insignificant the results may be. [Glossary Sponsor bias]

One of the most common strategies whereby scientists distort their own results, to

advance a self-serving conclusion, is message framing [57]. Inmessage framing, scientists

omit from discussion any pertinent findings that might diminish or discredit their own

conclusions. The common practice of message framing is often conducted on a subcon-

scious, or at least a sub-rational, level. A scientist is not apt to read articles whose conclu-

sions contradict his own hypotheses and will not cite disputatious works in his

manuscripts. Furthermore, if a paradigm is held in high esteem by a majority of the
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scientists in a field, then works that contradict the paradigm are not likely to pass peer

review. Hence, it is difficult for contrary articles to be published in scientific journals.

In any case the message delivered in a journal article is almost always framed in amanner

that promotes the author’s interpretation.

It must be noted that throughout human history, no scientist has ever gotten into any

serious trouble for misinterpreting results. Scientific misconduct comes, as a rule, from

the purposeful production of bad data, either through falsification, fabrication, or through

the refusal to remove and retract data that is known to be false, plagiarized, or otherwise

invalid. In the United States, allegations of research misconduct are investigated by the

Office of Research Integrity. Funding agencies in other countries have similar watchdog

institutions. The Office of Research Integrity makes its findings a matter of public record

[58]. Of 150 cases investigated between 1993 and 1997, all but one case had an alleged

component of data falsification, fabrication or plagiarism [59]. In 2007, of the 28 investi-

gated cases, 100% involved allegations of falsification, fabrication, or both [60]. No cases of

misconduct based on data misinterpretation were prosecuted. Perhaps the Office of

Research Integrity understands that the self-serving interpretation of data in entrenched

deep within the human psyche.

Big Data analysis is difficult, and there is no way to work with complex information

without making mistakes. This being the case, it seems prudent to assume that every sci-

entific publication, based on the analysis of a single set of data, Big or small, should be

considered tentative, until other laboratories confirm the findings.
Section 16.2. Why Reanalysis Is More Important Than Analysis

Prediction is very difficult, especially if it’s about the future.
Niels Bohr

One of the nicest things about Big Data, aside from its ample size, is its permanence. We

know that if we commit some error on the first analysis of a Big Data collection, we can

always get a second bite at the apple; another chance to go back and correct our error, and

to possibly produce a conclusion that ismore important than anythingwe originally antic-

ipated. Considering that many of the published studies coming out today are based on the

analysis of massive sets of data, the importance of reanalysis cannot be overestimated.

Let us look at some of the specific roles filled by data reanalysis.

– Verification of data and validation of conclusions

Verification involves checking to determine whether the data was obtained properly (i.e.,

according to approved protocols), and that the data accurately measured what it was

intended to measure, on the correct specimens, and that all steps in data processing were

done using well-documented and approved protocols. Verification often requires a level of

expertise that is at least as high as the expertise of the individuals who produced the data

[61]. Data verification requires a full understanding of the many steps involved in data
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collection and can be a time-consuming task. In one celebrated case, in which two stat-

isticians reviewed a microarray study performed at Duke University, the time devoted to

the verification effort was reported to be 2000 hours [62]. To put this in perspective, the

official work-year, according to the U.S. Office of Personnel Management, is 2087 hours.

Because data verification requires deep knowledge of the data being studied, it stands to

reason that data verification is greatly facilitated by preparing well-annotated data that

supports introspection.

Validation is a different process than verification. Whereas verification checks the data

uponwhich conclusions are drawn, validation checks to see if the conclusions drawn from

the data are correct. Validation usually begins by repeating the same analysis of the same

data, using the methods that were originally recommended. Obviously, if a different set of

conclusions is reached, using the same data and methods, then the original conclusions

failed validation. Validation may also involve applying a different set of analytic methods

to the same data, to determine if the conclusions are consistent. Data can be legitimately

analyzed by multiple different methods. The ability to draw the same conclusion from a

data set, consistently, from multiple methods of analysis, is a type of validation.

Another type of validation involves testing new hypotheses, based on the assumed

validity of the original conclusions. For example, if you were to accept Darwin’s theory

of evolution, then you would expect to find a chronologic archive of fossils in ascending

strata of shale. This being the case, paleontologists provided independent validation to

Darwin’s conclusions.

Scientists rankle at the idea that their data must be inspected, reanalyzed, and some-

times repeated, by other scientists, including competitors. Scientists should understand

that data validation requires a great deal of effort, and that the scientists who devote

themselves to this task are often interrupting their own careers because they believe

that the results under review are of sufficient importance to justify their sacrifice. Also,

the primary purpose of every validation effort is to legitimize the original work, not

to discredit the work. It is better to have a genuine scientific advancement than to have

a huge waste of everyone’s time and money. [Glossary Primary data, Secondary data]

There is an old saying that “God did notmake us perfect, so he compensated bymaking

us blind to our own faults.” Verification and validation help us to compensate for our

blindness, but we cannot attain definitive conclusions in every case. Realistically, themost

we can expect is to verify that the data was obtained properly and to validate that the con-

clusions fit the results [52,62–66]. To help us, there is a rich literature containing guidelines

for achieving validation, including a suite of helpful algorithms, software, devices, statis-

tical methods, and mathematical models [61,67–70].

– Clarifications and improvements upon earlier studies

Original data sets can be reanalyzed using alternate or improved methods to attain out-

comes of greater precision or reliability than the outcomes produced in the original anal-

ysis. Nowhere has this been more successful than in the field of forensics, where newer

studies based on experience with large sets of data have led to fundamental changes in

the way that forensic evidence is interpreted [8,71–74].
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– Performing additional analyses and updating results from earlier studies

It is impossible to fully analyze a complex study on the first attempt. There will always be

some analytic opportunity that was overlooked [75]. Furthermore, as new data arrives, the

original data needs to be reanalyzed, with the newer data. In some cases, the newer data

permits the data curator to fill in missing data points, to enter corrections in the original

data, and to achieve a more accurate assessment of outlier data points in the original data

set. It is a terrible waste to simply abandon an old project, when a reanalysis at some future

time, would help tie loose ends and clarify unanswered questions remaining from the first

analysis of the original data [76].

– Extending the scope of the original study

Sometimes, data collected for one project can be usefully merged with data collected in

other projects. Such projects may pertain to previous, concurrent, or future works, just so

long as they contain related data. In Chapter 17, we will be discussing data repurposing,

which involves using Big Data to answer questions and to achieve results that were not

anticipated by the designers of the Big Data resource.
Section 16.3. Case Study: Reanalysis of Old JADE Collider Data

Life can only be understood backwards; but it must be lived forwards.
Soren Kierkegaard

In the 1980s, the PETRA collider conducted a number of so-called atom smashing exper-

iments designed to measure the force required to bind together quarks and gluons, the

fundamental components of protons and neutrons. In 1986, the PETRA collider was

decommissioned and replacedwith colliders that operated at higher energy levels. Several

decades passed, and advances in physics raised a new set of questions that could only be

answered with observations on low-energy collisions; the kind of observations collected

by PETRA and omitted by present-day colliders [77].

An effort to retrieve the 1980s data was spearheaded by Siegfried Bethke, one of the

original scientists in PETRA’s JADEproject [78]. In the period following the decommission-

ing of PETRA, the original data had been dispersed to various laboratories. Some of the

JADE data was simply lost, and none of the data was collected in a format or a medium

that was directly accessible.

The project was divided into three missions, involving three teams of scientists. One

team rescued the data for archived tapes and transferred the data into a modern medium

and format. The second team improved the original JADE software, fitting it to modern

computer platforms. By applying software that used updated Monte Carlo simulations,

the second team generated a new set of data files. The third team reanalyzed the regen-

erated data using modern methods and improved calculations.



Chapter 16 • Data Reanalysis: Much More Important Than Analysis 357
The project culminated in the production of numerous scientific contributions that

could not have been achieved without the old JADE data. Success was credited, at least

in part, to the participation of someof the same individualswho collected the original data.
Section 16.4. Case Study: Vindication Through Reanalysis

That which can be asserted without evidence, can be dismissed without evidence.
Christopher Hitchens

In 1978, Joseph Strauch published a phylogenetic taxonomy of Charadriiformes birds (i.e.,

a subclassification based on evolutionary descent), by studying their bones (i.e., via oste-

ology) [79]. When he was finished his project, he left his osteologic data for others to rea-

nalyze. As it happened, his conclusions stirred a controversy that persisted over several

decades. Nearly 20 years later, Phillip Chu took a hard look at Strauch’s measurements

[80]. Chu re-coded Strauch’s data to eliminate objectionable feature assignments. Chu

conducted a parsimony analysis of the data rather than using Strauch’s compatibility anal-

ysis; both being methods that establish phylogenetic order. In the end, Chu’s study con-

firmed Strauch’s findings.

It is not particularly easy to publish journal manuscripts that vindicate earlier works.

Journal editors, traditionally, are interested in publishing new science; not in revisiting

previously published studies. It is plausible that Chu’s paper, reanalyzing Strauch’s work,

was worthy of publication only because Strauch’s early work had been publicly challenged

by his colleagues [81]. Journal editors should be receptive to reanalysis manuscripts as

they often provide new insights that advance their fields [82]. In many cases, reanalysis

is the most effect way by which scientific truth can be established.

Reanalysis can only be performed on studies for which data is available. Scientists can

avoid having their studies reanalyzed by simply withholding their data from their

colleagues.
Section 16.5. Case Study: Finding New Planets From Old Data

Many an object is not seen, though it falls within the range of our visual ray, because it

does not comewithin the range of our intellectual ray, i.e. we are not looking for it. So,

in the largest sense, we find only the world we look for.
Henry David Thoreau in Journal, 2 July 1857

Astronomers gather enormous amounts of information on stars. Such data includes direct

photographic images of stars, using improved telescopes (e.g., Hubble Space Telescope),

high-resolution spectroscopy data, X-ray data (e.g., from NASA’s Chandra X-ray
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observatory). As it happens, if a star is orbited by planets, those planets will have some

effect, over the course of time, on the measurements collected on the star [83].

Over the past decade, using preexisting star data, astronomers have found evidence for

thousands of extrasolar planets (exoplanets). Some of the planet-hunting techniques

include [83]:

– Transit method. Exoplanets dim the light received from a star during their transit.

– Radial velocity or Doppler method. Exoplanets can cause the star’s speed to vary with

respect to the speed at which the star moves toward or away from the earth, and this

variation in speed causes a Doppler shift in the star’s emitted spectral lines.

– Transit timing variation. If a star is orbited by multiple planets then the time when an

exopolanet begins its transit across the star and the duration of its transit will vary

depending on the other planets in the vicinity at the time of transit.

– Gravitational microlensing. Exoplanets orbiting a lensing star can produce

perturbations in the measured magnification of the lensing phenomenon.

– Astrometry. Orbiting exoplanets can change the star’s position in the sky.

– Pulsar timing. Orbiting exoplanets may cause small perturbations in the timing of

radio wave pulsations. This method, which applies only to planets orbiting pulsars,

was employed to find the first confirmed exoplanet in 1992.

– Direct imaging. When the exoplanets are large and the star is relatively close to the

earth the exoplanets can be imaged directly by blocking the light produced by their star

(Fig. 16.1).

Today, new methods of finding exoplanets are being developed. Existing data is being

reanalyzed to accommodate new techniques as they arrive. Data that has already been
FIG. 16.1 Actual image of three exoplanets orbiting HR8799, 120 light years from earth, was obtained. The orbiting

exoplanets were made visible in the image, by blocking out the image of their star. From NASA, obtained with the

Palomar Observatory’s Hale Telescope, public domain.
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used to find exoplanets is being reanalyzed to validate the original conclusions, and to

help find additional planets missed in the first analysis, and to uncover new information

about exoplanets that have been discovered [84].
Glossary
Primary data The original set of data collected to serve a particular purpose or to answer a particular set

of questions, and intended for use by the same individuals who collected the data.

Secondary data Data collected by someone else. Much of the data analyses performed today are done on

secondary data [85]. Most verification and validation studies depend upon access to high-quality sec-

ondary data. Because secondary data is prepared by someone else, who cannot anticipate how youwill

use the data, it is important to provide secondary data that is simple and introspective.

Sponsor bias Are the results of big data analytics skewed in favor of the corporate sponsors of the

resource? In a fascinating meta-analysis, Yank and coworkers asked whether the results of clinical tri-

als, conducted with financial ties to a drug company, were biased to produce results favorable to the

sponsors [86]. They reviewed the literature on clinical trials for anti-hypertensive agents, and found

that ties to a drug company did not bias the results (i.e., the experimental data), but they did bias

the conclusions (i.e., the interpretations drawn from the results). This suggests that regardless of

the results of a trial, the conclusions published by the investigators were more likely to be favorable,

if the trial were financed by a drug company. This should come as no surprise. Two scientists can look

at the same results and draw entirely different conclusions.
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Section 17.1. What Is Data Repurposing?

If you want to make an apple pie from scratch, you must first create the universe.
Carl Sagan

Big Data resources are so very difficult to create and maintain that they really should not

be devoted to any single use. We might as well get the most for our investments, and this

means that we should repurpose our data. Data repurposing involves taking pre-existing

data and performing any of the following [1]:

– Finding new uses for data

Fingerprints have been used, since antiquity, as a method for establishing the identity of

individuals. Fingerprints were pressed onto clay tablets, seals, and even pottery left by

ancient civilizations that included Minoan, Greek, Japanese, and Chinese. As early as

the second millennium BCE, fingerprints were used as a type of signature in Babylon,

and ancient Babylonian policemen recorded the fingerprints of criminals.

Toward the close of the 19th century, Francis Galton repurposed fingerprint data to

pursue his own particular interests. Galton was primarily interested in the heritability

and racial characteristics of fingerprints, a field of study that can be described as a scien-

tific dead-end. Nonetheless, in pursuit of his interests, he devised a way of classifying fin-

gerprints by patterns (e.g., plain arch, tented arch, simple loop, central pocket loop, double

loop, lateral pocket loop, and plain whorl). This classification launched the new science of

fingerprint identification, an area of research that has been actively pursued and improved

over the past 120 years (Fig. 17.1).
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00017-0
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FIG. 17.1 U.S. Federal Bureau of Investigation Fingerprint Division, World War II. From FBI, public domain.
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In addition to Galton’s novel classification methods, two closely related technological

enhancements vastly increased the importance of fingerprints. The first was the incredibly

simple procedure of recording sets of fingerprints, on paper, with indelible ink. With the

simple fingerprint card, the quality of fingerprints improved, and the process of sharing

and comparing recorded fingerprints became more practical. The second enhancement

was the decision to collect fingerprint cards in permanent population databases (literally,

digital data). Fingerprint databases enabled forensic scientists to match fingerprints

found at the scene of a crime, with fingerprints stored in the database. The task of finger-

print matching was greatly simplified by confining comparisons to prints that shared the

same class-based profiles, as described by Galton.

Repurposing efforts have expanded the use of fingerprints to include authentication

(i.e., proving you are who you claim to be), keying (e.g., opening locked devices based

on an authenticated fingerprint or some other identifying biometric), tracking (e.g., estab-

lishing the path and whereabouts of an individual by following a trail of fingerprints or

other identifiers), and body part identification (i.e., identifying the remains of individuals

recovered from mass graves or from the sites of catastrophic events). In the past decade,

flaws in the vaunted process of fingerprint identification have been documented, and the

improvement of the science of identification is an active area of investigation [2].

Today, most of what we think of as the forensic sciences is based on object identifica-

tion (e.g., biometrics, pollen identification, trace chemical investigation, tire mark inves-

tigation, and so on). When a data object is uniquely identified, its association with

additional data can be collected, aggregated, and retrieved, as needed.

– Performing original research that could not have been performed when the data

was collected

History is replete with examples of old data driving new discoveries. A recent headline

story explains how century old tidal data plausibly explained the appearance of the
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iceberg that sank the titanic, on April 15, 1912 [3]. Records show that several months ear-

lier, in 1912, the moon, Earth, and sun aligned to produce a strong tidal pull, and this hap-

pened when the moon was the closest to the earth in 1400 years. The resulting tidal surge

was sufficient to break the January Labrador ice sheet, sending an unusual number of ice-

bergs toward the open North Atlantic waters. The Labrador icebergs arrived in the com-

mercial shipping lanes four months later, in time for a fateful rendezvous with the Titanic.

Back in January 1912, when tidal measurements were being collected, nobody foresaw

that the data would be examined a century later.

Clever scientists are finding that old data can be reanalyzed to answer questions that

were not anticipated by the scientists who performed the original study. Getting new uses

from old data is the most cost-effective means of conducting research, and should be

encouraged [1]. [Glossary Data archeology]

– Creating novel data sets through data file linkages

Introspective data, data triples, and data schemas are concepts that had little resonance

before the days of Big Data. Using techniques that link heterogeneous forms of data to

Web Locations is the basis for the so-called Semantic Web, the largest Big Data resource

available to everyone [4]. The Semantic Web can be imagined as one enormous data

re-purposing project in which everyone pursues their own purposes. [Glossary

Heterogeneous data]

For data professionals, repurposing will often involve one or more of the following

efforts:

– Finding subsets in a population once thought to be homogeneous

– Seeking new relationships among data objects

– Creating new concepts or ways of thinking about old concepts based on a

re-examination of data

– Fine-tuning existing data models

– Starting over and remodeling systems
Section 17.2. Dark Data, Abandoned Data, and Legacy Data

We need above all to know about changes; no one wants or needs to be reminded

16 hours a day that his shoes are on.
David Hubel

Every child believes, for a time, that the universe began with his own birth. Anything pre-

ceding his birth is unreal, and of no consequence. Many Big Data resources have a similar

disregard for events that preceded their birth. If events occurred prior to the creation of the

Big Data resource, then those events have no consequence and can be safely ignored. Of

course, this is absurd. It is accurate to think of new data as the result of events that involved

old data; nothing in the universe occurs in the absence of preceding events.
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Today, a large part of data science is devoted to finding trends in data; determining the

simple functions that model the variation of data over time, and predicting how data will

change in the future. These analytic activities require prior data that is annotated with a

time measurement. Analysis of such data often reveals long-term trends, short-term

trends, and periodic trends, often with characteristic forms (e.g., linear, exponential,

power series). Hence, new data has very little meaning when it is not interpreted along

with old data.

It is a shame that legacy data gets such shabby treatment by Big Data creators. Old data

often resides in obsolete formats, on obsolete media, without proper annotation, and is

collected under dubious circumstances. The incorporation of legacy data into modern

Big Data resources is a tall order, but we need to make an effort to save legacy data when-

ever possible. Managers of Big Data resources are often expected to absorb smaller, older

data sets. We cannot just pretend that such data has a lesser role than new data.

The healthcare industry is a prime example of Big Data in search of a legacy. President

Barack Obama had set a goal for every American to have a secure medical record. What

might such records include? Let us consider the medical record for a hypothetical patient

named Lily Livesy, age 92. Not only has Lily outlived her doctors; she has outlived most of

her hospitals. Though she lived in one city all her life, several of the hospitals that admin-

istered her medical care have been closed, and the records destroyed. In the past thirty

years, she has receivedmedical care at various doctor’s offices, and in various departments

in various hospitals. Some of these hospitals kept paper records; some had electronic

records. Only one of the hospitals had anything thatmight be likened to an integrated hos-

pital information system that aggregated transaction records produced by the various

hospital departments (pharmacy, pathology, radiology, surgery,medicine, and so on). This

hospital initiated a new Electronic Health Record system in the year 2013. Unfortunately,

the new system is not compatible with the same hospital’s prior information system, and

the old records did not transfer to the new system. Consequently, in the year 2019, Lily

Livesy, age 92, has one Electronic Health Record, residing in one hospital’s information

system, with no contribution from any other medical facility, and this Electronic Health

Record contains a secure identifier, but no actual medical information. Her 92 year-long

medical history is virtually blank. The same data deficits would apply to millions of other

Americans. This is why, despite our best intentions, complete medical records, extending

from birth to death, for all American citizens, will not be attainable anytime this century.

Often, the utility of legacy data comes as an afterthought inspired by a preliminary

analysis of contemporary data. If a cancer researcher notices that the incidence of a cer-

tain tumor is high, he or she would naturally want to know whether the incidence of the

tumor has been increasing over the past five years, ten years, 15 years and so on. A forensic

criminologist who collects a CODIS signature on a sample of DNAmight desperately need

to check his sample against CODIS signatures collected over the past five decades. The

most useful Big Data resources reach back through time. [Glossary CODIS]

Legacy data plays a crucial role in correcting the current record. It is not unusual for

people to rely on flawed data. If we knew the full history of the data, including how it
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was originally collected, and how it wasmodified over time, wemight avoid reaching erro-

neous conclusions. Several years ago, newspaper headlines drew attention to a modern

manual for prisoner interrogation, used by U.S. forces stationed in Guantanamo. It turned

out that the manual was a republication of a discredited Chinese operations manual used

during the Korean War. The chain of documentation linking the current manual back to

the original source had been broken [5]. In another example of lost legacy data, a Supreme

Court decision was based, in part, on flawed information; an earlier statute had been over-

looked [6]. Had the legacy data been raised during deliberations, an alternate Supreme

Court verdict may have prevailed. To know the history of a data source, we need access

to the legacy data that documents the original sources of our data, and permits us to trace

the modifications of the data, over time.

It is human nature to evaluate the world through direct observations. If we want to

know the length of an object, we measure its length with a ruler. If we want to know

the number of eggs in a basket, we count the eggs. There are times when direct observa-

tions are not the best way to understand our world. If we are clever, we can determine the

height of an object by comparing the length of its shadow, with the length of the shadow of

an object of known height.We can estimate the number of eggs in a basket byweighing the

basket, with and without the eggs, and dividing the total weight of the eggs by the prede-

termined average weight of a single egg. When we have a wealth of descriptive data about

many different objects in our environment, we can derive new meaning from old mea-

surements. The remainder of this chapter is devoted to five cases in point.
Section 17.3. Case Study: From Postal Code to Demographic
Keystone

When you get to a fork in the road, take it.
Yogi Berra

There are three ways to assign integers to objects: cardinals, ordinal, and nominals. Car-

dinals tell us the number of objects (e.g., 2, 5, or ten items). Ordinals give us a rank (e.g.,

1st, or 5th, or 8th place in a list). Nominal means “in name only”, and nominals are arbi-

trary numbers that help identify an object. Telephone numbers, social security numbers,

and zip codes are nominals. Nominals can be added together or multiplied, and divided,

but it would be pointless to do so. Despite its self-effacing definition and its limited

mathematical utility, nominal data sets are among the most useful of legacy data

resources [1].

Zip codes were contrived by the U.S. Postal service to speed the distribution of mail.

The original 5-digit zip codes were introduced in the early 1960s, with each zip code repre-

senting a geographic area containing a roughly equivalent segment of the population. The

first three digits of the zip code identify mail distribution centers, from which mail sorted

by the remaining two digits is distributed to the proper post offices. In the 1980s, an
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additional 4 digits was appended to the zip code, identifying individual buildings within

the boundary of the 5-digit code.

Because zip codes describe geographic and demographic areas, they can be assigned a

longitude, latitude, and elevation, typically measured at the geographic center of its

boundaries. All data to which a zip code is attached (e.g., addresses, charge card transac-

tions, crime reports, occurrences of reportable diseases, deaths, electricity consumption,

water resources, homes receiving cable television, broadband usage) can be organized

with the zip code serving as its primary record key. The lowly zip code, intended as an

aid to mailmen, has been repurposed to serve entrepreneurs, epidemiologists, resource

managers, and many others.
Section 17.4. Case Study: Scientific Inferencing From
a Database of Genetic Sequences

It [natural selection] is all about the survival of self-replicating instructions for

self-replication.
Richard Dawkins [7]

With the exception of identical twins, parthenogenetic offspring, and clones, every organ-

ism on earth has a unique sequence of DNA-forming nucleotides that distinguishes its

genetic material (i.e., it’s genome) from the genome of every other organism. If we were

to have a record of the complete sequence of nucleotides in an individual’s genome, we

could distinguish that individual from every other organism on earth, by comparing

genome sequences. This would require a lot of digital storage for every organism. In

the case of humans, the genome is 3 billion nucleotides in length. As luck would have

it, because there is enormous variation in genome sequence, from individual to individual,

the identity of human individuals can be established by sampling short segments of

DNA [1].

CODIS (CombinedDNA Index System) collects the unique nucleotide sequences of the

equivalent 13 segments of DNA, for every individual included in the database [8]. Using

CODIS, DNA sampled at a crime scene can bematched against DNA samples contained in

the database. Hence, the identity of individuals whose DNA is found at a crime scene can

often be established. In the absence of a match it is sometimes possible to establish the

genetic relationship (i.e., paternal ormaternal relatives) between crime scene samples and

individuals included in the database.

CODIS serves as an example of a database with narrow scope (i.e., names of people

and associated DNA sequences), and broad societal value. The basic design of the CODIS

database can be extended to any organism. For example, a database of DNA samples

collected from individual trees in a geographic location can establish the source of seeds

or pollen grains sticking to an article of clothing, and this information might lead to the

location where a criminal event transpired. A population database containing full
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genome DNA sequences could be used to determine the presence or absence of disease-

causing genes in individuals or to predict the response of an individual to a particular

drug [9–12].
Section 17.5. Case Study: Linking Global Warming to
High-Intensity Hurricanes

You can observe a lot by watching.
Yogi Berra

The UK Hadley Centre maintains a database of sea surface temperatures, over a 5-degree

latitude-longitude global grid, from the year 1850, to the present, and updated monthly

[13]. This data tells us how the ocean temperature changes seasonally and geographically,

over time. Kerry Emanuel found a new use for the Hadley data when he noticed an asso-

ciation between regionally increased ocean temperatures and particularly strong hurri-

canes spawned in these same regions. Reviewing 50 years of data, Emanuel confirmed

that the intensity of hurricanes increased in step with the warming of the North Atlantic

and Pacific oceans [14]. A data set, intended primarily for charting trends in water tem-

perature and correlating those trends with the oceanic reach of sea ice, found a new

use: forecasting the intensity of hurricanes [1].
Section 17.6. Case Study: Inferring Climate Trends With
Geologic Data

Wewaste a lot of time waiting for spectacular newmaterial. We haven’t sat down and

taken a very close look at the material we have.
Bettina Stangneth, historian and author of “Eichmann Before Jerusalem:

The Unexamined Life of a Mass Murderer” [15]

Mountains are like icebergs made of rock. The bulk of a mountain is buried underground.

When the top of the mountain is eroded, the weight of the mountain is reduced, and the

mountain bobs upwards, a little bit. The natural process through which mountains are

flattened, over eons, requires the erosion of its surface plus its ever-rising subsurface.

When water is sucked from a mountain, the mountain lightens and rises. Likewise, if

the water is sucked out of a tectonic plate, the entire plate (i.e., the surface of the planet

overlying the plate) will rise. The National Science Foundation’s Plate Boundary Observa-

tory provides precise measurements of ground positions from data generated by GPS

(Global Positioning System) satellites. A group of scientists working at the Scripps Insti-

tution of Oceanography found that all of the ground stations in the western United States

exhibited measurable uplift. In the period 2003–04, the western states rose an average of

0.15 inches, and the western mountains rose more than half an inch in the same period.
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This wide rise coincides with a long drought in the west. It would seem that the only expla-

nation for the uplift of the tectonic plate, and the greater uplift of the western mountains,

is the loss of water, via evaporation, without replacement. So strong is the relationship

between water loss andmountain rise that water resources in the west can now be tracked

with GPS ground measurements [16,1].
Section 17.7. Case Study: Lunar Orbiter Image Recovery
Project

The world is the totality of facts, not things. (Die Welt ist die Gesamtheit der Tatsa-

chen, nicht der Dinge)
Ludwig Wittgenstein

Following the first Apollo mission to the moon (Apollo 11, July 20, 1969), the five subse-

quent Apollo missions left behind recording instruments on the lunar surface. The collec-

tive set of downlinked data received from these instruments in known as the Apollo Lunar

Surface Experiments Package (ALSEP). More than 11,000 data tapes were recorded [1].

During the Apollo program, control and use of the tapes, as well as the responsibility to

safely archive the tapes, was transferred among various agencies and institutions. When

the Apollo mission ended, funds were low, and a portion of the data that had been distrib-

uted to various investigators and agencies was never sent to the official archives [17]. It

should come as no surprise that, at the present time, about half of the ALSEP tapes are

missing; their whereabouts uncertain. Of the available tapes, much of the data is difficult

to access, due to the use of abandoned data media (i.e., 7 and 9 track tapes) and obsolete

data formats [17].

Available ALSEP data, when converted into a modern data format, has proven to be a

valuable asset, when reanalyzed with modern analytic tools (Figs. 17.2 and 17.3). For

example, the first analyses of ALSEP’s seismic data, conducted 35 years ago, indicated that

about 1300 deep moonquakes had occurred during the period when the data was being

downlinked. The field of seismic analysis has advanced in the interim. A reanalysis of the
FIG. 17.2 Earth’s first view of itself, from a location near the moon, by the United States Lunar Orbiter I, on August

23, 1966. From U.S. National Aeronautics and Space Administration (NASA), public domain.



FIG. 17.3 Same image, but processed and enhanced by NASA. From NASA, public domain.
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same data, using modern techniques, has produced an upward revision of the first esti-

mate; to about 7000 deep moonquakes [17].

Today, there is a renewed push to find, collect and archive themissing ALSEP data.Why

is there a sudden urgency to finish a chore that should have been completed decades ago?

Simply put, the tapes must be restored before the last of the original investigators, who

alone understand the scope and organization of the data, vanish into retirement or death.
Glossary
CODIS Abbreviation for Combined DNA Index System. CODIS is a collection of the unique nucleotide

sequences of the equivalent 13 segments of DNA, for every individual included in the database [8].

The CODIS database is used by law enforcement personnel and contains identifying DNA sequences
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for individuals who have been processed within the criminal justice system. DNA obtained at a crime

scene can be matched against DNA samples contained in the database. Hence, the identity of individ-

uals whose DNA is found at a crime scene can often be established. In the absence of a match, it is

sometimes possible to establish the genetic relationship (i.e., paternal or maternal relatives) between

crime scene samples and individuals included in the database.

Data archeology The process of recovering information held in abandoned or unpopular physical storage

devices, or packaged in formats that are no longer widely recognized, and hence unsupported bymost

software applications. The definition encompasses truly ancient data, such as cuneiform inscriptions

stored on clay tablets circa 3300 BCE, and digital data stored on 5.25-inch floppy disks in Xyrite word-

processor format, circa 1994.

Heterogeneous data Sets of data that are dissimilar with regard to content, purpose, format, organization,

and annotations. One of the purposes of Big Data is to discover relationships among heterogeneous

data sources. For example, epidemiologic data sets may be of service to molecular biologists who have

gene sequence data on diverse human populations. The epidemiologic data is likely to contain differ-

ent types of data values, annotated and formatted in a manner that is completely different from the

data and annotations in a gene sequence database. The two types of related data, epidemiologic and

genetic, have dissimilar content; hence they are heterogeneous to one another.
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Section 18.1. What Is Data Sharing, and Why Don’t We Do
More of It?

It’s antithetical to the basic norms of science to make claims that cannot be validated

because the necessary data are proprietary.
Michael Eisen [1]

Without data sharing, there can be very little progress in the field of Big Data. The reasons

for this are simple:

– Research findings have limited value unless they are correlated with data contained in

other databases.

– All findings, even those based on verified data, are tentative and must be validated

against data contained in multiple datasets.

– Unless data is shared, scientists cannot build upon the work of others, and science

devolves into a collection of research laboratories working in isolation from one

another, leading to intellectual stagnation [1,2].

– Scientific conclusions have no credibility when the research community, oversight

agencies, and the interested public cannot review the data upon which the findings

were based and the details of how that data was measured.

Without data sharing, we do not have science.We just have people with their own agendas

asking us to believe their conclusions. A long list of anguished position papers, urging

researchers to share their data, has been published [3–8]. To be sure, there are technical

obstacles to data sharing, but for every technical obstacle, there is a wealth of literature

offering solutions [9–20].
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00018-2
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Despite the imperatives of data sharing, scientists have been slow to adopt data sharing

policies [6]. Because the issue of data sharing is so important to the field of Big Data, it is

worth reviewing the impediments to its successful implementation.
Section 18.2. Common Complaints

Science advances funeral by funeral.
Folk wisdom

Here is a listing of the commonly heard reasons for withholding data from the public,

along with suggested remedies.

– To protect scientists from “research parasites”

A recent opinion expressed by two editors of the New England Journal of Medicine, in an

essay entitled “Data Sharing,” expressed concern that a new brand of researcher uses data

generated by others, for his or her own ends. The editors indicated that some front-line

researchers characterize such individuals as “research parasites” [21]. The essayists

suggested that researchers who want to use the data produced by others should do so

by forming collaborative partnerships with the group that produced the original data [21].

The idea of collaborative partnerships may have been a reasonable strategy 30 years

ago, before the emergence of enormous datasets, built from the work of hundreds of data

contributors. Negotiating for data, with the promise of developing a mutually beneficial

collaboration, is not a feasible option. Today, scientific projects may involve dozens or

hundreds of scientists, with no single individual claiming ownership or responsibility

for the aggregate data set. The individual contributors may have only the dimmest aware-

ness of their own role in the effort. Under these circumstances, an outside investigator is

unlikely to find an identifiable individual or group of individuals with the technical exper-

tise, the scientific judgment, the legal standing, the ethical authority, and the strength of

will, to negotiate a new collaboration and to surrender a large set of data.

Today, well-designed data sets can be merged with other sources of data, and repur-

posed for studies that were never contemplated by the original data contributors [22].

The goal of Big Data is to create data sets that can be utilized by the entire scientific

community, with minimal barriers to access. Characterizing data users as “research

parasites,” as witnessed in the New England Journal of Medicine article, misses the

whole point of Big Data science [21].

– To avoid data misinterpretation

Every scientist who releases data to the public must contend with the fear that amember

of the public will misinterpret the data, reach an opposite conclusion, publish their

false interpretation, and destroy the career of the trusting soul who was kind enough

to provide the ammunition for his own execution. Teams of scientists developing a

new drug or treatment protocol, may fear that if their data is released to the public, their
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competitors may seize the opportunity to unjustly critique their work and thus jeopar-

dize their project.

Examples of such injustices have been sought, but not found [6]. There is no evidence

that would lead anyone to believe that a misinterpretation of data has ever overshadowed

a correct interpretation of data. Scientists have endured the withering criticisms of their

colleagues since time immemorial. As they say, it comes with the territory. Hiding data for

the purpose of avoiding criticism is unprofessional.

– To limit access to responsible professionals

Some researchers believe that data sharing must be a conditional process wherein inves-

tigators submit their data requests to a committee of scientists who decide whether the

request is justified [23]. In some cases, the committee retains the right to review any

results predicated on the shared data, with the intention of disallowing publication of

results that they consider to be objectionable.

There are serious drawbacks to subjecting scientists to a committee approval process.

The public needs unfettered access to the original data upon which published research

results are based. Anything less makes it impossible to validate the conclusions drawn

from the data, and invites all manner of scientific fraud. In the United States, this opinion

is codified by law. The Data Quality Act of 2002 restrains government agencies from

developing policies based on data that is unavailable for public review [24–27]. [Glossary
Data Quality Act]

– To sustain the traditional role of data protector

Lawyers, bankers, healthcare workers, and civil servants are trained to preserve confi-

dentiality; much like priests protect the confessional. It is understandable that many

professionals are reluctant to share their data with the world-at-large. Nonetheless, it is

unreasonable to hide data that has scientific value.

Before confidential information is released, data holders must be convinced that data

sharing can be accomplished without breaching confidentiality, and that the effort spent

in the process will yield some benefit to the individuals whose data is being appropriated.

A large literature on the subject of safely sharing confidential data is readily available

[28–33].

– To await forthcoming universal data standards

Trying to merge data sets that are disorganized is impossible, as is merging data sets

wherein equivalent types of data are discordantly annotated. Because researchers and

other data collectors use a variety of different types of software to collect and organize

their data, obstacles raised by data incompatibility have been amajor impediment to data

sharing. The knee-jerk solution to the problem has always been to create new data

standards.

In the past few decades, the standards-making process has evolved into amajor indus-

try [34]. There are standards for describing, organizing, and transmitting data. There are
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dozens, maybe hundreds, of standards, nomenclatures, classifications, and ontologies for

the various domains of Big Data information, and all of these intellectual products are

subject to multiple revisions. [Glossary Classification versus ontology]

The hunger for standards is insatiable [35]. The calls for new standards and new ontol-

ogies never seems to end. The many shortcomings of standards were discussed at length

in Chapter 7, “Standards and Data Integration.” It must be noted that the proliferation of

standards, many of which are abandoned soon after they are created, has served to

increase the complexity and decrease the permanence of Big Data resources [28,36].

Despite all the effort devoted to data standards, there is no widely adopted system for

organizing and sharing all the different types of data encountered in Big Data resources.

Perhaps the “standard” answer is not the correct answer, in this instance. Specifications,

discussed in detail in Section 7.2, are a possible alternative to standards, and should be

considered an option for those who are open to suggestion in this matter.

– To protect legal ownership

Ownership is amercantile concept conferring the right to sell. If someone owns a cow, that

means that they have the right to sell the cow. If you own a house, even amortgaged house,

then you have the right to sell the house. Let’s focus on one particular type of confidential

record that pertains to virtually everyone: themedical record. Who owns your confidential

medical record? Is it owned by the patient? Is it owned by the medical center? Is it owned

by anyone?

In law, there does not seem to be anyone who has the right to sell medical records;

hence, it is likely that nobody can claim ownership. Still, medical institutions have a fidu-

ciary responsibility to maintain medical records for their patients, and this entitles both

patients and healthcare providers to use the records, as needed. Patients have the right to

ask hospitals to send their medical records to other medical centers or to themselves.

Hospitals are expected to archive tissues, medical reports and patient charts to serve

the patient and society. In the United States, State health departments, the Centers for

Disease Control and Prevention (CDC), and cancer registries all expect medical centers

to deliver medical reports on request.

In all the aforementioned examples, data sharing is conducted without jeopardizing,

or otherwise influencing, the data holder’s claim of ownership.

– To comply with rules issued from above

It is not uncommon for researchers to claim that they would love to share their data, but

they are forbidden from doing so by the lawyers and administrators at their institutions.

Two issues tend to dissuade administrators from data sharing. The first is legal liability.

Institutions have a responsibility to avoid punitive tort claims, such as those that may

arise if human subjects complain that their privacy has been violatedwhen their confiden-

tial information is shared. From the viewpoint of the institution, the simplest remedy is to

forbid scientists from sharing their data. Secondly, institutions want to protect their own

intellectual property, and this would include patents, drug discoveries, manufacturing
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processes, and even data generated by their staff scientists. Institutions may sometimes

equate data sharing with poor stewardship of intellectual property. [Glossary Intellectual

property]

When an institution forbids data sharing, as a matter of policy, scientists should argue

that the institution cannot facilitate or promote its own research. Simply put, if Institution

A does not share its data with Institution B, then Institution B will not share its data with

Institution A. In addition, when Institution A publishes a scientific breakthrough, then

Institution B will not find those claims credible, until their own researchers can review

the primary data.

It is easy to forget that society, as a whole, benefits when scientific projects lead to

discoveries. Without data sharing, those benefits will come at a glacial pace, and at great

expense. Institutions have a societal obligation to advance science through data sharing.

– To demand reimbursement

Professionals are, by definition, people who are paid for their services. Professionals who

go to the trouble of providing data to the public will want to be reimbursed. Data holders

can be reassured that if they have created data at their own expense, for their own private

use, then that data is theirs to keep. Nobody will take that data from them. But if the data

holders have made public assertions based on their data, then they should understand

that the scientific community will not give those assertions any credence, without having

the data available for review.

The price that researchers pay for withholding their data (i.e., lack of validation

of conclusions and professional obscurity) far exceeds the negligible costs of data

sharing. Contrariwise, if the data is shared, and their results are validated, then their

payment may come in the form of future grants, patents, prestige, and successful

collaborations.

– To avoid distributing flawed data

Scientists are reluctant to release data that is full of errors. In particular, data curators may

fear that if such data is released to the public, they will be inundated with complaints from

angry data analysts, demanding that every error be corrected.

A 2011 study has shown that researchers with high quality data were, generally, willing

to share their data [37]. Researchers who had weak data, that might support various inter-

pretations and contrasting conclusions, were less willing to share their data. It is impor-

tant to convince the scientists who create and hold data that the researchers who use their

data, without asking permission and without forming collaborations, are not “research

parasites”; they are the people whowill validate goodwork, improve upon imperfect work,

and create newwork from otherwise abandoned data. The societal push toward data shar-

ing should provide a strong impetus for scientists to improve the value of their data, so that

they will something worth sharing.

Aside from corrections, all data sets need constant updating, and there are proper and

improper ways of revising data (discussed in Section 8.1, “The Importance of Data that
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Cannot Change”). Dealing with change, in the form of revised systems of annotations, and

revised data elements, is part of the job of the data curator.

Institutions cannot refuse to share their data simply because their data contains errors

or is awaiting revisions. Flawed data is common, and it’s a safe bet that every large data set

contains errors [38]. Institutions and scientific teams should hire professionals with the

requisite skills to properly prepare, correct, and improve upon their data collections.

– To protect against data hackers

Properly deidentified, Big Data records may contain information that, when combined

with data held in other databases, may uniquely identify patients [39]. As an obvious

example, if a medical record contains an un-named patient’s birth date, gender and

zip-code, and a public database lists names of people in a zip-code, along with their birth

dates and gender, it is a simple step to ascertain the identity of “deidentified” patients.

A specific instance, making national news headlines, may serve to clarify just how this

may happen [40]. A 15-year-old boy was fathered using anonymously donated sperm. The

boy wanted to know the identity of his biological father. A private company, had created a

DNADatabase from 45,000DNA samples. The purpose of the databasewas to allow clients

to discover kin by having their DNA compared with all the DNA samples in the database.

The boy sent his DNA sample to the company, along with a fee. A comparison of the boy’s

Y chromosome DNA (inherited exclusively from the father) was compared with

Y chromosome DNA in the database. The names of two men with close matches to the

boy’s Y chromosome were found.

The boy’s mother had been provided (from the sperm bank) with the sperm donor’s

date of birth and birthplace. The boy used an online service to obtain the name of every

man born in the sperm donor’s place of birth on the sperm donor’s date of birth. Among

those names, one name matched one of the two Y-chromosome matches from the DNA

database search. This name, according to newspaper reports, identified the child’s father.

[Glossary Y-chromosome]

In this case, the boy had access to his own uniquely identifying information (i.e., his

DNA and specifically his Y chromosome DNA), and he was lucky to be provided with

the date of birth and birthplace of his biological father. He was also extremely lucky that

the biological father had registered his DNA in a database of 45,000 samples. And he was

lucky that the DNA database revealed the names of its human subjects. The boy’s success

in identifying his father required a string of unlikely events, and a lax attitude toward sub-

ject privacy on the part of the personnel at the sperm bank and the personnel at the DNA

database.

Regardless of theoretical security flaws, the criminal or malicious identification

of human subjects included in deidentified research data sets is extremely rare. More

commonly, confidential records (e.g., personnel records, credit records, fully identified

medical records) are stolen wholesale, relieving thieves from the intellectually challenging

task of finding obscure information thatmay link a deidentified record to the identity of its

subject.
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– To preserve compartmentalization of data

Most data created by modern laboratories has not been prepared in a manner that

permits its meaningful use in other laboratories. In many cases the data has been

compartmentalized, so that the data is disbursed in different laboratories. It is par for

the course that a no single individual has taken the responsibility of collecting and

reviewing all of the data that has been used to support the published conclusions of a

multi-institutional project.

In the late 1990s, Dr. Wu Suk Hwang was a world-famous cloning researcher. The

government of South Korea was so proud of Dr. Hwang that they issued a commemora-

tive stamp to celebrate his laboratory’s achievements. Dr. Hwang’s status drastically

changed when fabrications were discovered in a number of the manuscripts produced

by his laboratory. Dr. Hwang had a habit of placing respected scientists as co-authors

on his papers [41]. When the news broke, Hwang pointed a finger at several of his

collaborators.

A remarkable aspect of Dr. Hwang’s publications was his ability to deceive the

coworkers in his own laboratory, and the co-authors located in laboratories around the

world, for a very long time. Dr. Hwang used a technique known as compartmentalization;

dividing his projects into tasks distributed to small groups of scientists who specialized in

one step of the research process. By so doing, his coworkers never had access to the entire

project’s data. The data required to validate the final achievement of the research was not

examined by his co-workers [42,41].

For several years, South Korean politicians defended the scientist, to the extent of

questioning the patriotism of his critics. Over time, additional violations committed by

Dr. Hwang were brought to light. In 2009, Hwang was sentenced in Seoul, S. Korea, to a

two-year suspended prison sentence for embezzlement and bioethical violations; but

he was never found guilty of fabrication [43].

Large data projects are almost always compartmentalized. When you have dozens or

even hundreds of individuals contributing to a project, compartmentalization occurs

quite naturally. In fact, what would you do without compartmentalization? Wait for every

scientist involved in the project to review and approve one another’s data? Today, large

scientific projects may involve hundreds of scientists. Without compartmentalization,

nothing would ever get published. The lesson here is that at the end of every research

project, all of the data that contributed to the results must be gathered together as an

organized and well-annotated dataset for public review.

– To guard research protocols

In every scientific study, the measurements included in the data must be linked to the

study protocols (e.g., laboratory procedures) that produced the data. In some cases, the

protocols are not well documented. In other cases, the protocols are well documented,

but the researchers may have failed to follow the recommended protocols; thus rendering

the data irreproducible. Occasionally, the protocols are the intellectual property of an
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entity other than the persons who created the data. In all these instances, the data holders

may be reluctant to share their protocols with the public.

– To conceal instances of missing data

It is almost inevitable, when data sets are large and complex, that there will be somemiss-

ing data points. In this case, data may be added “by imputation.” This involves computing

a statistical best bet on what the missing data element value might have been, and insert-

ing the calculated number into the data set. A data manager may be reluctant to release to

the public a database with “fudged” data.

It is perfectly legitimate to include imputed data points, on the condition that all the

data is properly annotated, so that reviewers are aware of imputed values, and of the

methods used to generate such values.

– To avoid bureaucratic hurdles

As discussed in Section 9.3, “Data that Comes with Conditions,” institutions may resort to

Kafkaesque measures to insure that only qualified and trusted individuals gain access

to research data. It should come as no surprise that formal requests for data may take

two years or longer to review and approve [44]. The approval process is so cumbersome,

that it simply cannot be implemented without creating major inconveniences and delays,

for everyone involved (i.e., data manager and data supplicant).

In the United States, federal agencies often seek to share data with one another. Such

transactions require Memoranda of Understanding between agencies, and these memo-

randa can takemonths to negotiate and finalize [44]. In some cases, try as theymight, data

is not shared among federal agencies due to a lack of regulatory authorization that cannot

be resolved to anyone’s favor [44].

Hyper vigilance, on the part of U.S. Federal agencies, may stem from unfortunate inci-

dents from the past that cannot be easily forgotten. One such incident, which attracted

international attention, occurred when the United States accidentally released details

of hundreds of the nuclear sites and programs, including the exact locations of nuclear

stockpiles [45]. Despite their reluctance to share some forms of data, U.S. agencies have

been remarkably generous with bioinformatics data, and the National Institutes of Health

commonly attaches data sharing requirements to grants, and other awards.

In the U.S., Federal regulations impose strict controls on sharing identified medical

data. Those same regulations specify that deidentified human subject data is exempted

from those controls, and can be freely shared [32,33]. Data holders must learn the proper

methods for deidentifying or anonymizing private and confidential medical data.

Whew! Where does this leave us? Data sharing is not easy. Nonetheless, published

claims cannot be validated unless the data is made available to the public for review,

and science cannot advance if scientists cannot build upon the data produced by their

colleagues. Research institutions, both public and private, must find ways to deal with

the problem, despite the difficulties. They might start by hiring scientists who are steeped

in the craft of data sharing.
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Section 18.3. Data Security and Cryptographic Protocols

No matter how cynical you become, it’s never enough to keep up.
Lily Tomlin

Let us be practical. Nearly everyone has confidential information on their computers.

Often, this information resides in a few very private files. If those files fell into the hands

of the wrong people, the results would be calamitous. For myself, I encrypt my sensitive

files. When I need towork with those files, I decrypt them.When I’m finished working with

them, I encrypt them again. These files are important to me, so I keep copies of the

encrypted files on thumb drives and on an external server. I don’t care if my thumb drives

are lost or stolen. I don’t care if a hacker gets access to the server that stores my files. The

files are encrypted, and only I know how to decrypt them.

Anyone in the data sciences will tell you that it is important to encrypt your data files,

particularly when you are transferring files via the internet. Very few data scientists follow

their own advice. Scientists, despite what you may believe, are not a particularly disci-

plined group of individuals. Few scientists get into the habit of encrypting their files. Per-

haps they perceive the process as being too complex.

For serious encryption, you will want to step up to OpenSSL. OpenSSL is an open

source collection of message digest protocols (i.e., protocols that yield one-way hashes)

and encryption protocols. This useful set of utilities, with implementations for various

operating systems, is available at no cost from:

https://www.openssl.org/related/binaries.html

Encryption algorithms and suites of cipher strategies available through OpenSLL include:

RSA, DH (numerous protocols), DSS, ECDH, TLS, AES (including 128 and 256 bit keys),

CAMELLIA, DES (including triple DES), RC4, IDEA, SEED, PSK, and numerous GOST pro-

tocols. In addition, implementations of popular one-way hash algorithms are provided

(i.e., MD5 and SHA, including SHA384). OpenSSL comes with an Apache-style open

source license. [Glossary AES]

ForWindows users, the OpenSSL download contains three files that are necessary for file

encryption: openssl.exe, ssleay32.dll, and libeay32.dll. If these three files are located in your

current directory, you can encrypt any file, directly from the command prompt, as shown:

openssl aes128 -in public.txt -out secret.aes -pass pass:abcdefgh

The command line provides your chosen password, “abcdefgh” to the aes128 encryption

algorithm, which takes the file public.txt and produces an AES-encrypted output file,

secret.aes. Of course, once you’ve encrypted a file, you will need a decryption method.

Here’s a short command line that decrypts the encrypted file created by the preceding

command line:

openssl aes128 -d -in secret.aes -out decrypted.txt -pass pass:
abcdefgh

https://www.openssl.org/related/binaries.html
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We see that decryption involves inserting the “-d” option into the command line. AES is an

example of a symmetric encryption algorithm,whichmeans that the encryption password

also serves as the decryption password.

Encrypting and decrypting individual strings, files, groups of files, and directory

contents is extremely simple and can provide a level of security that is likely to be

commensurate with your personal needs.

Here is a short Python script, aes.py, that encrypts all the files included in a list, and

deposits the encrypted files in a thumb drive sitting in the “f:” drive.

import sys, os, re
filelist = ['diener.txt','simplify.txt','re-ana.txt', 'phenocop.

txt', 'mystery.txt','disaster.txt', 'factnote.txt', 'perlbig.txt',
'referen.txt', 'create.txt', 'exploreo.txt']

pattern = re.compile("txt")
for filename in filelist:

out_filename = pattern.sub('enc', filename)

out_filename = "f:\\" + out_filename
print(out_filename)

cmdstring = "openssl aes128 -in " + filename + " -out " + out_filename +
" -pass pass:abcdefgh"

os.system(cmdstring)

– Public and private key cryptographic protocols

Many cryptographic algorithms are symmetric; the password used to encrypt a file is the

same as the password used to decrypt the file. In an asymmetric cryptographic algorithm,

the password that is used to encrypt a file is different from the password that is used to

decrypt the file. The encrypting password is referred to as the public key, by convention.

The public key can be distributed to friends or posted on a public web site. The decrypting

password is referred to as the private key, and it must never be shared.

How is a public/private key system used? If Alice were to encrypt a file with Bob’s pub-

lic key, only Bob’s private key could decrypt the file. If Bob does not lose his private key,

and if Bob does not allow his private key to be shared or stolen, then only Bob can

decrypt files encrypted with his public key. Alice can send the encrypted file, without

worrying that the encrypted file could be intercepted and opened by someone other

than Bob.

As discussed, openssl can be run via command lines, from the system prompt (e.g.,

c:\> in Windows systems). Let’s generate a public/private key pair that we’ll use for

RSA encryption.

openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt

rsa_keygen_bits:2048
openssl rsa -pubout -in private_key.pem -out public_key.pem
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These two commands produced two files, each containing a cryptographic key. The pri-

vate key file is private_key.pm. The public key file is public_key.pem. Let’s encrypt a file

(sample.txt) using RSA encryption and the public key we just created (public_key.pem)

openssl rsautl -encrypt -inkey public_key.pem -pubin -in sample.txt -

out sample.ssl

This produces an encrypted file, sample.ssl. Let’s decrypt the encrypted file (sample.ssl)

using the private key that we have created (private_key.pem)

openssl rsautl -decrypt -inkey private_key.pem -in sample.ssl -out
decrypted.txt

In common usage, this protocol only transmits small message files, such as passwords.

Alice could send a large file, strongly encrypted with AES. In a separate exchange, Alice

and Bob would use public and private keys to transmit the password. First, Alice would

encrypt the password with Bob’s public key. The encrypted message would be sent to

Bob. Bob would decrypt the message with his private key, thus producing the password.

Bob would use the password to decrypt the large AES-encrypted file. A large variety of

security protocols have been devised, utilizing public/private key pairs, suiting a variety

of purposes.

The public/private keys can also be used to provide the so-called digital signature of

the individual holding the private key.

To sign and authenticate a transferred data file (e.g., mydata.txt), the following three

steps must be taken:

1. Alice creates a one-way hash of her data file, mydata.txt, and creates a new file, called

hashfile, to hold the one-way hash value.
openssl dgst -sha256 mydata.txt > hashfile
2. Alice signs the hashfile with her private key, to produce a digital signature in the file

“signaturefile”:
openssl rsautl -sign -inkey private_key.pem -keyform PEM -in
hashfile >signaturefile
3. Alice sends mydata.txt and the signature file(“signature”) to Bob

4. Bob verifies the signature, with his public key.
openssl rsautl -verify -inkey public_key.pem -pubin -keyform PEM -in
signaturefile
The verified contents of the signature file is the original hash created by Alice, of

mydata.txt

SHA256(mydata.txt)= 6e2a1dbf9ea8cbf2accb64f33ff83c7040413963e

69c736accdf47de0bc16b1a
This verifies Alice’s signature and yields Alice’s hash of her mydata.txt file
5. Bob conducts his own one-way hash on his received file, mydata.txt.
openssl dgst -sha256 mydata.txt
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This produces the following hash value, which is the same value that was decrypted from

Alice’s signature

SHA256(mydata.txt)= 6e2a1dbf9ea8cbf2accb64f33ff83c7040413963e69c
736accdf47de0bc16b1a

Because the receivedmydata.txt file has the same one-way hash value as the sent mydata.

txt file, and because Bob has verified that the sent mydata.txt file was signed by Alice, then

Bob has taken all steps necessary to authenticate the file (i.e., to show that the received file

is the file that Alice sent).

There are some limitations to this protocol. Anyone in possession of Alice’s private key

can “sign” for Alice. Hence the signature is not equivalent to a hand-written signature or to

a biometric that uniquely identifies Alice (e.g., iris image, CODIS gene sequences, full set

of fingerprints). Really, all the process tells us is that a document was sent by someone in

possession of Alice’s private key. We never really know who sent the document.

The signature does not attest to anything, other than that a person with Alice’s key

actually sent the document. There is nothing about the process that would indicate that

she personally verifies that the content of the transmitted material is accurate or that the

content was created by Alice or that she agrees with the contents.

Cryptography is fascinating, but experts who work in the field of data security will tell

you that cryptographic algorithms and protocols can never substitute for a thoughtful

data security plan that is implemented with the participation and cooperation of the staff

of an organization [46,47]. In many instances, security breaches occur when individuals,

often trusted employees, violate protocol and/or behave recklessly. Hence, data security is

more often a “people thing” than a “computer thing”. Nonetheless, if you are not a multi-

million dollar institution, and simply want to keep some of your data private, here are a

few tips that you might find helpful. If you have really important data, the kind that could

hurt yourself or others if the data were to fall into the wrong hands, then you should totally

disregard the advice that follows and seek the help of a professional security agent.

– Save yourself a lot of grief by settling for a level of security that is appropriate and

reasonable for your own needs.

Don’t use a bank vault when a padlock will suffice.

– Avail yourself of no-cost solutions.

Some of the finest encryption algorithms, and their implementations, are publicly

available in OpenSSL and other sources.

– The likelihood that you will lose your passwords is much higher than the likelihood

that someone will steal your passwords.

Develop a good system for passkey management that is suited to your own needs.

– The security of the system should not be based on hiding your encrypted files or

keeping the encryption algorithm secret.
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The greatest value of modern encryption protocols is that it makes no difference whether

anyone steals or copies your encrypted files, or learns your encryption algorithm.

– File encryption and decryption should be computationally fast.

Fast, open source protocols are readily available.

– File encryption should be done automatically, as part of some computer routine (e.g., a

backup routine), or as a chron job (i.e., a process that occurs at predetermined time).

You should be able to batch-encrypt and batch-decrypt any number of files all at once (i.e.,

from a command loopwithin a script), and you should be able to combine encryptionwith

other file maintenance activities. For example, you should be able to implement a simple

script that loops through every file in a directory, or a directory tree (i.e., all the files in all of

the subdirectories under the directory), all at once, adding file header and metadata

information into the file, scrubbing data as appropriate, calculating a one-way hash

(i.e., message digest) of the finished file, and producing an encrypted file output.

– You should never implement an encryption system that is more complex than you can

understand [48].

Your data may be important to you, and to a few of your colleagues, but the remainder of

the world looks upon your output with glazed eyes. If you are the type of person who

would protect your valuables with a padlock, rather than a safety deposit box, then you

should probably be thinking less about encryption strength and more about encryption

operability. Ask yourself whether the encryption protocols that you use today shall be

widely available, platform-independent and vendor independent, 5, 10 or 50 years from

now. Will you always be able to decrypt your own encrypted files?

– Don’t depend on redundancy

At first blush, it would be hard to argue that redundancy, in the context of information

systems, is a bad thing.With redundancy, when one server fails, another picks up the slack;

if a software system crashes, its duplicate takes over; when one file is lost, it is replaced by

its back-up copy. It all seems good.

The problemwith redundancy is that itmakes the systemmore complex. The operators

of a Big Data resource with built-in redundancies must maintain the operability of the

redundant systems in addition to the primary systems.More importantly, the introduction

of redundancies introduces a new set of interdependencies (i.e., how the parts of the sys-

tem interact), and the consequences of those interdependencies may be difficult to

anticipate.

In recent memory, the most dramatic example of a failed redundant system involved

the Japanese nuclear power plant at Fukushima. The plant was designed with redundant

systems. If the power failed, a secondary power generator would kick in. On March 11,

2011, a powerful earthquake off the shore of Japan produced a tidal wave that cut the

nuclear reactor’s access to the electric power grid. The back-up generators were flooded
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by the same tidal wave. The nuclear facilities were cut off from emergency assistance; also

due to the tidal wave. Subsequent meltdowns and radiation leaks produced the worst

nuclear disaster since Chernobyl.

As discussed previously in this chapter, on June 4, 1996, the first flight of the Ariane 5

rocket self-destructed, 37 seconds after launch. There was a bug in the software, but the

Ariane had been fitted with a back-up computer. The back-up was no help; the same bug

that crippled the primary computer put the back-up computer out of business [49]. The

lesson here, and from the Fukushima nuclear disaster, is that redundant systems are often

ineffective if they are susceptible to the same destructive events that caused failure in the

primary systems.

Computer software and hardware problems may occur due to unanticipated interac-

tions among software and hardware components. Redundancy, by contributing to system

complexity, and by providing an additional opportunity for components to interact in an

unpredictable manner, may actually increase the likelihood of a system-wide crash. Cases

have been documented wherein system-wide software problems arose due to bugs in the

systems that controlled the redundant subsystems [49].

A common security measure involves backing up files and storing the back-up files off-

site. If there is a fire, flood, or natural catastrophe at the computer center, or if the com-

puter center is sabotaged, then the back-up files can be withdrawn from the external site

and eventually restored. The drawback of this approach is that the back-up files create a

security risk. In Portland Oregon, in 2006, 365,000 medical records were stolen from Prov-

idence Home Services, a division of Seattle-based Providence Health Systems [50]. The

thief was an employee who was handed the back-up files and instructed to store them

in his home, as a security measure. In this case, the theft of identified medical records

was a command performance. The thief complied with the victim’s request to be robbed,

as a condition of his employment. At the very least, the employer should have encrypted

the back-up files before handing them over to an employee.

Nature takes a middle-of-the-road approach on redundancy. Humans evolved to have

two eyes, two arms, two legs, two kidneys, and so on. Not every organ comes in duplicate.

We have one heart, one brain, one liver, one spleen. There are no organs that come in trip-

licate. Human redundancy is subject to some of the same vulnerabilities as computer

redundancy. A systemic poison that causes toxicity in one organ will cause equivalent tox-

icity in its contra-lateral twin.

– Save Time and Money; Don’t Protect Data that Does not Need Protection

Big Data managers tend to be overprotective of the data held in their resources, a profes-

sional habit that can work in their favor. In many cases, though, when data is of a purely

academic nature, containing no private information, and is generally accessible from

alternate sources, there really is no reason to erect elaborate security barriers.

Security planning always depends on the perception of the value of the data held in the

resource (i.e., Is thedata in theBigData resourceworth anything?), and the risks that thedata

might be used to harm individuals (e.g., through identity theft). Inmany cases, the data held
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in Big Data resources has no intrinsicmonetary value and poses no risks to individuals. The

value ofmost BigData resource is closely tied to its popularity. A resourceusedbymillions of

people provides opportunities for advertising and attracts funders and investors.

Regarding the release of potentially harmful data, it seems prudent to assess, from the

outset, whether there is a simple method by which the data can be rendered harmless. In

many cases, deidentification can be achieved through a combination of data scrubbing,

and expunging data fields that might conceivably tie a record to an individual. If your

data set contains no unique records (i.e., if every record in the system can bematchedwith

another record, from another individual, for which every data field is identical), then it is

impossible to link any given record to an individual, with certainty. In many cases, it is a

simple matter to create an enormous data set wherein every record is matched by many

other records that contain the same informational fields. This process is sometimes

referred to as record ambiguation [51].

Sometimes a Big Data team is compelled to yield to the demands of their data contrib-

utors, even when those demands are unreasonable. An individual who contributes data to

a resourcemay insist upon assurances that a portion of any profit resulting from the use of

their contributed data will be returned as royalties, shares in the company, or some other

form of remuneration. In this case, the onus of security shifts from protecting the data to

protecting the financial interests of the data providers. When every piece of data is a

source of profit, measures must be put into place to track how each piece of data is used,

and bywhom. Suchmeasures are often impractical, and have great nuisance value for data

managers and data users. The custom of capitalizing on every conceivable opportunity for

profit is a cultural phenomenon, not a scientific imperative.
Section 18.4. Case Study: Life on Mars

You must accept one of two basic premises: Either we are alone in the universe, or we

are not alone in the universe. And either way, the implications are staggering.
Wernher von Braun

On September 3, 1976, the Viking Lander 2 touched down upon the planet mars, where

it remained operational for the next 3 years, 7 months and 8 days. Soon after landing,

it performed an interesting remote-controlled experiment. Using samples of martian

dirt, astrobiologists measured the conversion of radioactively-labeled precursors into

more complex carbon-based molecules; the so-called Labeled-Release study. For this

study, control samples of dirt were heated to a high temperature (i.e., sterilized), and like-

wise exposed to radioactively-labeled precursors, without producing complex carbon-

containing molecules. The tentative conclusion, published soon thereafter, was that

Martian organisms in the samples of dirt had built carbon-based molecules through

a metabolic pathway [52]. As you might expect, the conclusion was immediately chal-

lenged, and remains controversial, to this day, nearly 32 years later [22].
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In the years since 1976, long after the initial paper was published, the data from the

Labeled-Release study has been available to scientists, for re-analysis. New analytic

techniques have been applied to the data, and new interpretations have been published

[52]. As additional missions have reached mars, more data has emerged (i.e., the detec-

tion of water and methane), also supporting the conclusion that there is life on mars.

None of the data is conclusive; Martian organisms have not been isolated. The point

made here is that the shared Labeled-Release data is accessible and permanent, and

can be studied again and again, compared or combined with new data, and argued

ad nauseum [22].
Section 18.5. Case Study: Personal Identifiers

Secret agent man, secret agent man

They’ve given you a number and taken away your name
Theme from the television show “Secret Agent”, airing in the United States from 1964–66; song

written by P. F. Sloan and Steve Barriby

We came to a conclusion in 2002. I don’t think you can do it (create an electronic

health record) without a national identifier.
Peter Drury [53]

An awful lot of the data collected by scientists concerns people (e.g., financial data, mar-

keting data, medical data). Given everything discussed so far in this book regarding the

importance of providing data object uniqueness, you would think that we would all be

assigned our own personal identifiers by now.

Of course, nothing could be further from the truth. Each of us are associated with

dozens, if not hundreds of irreconcilable identifiers intended to serve a particular need

at a particular moment in time. These include bank accounts, credit cards, loan applica-

tions, brokerage and other investment accounts, library cards, and voter IDs. In theUnited

States, a patient may be assigned separate identifiers for the various doctors’ offices,

clinics and hospitals that she visits over the course of her life. As mentioned, a single hos-

pitalmay assign a patientmany different “unique” identifiers, for each department visited,

for each newly installed hospital information system, and whenever the admission clerk

forgets to ask the patient if he or she had been previously registered. U.S. Hospitals try to

reconcile the different identifiers for a patient under a so-called Enterprise Master Patient

Index, but experience has shown the problems encountered are insurmountable. As one

example, in Houston’s patient index system, which includes 3.5 million patients, there are

about 250,000 patients that have a first and last name in common with at least one other

registrant, and there are 70,000 instances wherein two people share the same first name,

last name, and birthdate [54]. There is a growing awareness that efforts at reconciling

systems wherein individual patients are registered multiple times, are never entirely

satisfactory [53].
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The subject of data security cannot be closed without mention of the National Patient

Identifier. Some countries employ a National Patient Identifier (NPI) system. In these

cases, when a citizen receives treatment at any medical facility in the country, the trans-

action is recorded under the same permanent and unique identifier. Doing so enables the

data collected on individuals, from multiple hospitals, to be merged. Hence, physicians

can retrieve patient data that was collected anywhere in the nation. In countries withNPIs,

data scientists have access to complete patient records and can perform healthcare

studies that would be impossible to perform in countries that lack NPI systems. In the

United States, where a system of NPIs has not been adopted, there is a perception that

such a system would constitute an invasion of privacy. Readers from outside the United

States are probably wondering why the United States is so insecure on this issue.

In the United States, the call for a national patient identification system is raised, from

time to time. The benefits to patients and to society are many. Aside from its absolutely

necessary role in creating data that can be sensibly aggregated andmeaningfully analyzed,

it also serves to protect the privacy of individuals by eliminating the need for less secure

forms of identification (e.g., credit cards, drivers licenses).

Regardless, U.S. citizens are reluctant to have an identifying number that is associated

with a federally controlled electronic record of their private medical information. To show

its disdain for personal identifiers, the U.S. Congress passed Public Law 105-277, in 1999,

prohibiting theDepartment of Health andHuman Services fromusing its funds to develop

personal health identifiers, without first obtaining congressional approval [55].

In part, this distrust results from the lack of any national insurance system in the

United States. Most health insurance in the United States is private, and private insurers

have wide discretion over the fees and services provided to enrollees. There is a fear that if

there were a national patient identifier with centralized electronic medical records,

insurers may withhold reimbursements or raise premiums or otherwise endanger the

health of patients. Because the cost of U.S. medical care is the highest in the world, med-

ical bills for uninsured patients can quickly mount, impoverishing individuals and

families [56].

Realistically, no data is totally safe. Data breaches today may involve hundreds of

millions of confidential records. The majority of Americans have had social security

numbers, credit card information, and private identifiers (e.g., birth dates, city of birth,

names of relatives) misappropriated or stolen. Medical records have been stolen in large

number. Furthermore, governments demand and receive access to our confidential med-

ical records, when they deem it necessary [57]. Forbidding National Patient Identifiers has

not made us safe. [Glossary Social Security Number]

Maybe we should ask ourselves the following: “Is it rational to forfeit the very real

opportunity of developing new safe and effective treatments for serious diseases, for

the very small likelihood that someone will crack my deidentified research record and

somehow leverage this information to my disadvantage?”

Suppose everyone in the United States were given a choice: you can be included in a

national patient identifier system, or you can opt out. Most likely, there would be many
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millions of citizenswhowouldopt out of the offer, seeing noparticular advantage in having

a national patient identifier, and sensing some potential harm. Now, suppose you were

told that if you chose to opt out, you would not be permitted to enjoy any of the health

benefits coming from studies performed with data collected through the national patient

identifier system. New safe and effective drugs, warnings of emerging epidemics, informa-

tion on side effects associated with your medications, biomarker tests for preventable

illnesses, and so on, would be reserved for individuals with national patient identifiers.

Those who made no effort to help the system would be barred from any of the benefits

that the system provided. Would you reconsider your refusal to accept a national patient

identifier, if you knew the consequences? Of course, this is a fanciful scenario, but it

makes a point.
Glossary
AES The Advanced Encryption Standard (AES) is the cryptographic standard endorsed by the U.S. gov-

ernment as a replacement for the old government standard, DES (Data Encryption Standard). AES

was chosen from among many different encryption protocols submitted in a cryptographic contest

conducted by the U.S. National Institute of Standards and Technology, in 2001. AES is also known

as Rijndael, after its developer. It is a symmetric encryption standard,meaning that the same password

used for encryption is also used for decryption.

Classification versus ontology A classification is a system inwhich every object in a knowledge domain is

assigned to a class within a hierarchy of classes. The properties of superclasses are inherited by the

subclasses. Every class has one immediate superclass (i.e., parent class), although a parent class

may have more than one immediate subclass (i.e., child class). Objects do not change their class

assignment in a classification, unless there was a mistake in the assignment. For example, a rabbit

is always a rabbit, and does not change into a tiger. Classifications can be thought of as the simplest

and most restrictive type of ontology, and serve to reduce the complexity of a knowledge domain [58].

Classifications can be easily modeled in an object-oriented programming language and are non-

chaotic (i.e., calculations performed on the members and classes of a classification should yield the

same output, each time the calculation is performed). A classification should be distinguished from

an ontology. In an ontology, a class may have more than one parent class and an object may be a

member of more than one class. A classification can be considered a special type of ontology

wherein each class is limited to a single parent class and each object has membership in one and only

one class.

Data Quality Act In the United States the data upon which public policy is based must have quality and

must be available for review by the public. Simply put, public policy must be based on verifiable data.

The Data Quality Act of 2002, requires the Office of Management and Budget to develop government-

wide standards for data quality [24].

Intellectual property Data, software, algorithms, and applications that are created by an entity capable of

ownership (e.g., humans, corporations, universities). The entity holds rights over the manner in which

the intellectual property can be used and distributed. Protections for intellectual property may come

in the form of copyrights and patent. Copyright applies to published information. Patents apply to

novel processes and inventions. Certain types of intellectual property can only be protected by being

secretive. For example, magic tricks cannot be copyrighted or patented; this is why magicians guard

their intellectual property so closely. Intellectual property can be sold outright, essentially transferring

ownership to another entity; but this would be a rare event. In other cases, intellectual property is

retained by the creator who permits its limited use to others via a legal contrivance (e.g., license, con-

tract, transfer agreement, royalty, usage fee, and so on). In some cases, ownership of the intellectual
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property is retained, but the property is freely shared with the world (e.g., open source license, GNU

license, FOSS license, Creative Commons license).

Social Security Number The common strategy, in the United States, of employing social security num-

bers as identifiers is often counterproductive, owing to entry error, mistaken memory, or the intention

to deceive. Efforts to reduce errors by requiring individuals to produce their original social security

cards puts an unreasonable burden on honest individuals, who rarely carry their cards, and provides

an advantage to dishonest individuals, who can easily forge social security cards. Institutions that

compel patients to provide a social security number have dubious legal standing. The social security

number was originally intended as a device for validating a person’s standing in the social security sys-

tem. More recently, the purpose of the social security number has been expanded to track taxable

transactions (i.e., bank accounts, salaries). Other uses of the social security number are not protected

by law. The Social Security Act (Section 208 of Title 42U.S. Code 408) prohibitsmost entities from com-

pelling anyone to divulge his/her social security number. Legislation or judicial action may one day

stop healthcare institutions from compelling patients to divulge their social security numbers as a con-

dition for providingmedical care. Prudent and forward-thinking institutions will limit their reliance on

social security numbers as personal identifiers.

Y-chromosome A small chromosome present in males and inherited from the father. The normal com-

plement of chromosomes in male cells has one Y chromosome and one X chromosome. The normal

complement of chromosomes in female cells has two X chromosomes and no Y chromosomes. Anal-

ysis of the Y chromosome is useful for determining paternal lineage.
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Section 19.1. Responsibility for the Accuracy and Legitimacy
of Data

At this very moment, there’s an odds-on chance that someone in your organization is

making a poor decision on the basis of information that was enormously expensive to

collect.
Shvetank Shah, Andrew Horne, and Jaime Capella [1]

In 2031, lawyers will be commonly a part of most development teams.
Grady Booch

I am not a lawyer, and this chapter is not intended to provide legal advice to the readers. It

is best to think of this chapter as an essay that covers the issues that responsible managers

of Big Data resources worry about, all of the time. When I was a program director at the

National Institutes of Health, I worked on resources that collected and analyzed medical

data. My colleagues and I worked through the perceived legal risks that encumbered all of

our projects. For the most part, our discussions focused on four issues: (1) responsibility

for the accuracy of the contained data; (2) rights to create, use, and share the data held in

the resource; (3) intellectual property encumbrances incurred from the use of standards

required for data representation and data exchange; and (4) protections for individuals

whose personal information is used in the resource. Big Data managers contend with a
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396 PRINCIPLES AND PRACTICE OF BIG DATA
wide assortment of legal issues, but these four problems, that never seem to go away, will

be described in this chapter.

The contents of small data resources can be closely inspected and verified. This is not

the case for Big Data. Because Big Data resources are constantly growing, and because the

sources of the data are often numerous and not strictly controlled, it is a safe bet that

some of the data is incorrect. The reflexive position taken by some data managers can

be succinctly stated as: “It is not my problem!”

To a small extent,measures taken to improve the quality of data contained in a BigData

resource will depend on how the data will be used. Will the data be used for mission-

critical endeavors? In the medical realm, will the data be used to make diagnostic or treat-

ment decisions? These contingencies raise the stakes for Big Data resources, but the data

manager’s responsibility is largely the same, regardless of the intended use of the resource.

Every Big Data resource must have in place a system whereby data quality is constantly

checked, errors are documented, corrective actions are taken, and improvement is docu-

mented. Without a quality assurance plan, the resource puts itself in great legal jeopardy.

In addition to retaining legal counsel, data managers would be wise to follow a few simple

measures:

– Make no unjustified claims.

It is important that statements issuing from the Big Data resource, including claims made

in advertisements and informational brochures, and verbal or written communications

with clients, should never promise data accuracy. People who insist on accuracy should

confine their attention to small data resources. If your Big Data resource has made no

effort to ensure that the data is true and accurate, then you owe it to your users to indicate

as much.

– Require your sources to take necessary measures to provide accurate data.

Sources that contribute to Big Data resources should have their own operation protocols,

and these protocols must be made available to the manager of the Big Data resource.

In addition, sources should certify that that their contributed data conforms, as best as

they can ascertain, to their data policies.

– Have procedures in place ensuring that the data provided by outside sources is

accurately represented within the resource.

Big Data managers should exercise reasonable diligence to ensure that the received data

is legitimate, and to verify such data when it is received.

– Warn your data users that their analytic results, based on the resource’s data, must

be validated against external data sources.

It may seem obvious to you that conclusions drawn from the analyses of Big Data are

always tentative, and must be validated against data from other sources. Sometimes
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data analysts need to be protected from their own naivet�e, necessitating an explicit

warning.

– Open your verification procedures to review (preferably public review).

Users find it unsettling to read exculpatory verbiage in user licenses, expressing that the

data provider cannot guarantee the accuracy of the data and cannot be held liable for any

negative consequences that might arise from the use of the data. At the very least, data

managers should re-assure their users that reasonable measures have been taken to verify

the data contained in the resource. Furthermore, those measures should be available for

review by any and all potential data users.

– Provide a method by which complainants can be heard.

Thismayactuallybeoneof those rare instanceswhenthe immutabilityofaBigData resource

is broken. If material is known to be illegal or if thematerial is a potential danger to individ-

uals, then it may be necessary to expunge the data (i.e., violate data immutability).

– Be prepared to defend your data and your procedures

Big Data managers must understand their data. The conclusions drawn from their data

may someday serve as evidence in legal proceedings, including all manner of arbitration

and litigations, both civil and criminal. In the case of Daubert v Merrell Dow Pharmaceu-

ticals, Inc., the U.S. Supreme Court ruled that trial judges must determine the relevance

and adequacy of data-based evidence presented by expert witnesses. Judicial oversight is

conducted through a pre-trial review that “entails a preliminary assessment of whether the

reasoning or methodology underlying the testimony is scientifically valid and of whether

that reasoning ormethodology properly can be applied to the facts in issue” [2]. Hence, Big

Data managers must constantly strive to assure that the data contained in their resources

are fully described and linked to the protocols through which the data was obtained. Any

verification processes, through which data is entered and checked into the resource, may

be reviewed by government committees and courts.

When Big Data resources are used to influence the governmental process, special reg-

ulatory conditionsmay apply. TheU.S. government passed theData Quality Act in 2001, as

part of the FY 2001 Consolidated Appropriations Act (Pub. L. No. 106-554) [3,4]. The Act

requires Federal Agencies to base their policies on high quality data and to permit the pub-

lic to challenge and correct inaccurate data [5]. The drawback to this legislation, is that

science is a messy process, and data may not always attain a high quality. Data that fails

to meet standards of quality may be rejected by government committees or may be seized

upon by lobbyists to abrogate good policies that were based on the imperfect data [6–8].
[Glossary Data Quality Act]

Datamanagers chant a common lament: “I cannot be held responsible for everything!”

They have a point, but their inability to control everything does not relieve them of their

responsibility to exercise a high degree of data diligence.
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Section 19.2. Rights to Create, Use, and Share the Resource

Free software is a matter of liberty, not price.
Richard Stallman

As mentioned earlier, ownership is a mercantile concept; the owner of an item is the per-

sonwho can sell the item. If you own a cow, then you can sell the cow. Once the cow is sold,

you no longer own the cow; the cow has a new owner. This simple ownership arrangement

does not work well for Big Data. Data can be copied ad infinitum. In virtually all cases

financial transactions that involve the transfer of data do not actually result in the loss

of the data by the provider. The data provider continues to hold the data after the trans-

action has transpired. In the Big Data universe, Big Data is not “owned” in the usual sense

of the word; data is intangible. This explains why the term “service” pops up so often in

the information field (e.g., Internet Service Providers, Web Services, List Servers). Data is

more often a service than an owned commodity. [Glossary Web service]

Because Big Data comes from many sources, different uses, and can be retrieved via

federated queries across multiple resources (Big and small), the customary laws pertain-

ing to property rights can be difficult to apply. Big Data managers need to know whether

they have the right to acquire and distribute the data held in their resources. It may be

easiest to think in terms of two separable issues: laws dealing with data acquisition,

and laws dealing with data distribution.

Information produced through a creative effort (e.g., books, newspapers, journal arti-

cles) usually falls under copyright law. This means that you cannot freely obtain and dis-

tribute these materials. Exceptions would include books that fall into the public domain

(e.g., books produced by the federal government, and books whose copyright term has

expired). Other exceptions might include copyrighted material that fall under Fair Use

provisions [9]. Fair Use provisions permit the distribution of copyrighted material if it

is done solely for the public good, with no profit motive, and if it can be done in a way

that does not financially harm the copyright holder (e.g., does not result in the loss of sales

and royalties).

Most Big Data resources are primarily composed of raw data, along with annotations to

the data. The data may consist of measurements of physical objects and events, and short

informational attributes appended to abstract data objects. These types of data are gen-

erally not produced through a creative effort, and would not fall under copyright law. In

the United States, themost cited precedent relevant to data acquisition is Feist Publishing,

Inc. v. Rural Telephone Service Co. When Rural Telephone Co. refused to license their

alphabetized listing of names and telephone numbers to Feist Publishing, Inc., Feist pro-

ceeded to copy and use the data. Rural Telephone Co. claimed copyright infringement.

The court ruled that merely collecting data into a list does not constitute a creative work

and was not protected by copyright.

European courts differ somewhat from American courts with regard to copyright

protections. Like their American counterparts, Europeans interpret copyright to cover
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creative works, not data collections. However, the 1996 European Database Directive

instructs courts to extend sui generis (i.e., one of a kind or exceptional) protection to data-

bases. In Europe, databases created with a significant investment of time, effort and

money cannot be freely copied for commercial use. The idea behind such a directive is

to protect the investments made by database builders. By protecting the database owner

the European law attempts to promote the creation of new Big Data resources along with

the commercial activities that follow.

Insofar as Big Data resources have international audiences, differences in database

laws across different countries can be very frustrating for data managers who strive for

legal clarity. Consequently, providers and users often develop their own solutions, as

needed. Acquisition of commercial data (i.e., data that does not belong to the public

domain), much like access to commercial software, is often achieved through legal

agreements (e.g., licenses or contracts) between the data providers and the data users.

Regarding laws dealing with holding and distributing data, the Digital Millennium

Copyright Act of 1998 (DMCA) applies in the United States. This law deals primarily with

anti-piracy security measures built into commercial digital products [10]. The law also

contains a section (Title II) dealing with the obligations of online service providers who

inadvertently distribute copyrighted material. Service providers may be protected from

copyright infringement liability if they block access to the copyrighted material when

the copyright holder or the holder’s agent claims infringement. To qualify for liability

protection, service providers must comply with various guidelines (i.e., the so-called safe

harbor guidelines) included in the Act. In most instances, compliant service providers

would also be protected from infringement claims when their sites link to other sites that

contain infringing materials. [Glossary DMCA]

Whereas the DMCA provides some liability relief for inadvertent copyright infringers,

the United States No Electronic Theft Act of 1997 (NET Act) makes possible the criminal

prosecution of infringers who distribute copyrighted material for non-commercial pur-

poses (i.e., for free) [11]. In the early days of the Internet, there was a commonly held,

but unfounded, belief that copyrighted material could be held and distributed without

fear of legal retribution, if no profit was involved. This belief, perhaps based on an overly

liberal interpretation of the Fair Use provisions, came to an end with the NET Act.

Without delving into legal minutiae, here are a few general suggestions for data

managers:

1. Require your sources to substantiate their claim that the data is theirs to contribute.

Nobody should be submitting data that they do not own or that they do not have the

right to distribute.

2. Require your sources to indicate that the data was collected in a manner that did not

harm individuals and that the data can be distributed without harming individuals.

3. Use government data whenever feasible. Much of the best data available to Big Data

resources comes absolutely free from the U.S. government and other governments that

have a policy of contributing their official data to the public domain. BigData resources
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can freely copy and redistribute public domain government data. Links to the major

sources of prepared U.S. government data are found at: http://www.data.gov/.

In addition, virtually all data collected by the government, including data collected

through federal grants, and data used to determine public actions, policies, or

regulations, can be requested through the Freedom of Information Act [12]. Many

countries provide their citizens with the right to acquire data that was generated

with government (i.e., taxpayer) funds.

4. Pay for legitimate data when feasible. It seldom makes good sense to copy a data set

into a Big Data resource, if that data requires constant updating and curation. For

example, a comprehensive list of restaurants, with their addresses and phone numbers,

is always awork in progress. Restaurants open, close,move their locations, acquire new

phones numbers, revise their menus, and modify their hours of operation. If there is a

database resource that collects and updates this information, theremay be little reason

to replicate these activities within another data resource. It may make much more

sense to license the database or to license access to the database. A federated data

service, wherein queries to your Big Data resource are automatically outsourced to

other databases, depending on the query subject, may be much more feasible than

expanding your resource to include every type of information. In many circumstances

the best and the safest method of using and distributing data may come from

negotiating payments for external data.
Section 19.3. Copyright and Patent Infringements Incurred by
Using Standards

She was incapable of saying please, incapable of saying thank you and incapable of

saying sorry, all the while creating a surge in the demand for these expressions.
Edward St. Aubyn, in his book, “At Last”

As described in Chapter 7, the standards that you have been using in your Big Data

resource may actually belong to somebody else. Strange as it may seem, standards are

intellectual property and can be copyrighted, patented, or licensed. Not only may a stan-

dard be patented, but specific uses of the standard may also be patented, and the patents

on uses of the copyrightmay be held by entities whowere not at all involved in the creation

of the standard.

If you choose to pay a license fee for the use of a proprietary standard, you might find

that the costs exceed the sticker price [13]. The license agreement for the standard may

impose unwanted restrictions on the use of the standard. For example, a standard may

be distributed under a license that prohibits you from freely distributing the intellectual

product of the standard (i.e., materials created through the use of the standard). This may

mean that your users will not be able to extract and download data that has been format-

ted in conformance with the standard, or annotated with codes, numbers, terms or other

http://www.data.gov
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information that could not have been created without the use of the standard. The same

restrictions might apply to licensed software.

The building blocks of Big Data resourcesmay hide intellectual property [14,13]. This is

particularly true for software, which may inadvertently contain subroutines or lines of

code that fall under a claim within an issued patent. One day, you might receive a letter

from a lawyer who represents a patent holder, asserting that a fragment of code included

in a piece of your software infringes his client’s patent. The lettermay assert the patent and

demand that you cease using the patent holder’s intellectual property. More commonly,

the letter will simply indicate that a conflict has arisen and will suggest that both parties

(your Big Data resource and the patent holder) should seek a negotiated remedy. In either

case, most Big Data resources will keep a law firm on retainer for such occasions. Do not

despair; the ultimate goal of the patent holder is to acquire royalty payments; not to

initiate a lawsuit.

Big Data resources are complex and contain many different types of data objects that

may have been transformed, annotated, or formatted by many different methods. The

uses of these methods may be restricted under licenses, contracts and other legal contriv-

ances. A few precautionary steps may help reduce your risks:

– Whenever possible, use free and open source standards, software, nomenclatures, and

ontologies for all of your data annotations. Do not disparage free and open source

products. In the world of Big Data, many of the best standards, data formats,

nomenclatures, classifications, software, and programming languages are free and

open source [15].

– Inventory your standards, software, nomenclatures, and ontologies. For each item,

write a description of any restrictions that might apply to your resource.

– Investigate on theWeb. See if there are any legal actions, active or settled, involving any

of the materials you might use. Visit the U.S. Patent Office to determine whether there

are patent claims on the uses of the standards, software, nomenclatures and ontologies

held in your resource. Most likely, your Big Data resource will send and receive data

beyond the U.S. Consult the World Intellectual Property Organization (WIPO). Do not

restrict your search to proprietary materials. Free and open source materials may

contain embedded intellectual property and other encumbrances.

– Talk to your legal staff before you commit to using any proprietary product. Your law

firm will need to be involved in virtually every aspect of the design and operation of

your Big Data resource.

– If you must use licensed materials, carefully read the “Terms of Use” in the agreement.

Licenses are written by lawyers who are paid to represent their client (the Licensor).

In most cases, the lawyer will be unaware of the special use requirements of Big Data

resources. The Terms of Use may preclude the customary activities of a Big Data

resource (e.g., sharing data across networks, responding to large numbers of queries

with annotated data, storing data on multiple servers in widely distributed geographic

locations). As noted previously, it is important to have a lawyer review license
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agreements before they are signed, but the data manager is in the best position to

anticipate provisions that might reduce the value of a Big Data resource.

Big Data would greatly benefit from a universal framework supporting resource

interoperability [16]. At present, every data manager must fend for herself.
Section 19.4. Protections for Individuals

Everything is gone;

Your life’s work has been destroyed.

Squeeze trigger (yes/no)?
Computer-inspired haiku by David Carlson

Data managers must be familiar with the concept of tort. Tort relates to acts that result in

harm. Tort does not require an illegal act; it only requires a harm and a person or entity

who contributes to the harm and who is liable for the damages. Tort works like this; if you

are held liable for harm to another entity, then you must compensate the victim to an

extent that makes the victim whole (i.e., brings the victim back to where he was before

suffering harm). If the victim makes a case that the harm resulted from negligence or

due to conditions that could have been corrected through customary caution, then puni-

tive fees can be added to the victim’s award. The punitive fees can greatly exceed the

restorative fees. Consequently, it behooves every data manager to constantly ask them-

selves whether their Big Data resource can result in harm to individuals (i.e., the users

of the data, or the subjects of the data). Needless to say, Big Data managers must seek

specialized legal advice to minimize tort-related risks.

In the BigData universe, tort often involves the harms that befall individuals when their

confidential data files have been breached. I was raised in Baltimore, not far from the

community of Catonsville. Catonsville was the site of a 1968 protest against United States

involvement the Vietnam War. Nine anti-war activists stormed into a draft office, stole

files, and publicly burned the files. The Catonsville 9 attained instant international noto-

riety. The number of files destroyed: 379. In the Big Data era the ante has been upped by

many orders of magnitude. Today, when records are stolen or destroyed, you can expect

the numbers to be in the millions, or even hundreds of millions [17].

In May, 2006, 26.5 million records on military veterans were stolen, including Social

Security numbers and birth dates. The records had been taken home by a data analyst

employed by the Department of Veterans Affairs. His laptop, containing all this informa-

tion, was stolen. A class action lawsuit was brought on behalf of the 26.5 million aggrieved

veterans. Three years later, the Department of Veterans Affairs paid $20 million to

settle the matter [18]. In the United Kingdom, a copy of medical and banking records

on 25 million Britons were lost in the mail [19]. The error led to the sudden resignation

of the chairman of Her Majesty’s Revenue and Customs [19].

There are occasions when security is broken, but no theft occurs. In these instances,

resource managers may be unaware of the privacy breach for a surprisingly long period
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of time.Medical data collected on about 20,000 patients was posted on a publicWeb site in

2010. The data included patient names, diagnosis codes, and administrative information

on admissions and discharges occurring in a six month period in 2009. The data stayed

posted on the public Web site for about a year before a patient happened to see the data

and reported the breach to the hospital [20]. Accidental breaches are common in many

different fields [21].

Today, healthcare organizations must report data breaches that affect more than 500

people. Hundreds of such breaches have been reported. These breaches cost the health-

care industry in excess of $6 billion annually, and the costs are increasing, not decreasing

[17]. Other industries have data breaches but are not required to report incidents.

Industry costs do not reflect the personal costs in time, emotional distress, and money

suffered by individuals coping with identity theft. In the Big Data field, everyone’s deepest

fear is identity theft. None of us wants to contemplate what may happen when another

person has access to their financial accounts or gains the opportunity to create new

accounts under the stolen identity.

Security issues are inseparable from issues related to privacy and confidentiality. We

have dealt with some of the more technical issues of data security in Section 18.3,

“Data Security and Cryptographic Protocols”. In this chapter, we can review a few of

the commonsense measures that will reduce the likelihood of identification theft.

1. Do not collect or provide information that will link an individual to his or her

data record unless you really need the information. If you do not have information

that links a record to a named individual, then you cannot inadvertently expose

the information. Names, social security numbers, credit card numbers, and birth

dates constitute the core information sought by identity thieves. Big Data resources

should seriously consider whether such information needs to be stored within the

resource. Does your resource really need to collect social security numbers and credit

card numbers? Can the person’s name be adequately replaced with an internal

identifier? Do you need a birth date when a birth year might suffice? When these data

items are necessary, do they need to be included in data records that are accessible to

employees?

2. Work with deidentified records whenever possible. Deidentification may not be a

perfect way to render records harmless; but it takes you very close to your goal.

A thoughtfully deidentified data set has quite limited value to identity thieves.

3. All files should be encrypted whenever possible. Most breaches involve the theft of

unencrypted records. Breaking an encrypted record is quite difficult and far beyond the

technical expertise of most thieves.

4. Back-up data should be encrypted, inventoried, and closelymonitored. Back-up data is

a vulnerability. Thieves would be just as happy to steal your back-up data as your

original data. Because theft of back-up data does not result in a system crash, such

thefts can go undetected. It is very important to secure your back-up data and to deploy

a system that monitors when back-up data is removed, copied, misplaced, destroyed,

or otherwise modified.
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Section 19.5. Consent

MRECs [Medical Research Ethics Committees] sometimes place extreme demands on

researchers. These demands have included gaining consent for each step of the

research and ensuring data are destroyed on completion of a project...
Louise Corti, Annette Day, and Gill Backhouse [22]

For data managers who deal with medical data, or with any data whose use puts human

subjects at risk, consent issues will loom as a dominant legal issue. The reason why con-

sent is a consuming issue for data managers has very little to do with its risks; the risks

associated with obtaining improper consent are very small. Consent issues are important

because consenting data can be incredibly expensive to implement. The consent process

can easily consume the major portion of the data manager’s time, and cost-effective

implementations are difficult to achieve.

In the context of Big Data, informed consent occurs when a human agrees to accept the

risk of harm resulting from the collection and use of their personal data. In principle, every

consent transaction is simple. Someone involved with the Big Data resource approaches a

person and indicates the data that hewould like to collect for the data project. He indicates

the potential harms that may occur if consent is granted. If relevant, he indicates themea-

sures that will be taken to minimize the risk of harm. The human subject either signs, or

does not sign, the consent form. If the subject signs the form, then his data can be included

in the Big Data resource. [Glossary Informed consent, Bayh-Dole Act]

It is important that datamanagers understand the purpose of the consent form, so that

it is not confused with other types of legal agreements between data owners and data

contributors. The consent form is exclusively devoted to issues of risk to human subjects.

It should not be confused with a commercial agreement (i.e., financial incentives for data

use), or with an intellectual property agreement (i.e., specifying who controls the uses of

the data); or with scientific descriptions of the project (i.e., determining how the data is to

be used and for which specific purposes).

The term “informed consent” is often misinterpreted to mean that the patient must be

fully informed of the details of the Big Data project with an exhaustive list of all the

possible uses of their personal data. Not so. The “informed” in “informed consent” refers

to knowledge of the risks involved in the study, not the details of the study itself. It is rea-

sonable to stipulate that the data in Big Data resources is held permanently, and can be

used by many individuals, for a wide variety of purposes that cannot be predetermined.

Filling the consent form with detailed information about the uses of the resource is coun-

terproductive, if it distracts from the primary purpose of the form; to explain the risks.

What are the risks to human subjects in a Big Data project? With few exceptions, Big

Data risks are confined to two related consequences: loss of confidentiality and loss of

privacy.

The concepts of confidentiality and of privacy are often confused, and it is useful to

clarify their separate meanings. Confidentiality is the process of keeping a person’s secret.
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Privacy is the process of ensuring that the personwill not be annoyed, betrayed, or harmed

as a result of his decision to give you his secret. For example, if you give me your unlisted

telephone number in confidence, then I am expected to protect this confidentiality by

never revealing the number to other persons. I may also be expected to protect your

privacy by never using the telephone number to call you unnecessarily, at all hours of

the day and night (i.e., annoying you with your private information). In this case the same

information object (i.e., your unlisted telephone number) is encumbered by confidenti-

ality (i.e., keeping the unlisted number secret) and privacy (i.e., not using the unlisted

number to annoy you).

To cover confidentiality risks the consent form could indicate that personal informa-

tion will be collected, but that measures will be taken to ensure that the data will not be

linked to your name. In many circumstances, that may be all that is needed. Few patients

really care if anyone discovers that their gall bladder was removed in 1995. When the per-

sonal information is of a highly sensitive nature, the consent form may elaborate on the

security measures that ensure confidentiality.

The risk of losing privacy is a somewhatmore subtle risk than the loss of confidentiality.

In practical terms, for Big Data projects, loss of privacy occurs when the members of the

Big Data resource come back to the human subject with a request for additional informa-

tion, or with information regarding the results of the study. The consent form should indi-

cate any constraints that the Big Data resource has put into place to ensure that subjects

are not annoyed with unwelcome future contacts by members of the project. In some

cases the Big Data project will anticipate the need to recontact human subjects (i.e., to

invade their privacy). In this case the consent form must contain language informing

the subjects that privacy will not be fully protected. In many cases subjects do not partic-

ularly care, one way or the other. They are happy to participate in projects that will benefit

society, and they do notmind answering a phone call at some future time. The problem for

the Big Data resource will come if and when subjects have a change of heart, and they

decide to withdraw consent.

Obtaining consent from human subjects carries its own administrative and computa-

tional challenges; many of which are unanticipated by Big Data managers. Consent-

related tasks include the following:

1. Creating a legally valid consent form.

There are many ways to write a bad consent form. The most commonmistake is inserting

consent clauses among the fine-print verbiage of broader legal documents (e.g., contracts,

agreements, licenses). This is a bad mistake for several reasons. The validity of informed

consent can be challenged if an individual can claim that he or she was not adequately

informed. The consent form should be devoted to a single topic, consent, and should

not be inserted into other legal forms that require the subject’s signature.

The consent form should bewritten in language that the average person can understand.

In many cases, particularly in medical settings, informed consent should be read aloud

by an individual who is capable of explaining difficult passages in the consent document.
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Consent forms should not contain exculpatory clauses. For example, the consent form

should not contain language expressing that the Big Data resource cannot be held liable

for harm resulting from the use of the consenter’s data. Neither should the form ask

signers to waive any of their normal rights.

The consent form should have a signature section, indicating an affirmative consent.

Certain types of informed consent may require the signature of a witness, and consent

protocols should have provisions for surrogate signatures (e.g., of a parent or legal guard-

ian). It is common for consent forms to provide an opportunity for subjects to respond in

the negative (i.e., to sign a statement indicating that consent is denied). Doing so is seldom

a good idea, for several reasons. First, the negative (non-affirmative) statement is not

legally required and there are no circumstances for which a non-affirmative statement

has any practical value. Secondly, individuals should not feel compelled to respond in

any way to the consent form. If they freely choose to give consent, they can sign the form.

If they do not wish to give consent, they should not be coerced to sign their names to a

statement of denial. Thirdly, a non-affirmative statement can produce great confusion

in the future, when an individual consents to having the same record used for another

research project, or when the individual has a change of heart, and decides to provide

consent for the same project.

The consent form should reveal circumstances thatmight influence a person’s decision

to provide consent. For example, if the investigators have a commercial interest in the

outcome of the study, then that information should be included in the consent form. It

is reasonable for individuals to fear that they might suffer harm if the investigators have

something to gain by a particular outcome of an experiment or analysis.

Traditionally, consent is not open-ended. Consent generally applies to a particular

project that is conducted over a specified period of time. Consent ends when the project

ends. There has been a trend to lengthen the window of time to which consent applies, to

accommodate projects that might reasonably be expected to extend over many years. For

example, the Framingham study on heart disease has been in progress for more than

60 years [23]. If the Big Data project intends to use consented data for an indefinite period,

as it almost always does, then the consent form must clarify this condition.

Most importantly, the consent form should carefully describe the risks of participation.

In the case of Big Data analyses, the risks are typically confined to loss of confidentiality

or loss of privacy.

2. Obtaining informed consent.

The U.S. Census is an established project that occurs every decade. The methods and the

goals of the census have been developed over many decades. About 600,000 census

workers are involved; their jobs are to obtain signed census forms from about 250 million

individuals. The cost of each census is about $14 billion. Keeping these numbers in your

mind, imagine that you are a Big Data manager. You maintain and operate a global Big

Data resource, with data on over 2 billion individuals (8 times the population of the United

States). You are informed by your supervisor that a new project for the resourcewill require
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you to obtain informed consent on the resource’s catchment population. You are told that

you will be assigned ten additional part-time workers to help you. You are given a budget

of $100,000 for the project. When you complain that you need more help and a larger

budget, you are told that you should use the computational power of the BigData resource

to facilitate the effort. You start looking for another job.

There are no easy ways to obtain informed consent. Popularmarketing techniques that

use automated or passive affirmations cannot be used to obtain informed consent. For

example, opt out forms in which human subjects must take an action to be excluded from

participating in a potentially harmful data collection effort are unacceptable. Informed

consent must be affirmative. Forms should not be promissory (i.e., should not promise

a reward for participation). Informed consent must be voluntary and uncompensated.

Consent must be obtained without coercion. Individuals cannot be denied customary

treatment or access to goods and services if they refuse to grant consent. There are circum-

stances for which the choice of person who seeks informed consent may be considered

coercive. A patient might feel threatened by a surgeon who waves a research-related

consent form in their faceminutes before a scheduled procedure. BigDatamanagersmust

be careful to obtain consent without intimidation.

The consent formmust be signed if it is to have any legal value. This means that a Web

page submission is unacceptable unless it can be reasonably determined that the person

providing the consent is the same person who is listed in the submitted Web page. This

would usually necessitate an authenticated password, at minimum. Issues of identity

theft, password insecurity, and the general difficulty of managing electronic signatures

make Web-based consent a difficult process.

The process of obtaining consent has never been easy. It cannot be fully automated

because there will always be people whose contact information (e.g., email accounts)

are invalid or who ignore all attempts at contact. To this date, nobody has found an inex-

pensive or labor-free method for obtaining informed consent from large numbers of

individuals.

3. Preserving consent.

After consent has been obtained, it must be preserved. This means that the original paper

document or a well-authenticated electronic document, with a verified signature, must be

preserved. The consent form must be linked to the particular record for which it applies

and to the protocol or protocols for which the consent applies. An individual may sign

many different consent forms, for different data uses. The data manager must keep all

of these forms safe and organized. If these documents are lost or stolen, then the entire

resource can be jeopardized.

4. Ensuring that the consent status is kept confidential.

The consent forms themselves are potential sources of harm to patients. They contain

information related to special studies or experiments or subsets of the population that

include the individual. The consent form also contains the individual’s name. If an
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unauthorized person comes into possession of consent forms, then the confidentiality of

the individuality would be lost.

5. Determining whether biases are introduced by the consent process.

After all the consents have been collected, someone must determine whether the con-

sented population introduces bias. The data analyst would ask: “Is the group of people

who provide consent in any way different from the group of people who refuse to provide

consent?” and, if so, “Will differences between the consenters and the non-consenters bias

analytic outcomes?” A data analyst might look for specific differences among the

consented and unconsented group in features that are relevant to the question under

study. For example, for a medical disease study, are there differences in the incidence

of the disease between the consenting group and the non-consenting group? Are there

differences in the ages at which the disease occurs in consenters and non-consenters?

6. Creating a process whereby reversals and modifications of consent can be recorded

and flagged.

In most cases, consent can be retracted. Retraction is particularly important in long or

indefinite studies. The datamanagermust have away of tracking consents and document-

ing a new consent status. For any future use of the data, occurring after the consent status

has changed, the subject’s data records must not be available to the data analyst.

7. Maintaining records of consent actions.

Tracking consent data is extremely difficult. Here are a few consent-related activities that

Big Data managers must record and curate: “Does each consent form have an identifier?”

“Does each consent form link to a document that describes the process by which the con-

sent form was approved?” “If paper consent forms were used, can the data manager find

and produce the physical consent document?”, “Was the consent restricted, permitting

certain uses of the data and forbidding other types of data uses?” “Is each consent restric-

tion tagged for tracking?”, “If the consent form was signed, is there a protocol in place by

which the signature is checked to determine authenticity?”, “Does the data manager have

a recorded policy that covers situations wherein subjects cannot provide an informed

consent (e.g., infants, patients with dementia)?”, “Does the resource have protocols for

using surrogate signatures for children and subjects who have guardians or assignees with

power-of-attorney?”, “Does the Big Data resource have policies that exclude classes of

individuals from providing informed consent?”, “Is there a protocol to deal with subjects

who withdraw consent or modify their original consent?” “Does the resource track data

related to consent withdrawals and modifications?”

8. Educating staff on the liberties and limitations of consented research.

Many Big Data managers neglect to train their staff on legal matters, including consent-

related issues. Information technologists may erect strong mental barriers to exclude

the kinds of legal issues that obfuscate the field of data law. Datamanagers have no choice
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but to persevere. It is unlikely that factors such as staff indifference and workplace incom-

petence will serve as mitigating factors when tort claims are adjudicated.
Section 19.6. Unconsented Data

The main point in our favor is that there is little or no case law, at least in the UK,

which has unearthed any complaints by research participants about misuse of their

contributions.
Louise Corti, Annette Day, and Gill Backhouse [22]

There are enormous technical difficulties and legal perils in the consent process. Is there

some way of avoiding the whole mess?

I have worked for decades in an information-centric culture that has elevated the con-

sent process to an ethical imperative. It is commonly held that the consent process pro-

tects individuals from harm, and data managers from liability. In the opinion of many of

my colleagues, all confidential data on individuals should be consented into the database,

unless there is a very good reason to the contrary.

After many years of dealing with the consent issue, I have reached a very different

conclusion. To my way of thinking, consent should be avoided, if feasible; it should only

be used as a last resort. In most circumstances, it is far preferable for all concerned to sim-

ply render data records harmless, and to use them without obtaining consent. As the

dependence on consent has grown over the past few decades, several new issues, all

having deleterious societal effects, have arisen:

1. Consent can be an unmerited revenue source for data managers.

When consent must be obtained on thousands or millions of individuals, the consenting

costs can actually exceed the costs of preparing and using the data. When these costs are

passed on to investors, or to taxpayers (in the case of public Big Data resources), it raises

the perceived importance and the general cash flow for the resource. Though data man-

agers are earnest and humble, as a rule, there are some managers who feel comfortable

working on projects of dubious scientific value, and a low likelihood of success, if there

is ample funding. Tasks related to the consent process cost money, without materially

contributing to the research output. Because funding institutions must support consent-

ing efforts, grant writers for Big Data projects can request and receive obscenely large

awards, when consent is required.

2. The act of obtaining consent is itself a confidentiality risk.

The moment you ask for consent, you’re creating a new security weakness, because

the consent form contains sensitive information about the subject and the research

project. The consent form must be stored, and retrieved as needed. As more and more

people have access to copies of the consent forms, the risk of a confidentiality breach

increases.
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An irony of Big Data research is that the potential harm associated with soliciting

consent may easily exceed the potential harms of participating as a subject in a Big Data

project.

3. Consent issues may preoccupy data managers, diverting attention from other

responsibilities.

There is a limit to the number of problems anyone canworry about. If half of your research

effort is devoted to obtaining, storing, flagging, and retrieving consent forms, then you are

less likely to pay attention to other aspects of the project. One of the chief lessons of this

book is that, at the current time, most of our Big Data resources teeter on the brink of fail-

ure. The consent process can easily push a resource over the brink.

4. Consented research has been used for unintended purposes.

Once you have received permission to use personal data in a consented study, the data

remains forever. Scientists can use this data freely, for any purpose, if they deidentify

the data or if the original consent form indicates that the data might be used for future

unspecified purposes. The latter option fueled the Havasupai lawsuit, to be discussed

in the final section of this chapter.

As it happens, consent can be avoided altogether if the data in the resource has been

rendered harmless through deidentification. Let’s remember that the purpose of the con-

sent form is to provide individuals with the choice to decline the risks associated with

the use of their data in the Big Data resource. If there are no risks, there is no need to obtain

consent.Datamanagers taking the unconsented path to data use need to ask themselves the

following question. “Can I devise a way by which the data can be used, without risk to the

individual?”

Exceptions exist. Regulations that restrict the use of data for designated groups of

individuals may apply, even when no risk of harm is ascertained. Data confidentiality

and privacy concerns are among the most difficult issues facing Big Data resources.

Obtaining the advice of legal counsel is always wise.

The widespread use and public distribution of fully deidentified data records is a sort of

holy grail for dataminers.Medical records, financial transactions, collections of private elec-

tronic communications conducted over air and wire all contribute to the dark matter of the

information universe. Everyone knows that this hidden data exists (we each contribute to

these data collections), that this hidden data is much bigger than the data that we actually

see,andthat thisdata is thebasicglue thatbindsthe informationuniverse.Nonetheless,most

of the data created for the information universe is considered private. Private data is

controlled by a small number of corporations who guard their data against prying

eyes,while theyuse thedata, to the extent allowedby law, to suit their ownagendas.Why isn’t

BigData routinely deidentified usingmethods discussed earlier, as discussed in Sections 3.6

and 3.7, and distributed for public review and analysis? Here are some of the reasons:

– Commercially available deidentification/scrubbing software is slow. It cannot cope

with the exabytes of information being produced each year.
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– None of the commercially available deidentification/scrubbing software does a perfect

job. These software applications merely reduce the number of identifiers in records;

they leave behind an irreducible amount of identifying information.

– Even if deidentification/scrubbing software actually were to perform as claimed,

removing every identifier and every byte of unwanted data from electronic records,

some records might be identified through the use of external database resources that

establish identities through non-identifying details contained in records.

– Big Data managers are highly risk averse and would rather hoard their data than

face the risk, no matter how unlikely, of a possible tort suit from an aggrieved

individual.

– Big Data managers are comfortable with restricted data sharing, through legal

instruments such as Data Use Agreements. Through such agreements, selected sets of

data extracted from a Big Data resource are provided to one or a few entities who use

the data for their own projects and who do not distribute the data to other entities.

[Glossary Data sharing]

– Data deidentification methods, like many of the useful methods in the information

field, can be patented. Some of the methods for deidentification have fallen under

patent restriction, or have been incorporated into commercial software that is not

freely available to data managers [24]. For some data managers, royalty and license

costs are additional reasons for abandoning the deidentification process.

– BigDatamanagers are not fully convinced that deidentification is possible, even under

ideal circumstances.

It may seem impossible, but information that is not considered identifying may actually

be used to discover the name of the person linked to deidentified records. Basically,

deidentification is easy to break when deidentified data can be linked to a name in an

identified database containing fields that are included in both databases. This is the

common trick underlying virtually every method designed to associate a name with a

deidentified record.

Data managers who provide deidentified data sets to the public must worry whether

there is, or ever will be, an available identified database that can be used to link fields,

or combinations of fields, to their deidentified data, and thus link their records to the

names of individuals. This worry weighs so heavily on data managers and on legal

consultants for Big Data resources that there are very few examples of publicly available

deidentified databases. Everyone in the field of Big Data is afraid of the legal repercussions

that will follow when the confidentiality of their data records is broken.
Section 19.7. Privacy Policies

No keyboard present

Hit F1 to continue

Zen engineering?
Computer-inspired haiku by Jim Griffith
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Discussions of privacy and confidentiality seem to always focus on the tension that results

when the interests of the data holders conflict with the interests of the data subjects. These

issues can be intractable when each side has a legitimate claim to their own preferences

(businesses need to make profit, and individuals need some level of privacy).

At some point, every Big Data manager must create a Privacy Policy, and abide by

their own rules. It has been my experience that legal problems arise when companies

have no privacy policy, or have a privacy policy that is not well-documented, or have

a privacy policy that is closed to scrutiny, or have a fragmented privacy policy, or fail to

follow their own policy. If the company is open with its policy (i.e., permits the policy

to be scrutinized by the public), and willing to change the policy if it fails to adequately

protect individuals from harm, then the company is not likely to encounter any major

problems.

Privacy protection protocols do not need to be perfect. They do, however, need to be

followed. Companies are much more likely to get into trouble for ignoring their own

policies than for following an imperfect policy. For a policy to be followed, the policy must

be simple. Otherwise, the employees will be incapable of leaning the policies. Unknowable

policies tend to be ignored by the unknowing staff.

Every Big Data project should make the effort to produce a thoughtful set of policies to

protect the confidentiality of their records and the privacy of data subjects. These policies

should be studied by every member of a Big Data project, and should be modified as

needed, and reviewed at regular intervals. Every modification and review should be thor-

oughly documented. Every breach or failure of every policy must be investigated,

promptly, and the results of the investigation, including any and all actions taken, must

be documented. Competent data managers will make it their priority to see that the

protocols are followed and that their review process is fully documented.

If you are a Big Data manager endowed with a overactive imagination, it is possible to

envision all types of unlikely scenarios in which confidentiality can be breached. Nobody

is perfect, and nobody expects perfection from any human endeavor.Much of law is based

on a standard of “reasonableness.” Humans are not held to an unreasonable standard. As

an example, the privacy law that applies to hospitals and healthcare organizations con-

tains 390 occurrences of the word “reasonable” [25]. A reasonable approach to confiden-

tiality and privacy is all that can be expected from a complex human endeavor.
Section 19.8. Case Study: Timely Access to Big Data

Don’t accept your dog’s admiration as conclusive evidence that you are wonderful.
Ann Landers

In the clinical bioinformatics world, testing laboratoriesmust have access to detailed pop-

ulation data, on millions of gene variants, with which to correlate their findings [26–31].
Specifically, genetics laboratories need to know whether a gene variant is present in the

normal population that has no clinical significance; or whether variants are associated
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with disease. The lives of patients are put at risk when we are deprived of timely and open

access to data relating genetic findings to clinical phenotypes.

In 2008, a 2-year-old child had a severe seizure, and died. In the prior year, the child had

undergone genetic testing. The child’s doctors were concerned that the patientmight have

Dravet’s syndrome, a seizure disorder in which about 80% of patients have a mutation in

the SCN1A gene. The laboratory discovered a mutation in the child’s SCN1A gene, but

remarked in their report that the mutation was a variant of unknown significance. That

is to say that the reference database of sequence variants, used by the laboratory,

did not contain information that specifically linked the child’s SCN1A mutation to Dravet

syndrome. In this circumstance, the laboratory report indicated that the gene test was

“inconclusive”; they could neither rule in or rule out the possibility that the found muta-

tion was diagnostic of Dravet syndrome.

Some time later, the child died.

In a wrongful death lawsuit filed by the child’s mother, the complaint was made that

two published reports, appearing in 2006 and 2007, had linked the specific SCN1A gene

mutation, that was subsequently found in her child’s DNA, with an epileptic encephalop-

athy [32]. According to the mother, the reporting laboratory should have known the sig-

nificance of her child’s mutation [32,33]. Regardless of the verdict rendered at this trial,

the circumstances serve as fair warning. In the era of Big Data, testing laboratories need

access to the most current data available, including the data generated by competing

laboratories.
Section 19.9. Case Study: The Havasupai Story

Freeing yourself was one thing; claiming ownership of that freed self was another.
Toni Morrison

For those who seek consent for research, the case of the Havasupai Tribe v. Arizona Board

of Regents holds us in thrall. The facts of the case play out over a 21-year period, from 1989

to 2010. In 1989 Arizona University obtained genetic samples from several hundredmem-

bers of the Havasupai Tribe, a community with a high prevalence of Type II diabetes. In

addition to their use in diabetes research, the informed consent indicated the samples

might be used for research on “behavioral and medical disorders,” not otherwise speci-

fied. The researchers tried but failed to make headway linking genes sampled from the

Havasupai tribe with cases of diabetes. The gene samples were subsequently used for

ancillary studies that included schizophrenia and for studies on the demographic trends

among the Havasupai. These ancillary studies were performed without the knowledge of

the Havasupai. In 2003 a member of the Havasupai tribe happened to attend a lecture, at

Arizona State University, on the various studies performed with the Havasupai DNA

samples.

The Havasupai tribe was enraged. They were opposed to the use of their DNA samples

for studies of schizophrenia or for the studies of demographic trends. In their opinions,



414 PRINCIPLES AND PRACTICE OF BIG DATA
these studies did not benefit the Havasupai and touched upon questions that were con-

sidered embarrassing and taboo, including the topic of consanguineous matings, and the

prevalence rates of mental illnesses within the tribe.

In 2004, the Havasupai Tribe filed a lawsuit indicating lapses in the informed consent

process, violation of civil rights, violation of confidentiality, and unapproved use of the

samples. The case was dismissed on procedural grounds, but was reinstated by the

Arizona Court of Appeals, in 2008 [34].

Reinstatement of the case led to lengthy and costly legal maneuvers. Eventually, the

case was settled out of court. Arizona State University agreed to pay individuals in the

Havasupai tribe a total of $700,000. This award is considerably less than the legal costs

already incurred by the University. Arizona State University also agreed to return the dis-

puted DNA samples to the Havasupai tribe.

If the Havasupai tribe had won anything in this dispute, it must have been a Pyrrhic

victory. Because the case was settled out of court, no legal decision was rendered, and

no clarifying precedent was established.

Though I amnot qualified to comment on the legal fine-points, several of the principles

related to the acquisition and use of data are relevant and can be discussed as topics of

general interest.

First, the purpose of an informed consent document is to list the harm thatmight befall

the individual who gives consent, as a consequence of his or her participation as a human

subject. Consent relates only to harm; consent does not relate to approval for research.

Laypersons should not be put into a situation wherein they must judge the value of

research goals. By signing consent, the signator indicates that he or she is aware of the

potential harm from the research, and agrees to accept the risk. In the case of samples

or data records contributed to a Big Data resource, consenters must be warned, in writing,

that the data will be used for purposes that cannot be specified in the consent form.

Secondly, most consent is obtained to achieve one primary purpose, and this purpose

is customarily described briefly in the consent form. The personwho consents oftenwants

to know that the risks that he or she is accepting will be compensated by some potential

benefit to society. In the case of the Havasupai Tribe v. Arizona State University, the tribe

sought to exert control over how their DNA would be used [35]. It would seem that the

Havasupai Tribe members believed that their DNA should be used exclusively for scien-

tific efforts that would benefit the tribe. There is no ethical requirement that binds scien-

tists to conduct their research for the sole benefit of one group of individuals. A good

consent form will clearly state that research conducted cannot be expected to be of

any direct value to the consenter.

Finally, the consent form should include all of the potential harms that might befall the

consenter as a consequence of his or her participation. It may be impossible to anticipate

every possible adverse consequence to a research participant. In this case, the scientists at

Arizona State University did not anticipate that the members of the Havasuapai Tribe

would be harmed if their gene data was used for ancillary research purposes. I would

expect that the researchers at Arizona State University do not believe that their research
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produced any real harm. The Havasupai tribal members believe otherwise. It would seem

that the Havasupai believed that their DNA samples were abused, and that their trust had

been violated.

Had the original consent form listed all of the potential harms, as perceived by the

Havasupai, then the incident could have been avoided. TheHavasupai could have reached

an informed decision weighing the potential benefits of diabetes research against the

uncertain consequences of using their DNA samples for future research projects that

might be considered taboo.

Why had the Havasupai signed their consent forms? Had any members of the Havasu-

pai tribe voiced concerns over the unspecified medical and behavioral disorders

mentioned in the consent form, then the incident could have been avoided.

In a sense, the Havasupai v. Arizona Board of Regents lawsuit hinged on a misunder-

standing. The Havasupai did not understand how scientists use information to pursue

new questions. The Board of Regents did not understand the harms that occur when data

is used for legitimate scientific purposes. The take home lesson for data managers is the

following: to the extent humanly possible, ensure that consent documents contain a

complete listing of relevant adverse consequences. In some cases, this may involve writ-

ing the consent form with the assistance of members of the group whose consent is

sought.

Glossary
Bayh-Dole Act The Patent and Trademark Amendments of 1980, P.L. 96-517. Adopted in 1980, the U.S.

Bayh-Dole legislation and subsequent extensions gave universities and corporations the right to keep

and control any intellectual property (including data sets) developed under federal grants. The Bayh-

Dole Act has provided entrepreneurial opportunities for researchers who work under federal grants,

but has created conflicts of interest that should be disclosed to human subjects during the informed

consent process. It is within the realm of possibility that a researcher who stands to gain considerable

wealth, depending on the outcome of the project, may behave recklessly or dishonestly to achieve his

or her ends.

DMCA DigitalMillenniumCopyright Act, signed into law in 1998. This law deals withmany different areas

of copyright protection, most of which are only peripherally relevant to Big Data. In particular, the law

focuses on copyright protections for recordedworks, particularly works that have been theft-protected

by the copyright holders [10]. The law also contains a section (Title II) dealing with the obligations of

online service providers who inadvertently distribute copyrighted material. Service providers may be

protected from copyright infringement liability if they block access to the copyrighted material when

the copyright holder or the holder’s agent claims infringement. To qualify for liability protection, ser-

vice providersmust comply with various guidelines (i.e., the so-called safe harbor guidelines) included

in the Act.

Data Quality Act In the United States the data upon which public policy is based must have quality and

must be available for review by the public. Simply put, public policy must be based on verifiable data.

The Data Quality Act of 2002, requires the Office of Management and Budget to develop government-

wide standards for data quality [3].

Data sharing Providing one’s own data to another person or entity. This process may involve free or pur-

chased data, and it may be done willingly, or under coercion, as in compliance with regulations, laws,

or court orders.
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Informed consent Human subjects who are put at risk must provide affirmative consent, if they are to be

included in a government-sponsored study. This legally applies in the United States and most other

nations, and ethically applies to any study that involves putting humans at risk. To this end,

researchers provide prospective human subjects with an “informed consent” document that informs

the subject of the risks of the study, and discloses foreseen financial conflicts among the researchers.

The informed consentmust be clear to laymen,must be revocable (i.e., subjects can change theirmind

and withdraw from the study, if feasible to do so), must not contain exculpatory language (e.g., no

waivers of responsibility for the researchers),must not promise any benefit ormonetary compensation

as a reward for participation, and must not be coercive (i.e., must not suggest a negative consequence

as a result of non-participation).

Web service Server-based collections of data, plus a collection of software routines operating on the data,

that can be accessed by remote clients. One of the features of Web services is that they permit client

users (e.g., humans or software agents) to discover the kinds of data and methods offered by the Web

Service and the rules for submitting server requests. To access Web services, clients must compose

their requests as messages conveyed in a language that the server is configured to accept, a

so-called Web services language.
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Section 20.1. How Big Data Is Perceived by the Public

The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.
Stephen Hawking

Big Data, even the Big Data that we use in scientific pursuits, is a social endeavor. The

future directions of Big Data will be strongly influenced by social, political, and economic

forces. Will scientists archive their experimental data in publicly accessible Big Data

resources? Will scientists adopt useful standards for their operational policies and their

data? The answers depend on a host of issues related to funding source (e.g., private or

public), cost, and perceived risks. How scientists use Big Data may provide the strongest

argument for or against the public’s support for Big Data resources.

The purposes of Big Data can be imagined as one of the following dramatic settings:

– The Big Snoop (hoarding information about individuals, for investigative purposes)

In this hypothesis, Big Data exists for private investigators, police departments, and snoopy

individualswhowant toscreen, scrutinize,andinvadetheprivacyof individuals, for theirown

purposes. There is basis in reality to support this hypothesis. Investigators, including theFBI,

useBigData resources,suchas: fingerprintdatabases,DNAdatabases, legal records,air travel

records, arrest and conviction records, school records, home ownership records, geneology

trees, credit card transactions, financial transactions, tax records, census records, Facebook

pages, tweets, emails, and sundry electronic residua. The modern private eye has profited

from Big Data, as have law enforcement officers. It is unsettling that savvy individuals have
Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00020-0
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used Big Data to harass, stalk, and breach the privacy of other individuals. These activities

have left some individuals dreading future sanctioned or unsanctioned uses of big

Data. On the up side, there is a real possibility that BigDatawill serve to prevent crime, bring

criminals to justice,andenhancethesecurityof law-abidingcitizens.ThevalueofBigData,as

a method to reduce crime, has not fully engaged the public consciousness.

– Big Brother (collecting information on individuals to control the general

population)

Modern governments obtain data from surveillance cameras and sophisticated

eavesdropping techniques, and from a wide variety of information collected in the course

of official operations. Much of the data collected by governments is mandated by law

(e.g., census data, income tax data, birth certificates), and cannot be avoided. When a

government sponsors Big Data collections, there will always be some anxiety that the

Big Data resource will be used to control the public, reducing our freedoms of movement,

expression, and thought. On the plus side, such population-wide studies may eventually

reduce the incidence of terrorist attacks, confine the spread of epidemics and emerging

diseases, increase highway safety, and improve the public welfare.

– Borg invasion (collecting information to absorb information on a population)

I assume that if you are reading this book on Big Data, you most likely are a Star Trek

devotee, and understand fully that the Borg are a race of collectivist aliens who travel

through galaxies, absorbing knowledge from civilizations encountered along the way.

The conquered worlds are absorbed into the Borg “collective” while their scientific and

cultural achievements are added to a Big Data resource. According to the Borg hypothesis,

Big Data is the download of a civilization. Big Data analysts predict and control the

activities of populations: how crowds move through an airport; when and where traffic

jams are likely to occur; when political uprisings will occur; how many people will buy

tickets for the next 3-D movie production. Resistance is futile.

– Junkyard (a place to put our stuff )

The late great comedian, George Carlin, famously chided us for wasting our time, money,

and consciousness on one intractable problem: “Where dowe put all our stuff?” Before the

advent of Big Data, electronic information was ephemeral; created and then lost. With

cloud computing, andwith search engines that encompass theWeb, andwith depositories

for our personal data, Big Data becomes an infinite storage attic. Your stuff is safe, forever,

and it is available to you when you need it.

When the ancient Sumerians recorded buy-sell transactions, they used clay tablets.

They used the same medium for recording novels, such as the Gilgamesh epic. These

tablets have endured well over 4000 years. To this day, scholars of antiquity study and

translate the Sumerian data sets. The safety, availability and permanence of electronic

“cloud” data is a claim that will be tested, over time. When we are all dead and gone, will

our data persist for even a fraction of the time that the Sumerian tablets have endured?
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– Scavenger hunt (searching for treasure)

Big Data is a collection of everything, created for the purpose of searching for individual

items and facts. According to the Scavenger hunt hypothesis, Big Data is everything you

ever wanted to know about everything. A new class of professionals will emerge, trained to

find any information their clientsmay need, bymining BigData resources. It remains to be

seen whether the most important things in life will ever be found in Big Data resources.

– Egghead heaven (collecting information to draw generalized scientific conclusions)

The National Science Foundation has issued a program solicitation entitled Core

Techniques and Technologies for Advancing Big Data Science & Engineering [1]. This

document encapsulates the Egghead hypothesis of Big Data.

“The Core Techniques and Technologies for Advancing Big Data Science and Engineer-

ing (BIGDATA) solicitation aims to advance the core scientific and technological means of

managing, analyzing, visualizing, and extracting useful information from large, diverse,

distributed, and heterogeneous data sets so as to: accelerate the progress of scientific

discovery and innovation; lead to new fields of inquiry that would not otherwise be pos-

sible; encourage the development of new data analytic tools and algorithms; facilitate

scalable, accessible, and sustainable data infrastructure; increase understanding of

human and social processes and interactions; and promote economic growth, improved

health, and quality of life. The new knowledge, tools, practices, and infrastructures

produced will enable breakthrough discoveries and innovation in science, engineering,

medicine, commerce, education, and national security-laying the foundations for US

competitiveness for many decades to come [1].”

– In your Facebook (a social archive that generates money)

The underlying assumption here is that people want to use their computers to interact

with other people (i.e., make friends and contacts, share thoughts, arrange social engage-

ments, give and receive emotional support, and memorialize their lives). Some might

dismiss social networks as a ruse whereby humans connect with their computers,

while disconnecting themselves from committed human relationships that demand

self-sacrifice and compassion. Still, a billion members cannot all be wrong, and the data

collected by social networks must tell us something about what humans want, need,

dislike, avoid, love, and, most importantly, buy. The Facebook hypothesis is the antithesis

of the Egghead hypothesis in that participants purposefully add their most private

thoughts and desires to the Big Data collection so that others will recognize them as

unique individuals.

– Much ado about nothing (Big Data does not qualify as anything new)

According to some detractors, Big Data represents what we have always done, but with

more data. This last statement, which is somewhat of an anti-hypothesis, is actually

prevalent among quite a few computer scientists. They would like to think that everything
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they learned in the final decades of the 20th century will carry them smoothly through

their careers in the 21st century. Many such computer scientists hold positions of

leadership and responsibility in the realm of information management. They may be

correct; time will either vindicate or condemn them.

Discourse on Big Data is hindered by the divergence of opinions on the nature of the

subject. A proponent of the Nihilist hypothesis will not be interested in introspection,

identifiers, semantics, or any of the Big Data issues that do not apply to traditional data

sets. Proponents of the George Carlin hypothesis will not dwell on the fine points of Big

Data analysis if their goal is limited to archiving files in the Big Data cloud. If you read

blogs and magazine articles on Big Data, from diverse sources (e.g., science magazines,

popular culture magazines, news syndicates, financial bulletins), you will find that the

authors are all talking about fundamentally different subjects called by the same name;

Big Data. [Glossary Semantics]

Toparaphrase James Joyce, there aremany sides to an issue; unfortunately, I amonly able

to occupy one of them. I closely follow the National Science Foundation’s lead (vida supra).

The focus for this chapter is the Egghead hypothesis; using Big Data to advance science.
Section 20.2. Reducing Costs and Increasing Productivity
With Big Data

Every randomized clinical trial is an observational study on day two.
Ralph Horwitz

We tend to think of Big Data exclusively as an enormous source of data; for analysis and for

fact-finding. Perhaps we should think of Big Data as a time-saver; something that helps us

do our jobs more efficiently, and at reduced cost. It is easy to see how instant access to

industry catalogs, inventory data, transaction logs, and communication records can

improve the efficiency of businesses. It is less easy to see how Big Data can speed up

scientific research, an endeavor customarily based on labor-intensive, and tedious

experiments conducted by scientists and technicians in research laboratories. For many

fields of science, the traditional approach to experimentation has reached its fiscal and

temporal limits; the world lacks the money and the time to do research the old-fashioned

way. Everyone is hoping for something to spark the next wave of scientific progress,

and that spark may be Big Data.

Here is the problem facing scientists today. Scientific experiments have increased in

scale, cost, and time, but the incremental progress resulting from each experiment is

no greater today than it was fifty years ago. In the field of medicine, 50-year progress

between 1910 and 1960 greatly outpaced progress between 1960 and 2010. Has society

reached a state of diminishing returns on its investment in science?

By 1960, industrial science reached the level that we see today. In 1960, we had home

television (1947), transistors (1948), commercial jets (1949), nuclear bombs (fission,
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fusion in 1952), solar cells (1954), fission reactors (1954), satellites orbiting the earth

(Sputnik I, 1957), integrated circuits (1958), photocopying (1958), probes on the moon

(Lunik II, 1959), practical business computers (1959), and lasers (1960). Nearly all the

engineering and scientific advances that shape our world today were discovered prior

to 1960.

These engineering and scientific advancements pale in comparison to the advances in

medicine that occurred between 1920 and 1960. In 1921, we had insulin. Over the next four

decades, we developed antibiotics effective against an enormous range of infectious

diseases, including tuberculosis. Civil engineers prevented a wide range of common

diseases using a clean water supply and improved waste management. Safe methods to

preserve food, such as canning, refrigeration, and freezing saved countless lives. In

1941, Papanicolaou introduced the Pap smear technique to screen for precancerous cer-

vical lesions, resulting in a 70% drop in the death rate from uterine cervical cancer, one of

the leading causes of cancer deaths in women. By 1947, we had overwhelming epidemi-

ologic evidence that cigarettes caused lung cancer. No subsequent advances in cancer

research have yielded reductions in cancer death rates that are comparable to the benefits

achieved with Pap smear screening and cigarette avoidance. The first polio vaccine

and the invention of oral contraceptives came in 1954. By the mid 1950s, sterile surgical

technique was widely practiced, bringing a precipitous drop in post-surgical and post-

partum deaths. The great achievements in molecular biology, from Linus Pauling, James

D. Watson, and Francis Crick, came in the 1950s.

If the rate of scientific accomplishment were dependent upon the number of scientists

on the job, you would expect that progress would be accelerating, not decelerating.

According to the National Science Foundation, 18,052 science and engineering doctoral

degrees were awarded in the United States, in 1970. By 1997, that number had risen to

26,847, nearly a 50% increase in the annual production of the highest level scientists

[2]. The growing work force of scientists failed to advance science at rates achieved in

an earlier era; but not for lack of funding. In 1953, according to the National Science Foun-

dation, the total United States expenditures on research and development was $5.16 bil-

lion, expressed in current dollar values. In 1998, that number has risen to $227 billion,

greater than a 40-fold increase in research spending [2]. Most would agree that, over this

same period, we have not seen a 40-fold increase in the rate of scientific progress.

Big Data provides a way to accelerate scientific progress by providing a large, perma-

nent, and growing collection of data obtained from many different sources; thus sparing

researchers the time and expense of collecting all of the data that they use, for very limited

purposes, for a short span of time.

In the field of experimental medicine, Big Data provides researchers with an opportu-

nity to bypass the expensive and time-consuming clinical trial process. With access to

millions of medical records and billions of medical tests, researchers can find subpopu-

lations of patients with a key set of clinical features that would qualify them for inclusion

in narrowly focused, small trials [3]. The biological effects of drugs, and the long-term

clinical outcomes, can sometimes be assessed retrospectively on medical records held
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in Big Data resources. The effects of drugs, at different doses, or in combination with other

drugs, can be evaluated by analyzing large numbers of treated patients. Evaluations of

drugs for optimal doses, and optical treatment schedule, in combination with other drugs,

is something that simply cannot be answered by clinical trials (there are too many

variables to control).

Perhaps the most important scientific application of Big Data will be as a validation

tool for small data experiments. All experiments, including the most expensive prospec-

tive clinical trials, are human endeavors and are subject to all of the weaknesses and

flaws that characterize the human behavior [4–6]. Like any human endeavor, experiments

must be validated, and the validation of an experiment, if repeated in several labs, will cost

more than the original study. Using Big Data, it may be feasible to confirm experimental

findings based on a small, prospective studies, if the small-scale data is consistent with

observations made on very large populations [7]. In some cases, confirmatory Big Data

observations, though not conclusive in themselves, may enhance our ability to select

the most promising experimental studies for further analysis. Moreover, in the case of

drug trials, observations of potential side effects, non-responsive subpopulations, and

serendipitous beneficial drug activities may be uncovered in a Big Data resource.

In the past, statisticians have criticized the use of retrospective data in drug evalua-

tions. There are just too many biases and too many opportunities to reach valueless or

misleading conclusions. Today, there is a growing feeling that we just do not have the lux-

ury of abandoning Big Data. Using these large resources may be worth a try, if we are pro-

vided access to the best available data, and if our results are interpreted by competent

analysts, and sensibly validated. Today, statisticians are finding opportunities afforded

by retrospective studies for establishing causality, once considered the exclusive domain

of prospective experiments [8–10]. One of the most promising areas of Big Data studies,

over the next decade or longer, will be in the area of retrospective experimental design. The

incentives are high. Funding agencies, and corporations should ask themselves, before

financing any new and expensive research initiative, whether the study can be performed

using existing data held in Big Data resources [11].
Section 20.3. Public Mistrust

Never attribute to malice that which is adequately explained by stupidity
Commonly attributed to Robert J. Hanlon, but echoed by countless others over the ages

Much of the reluctance to share data is based on mistrust. Corporations, medical centers,

and other entities that collect data on individuals will argue, quite reasonably, that they

have a fiduciary responsibility to the individuals whose data is held in their repositories.

Sharing such data with the public would violate the privacy of their clients. Individuals

agree. Few of us would choose to have our medical records, financial transactions, and

the details of our personal lives examined by the public.
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Recent campaigns have been launched against the “database state.” One such example

is NO2ID, a British campaign against ID cards and a National Identify Register. Other anti-

database campaigns include TheBigOptOut.org which campaigns against involuntary

participation in the United Kingdommedical record database and LeaveThemKidsAlone,

protesting fingerprinting in schools.

When the identifying information that links a personal record to a named individual is

removed, then the residual data becomes disembodied values and descriptors. Properly

deidentified data poses little or no threat to humans, but it has great value for scientific

research. The public receives the benefits of deidentifiedmedical data every day. This data

is used tomonitor the incidence and the distribution of cancer, detect emerging infectious

diseases, plan public health initiatives, rationally appropriate public assistance funds,

manage public resources, and monitor industrial hazards. Deidentified data collected

from individuals provides objective data that describes us to ourselves. Without this data,

society is less safe, less healthy, less smart, and less civilized.

Those of us who value our privacy and our personal freedom have a legitimate interest

in restraining Big Data. Yet, we must admit that nothing comes free in this world. Individ-

uals who receive the benefits of Big Data, should expect to pay something back. In return

for contributing private records to Big Data resources, the public should expect resources

to apply the strictest privacy protocols to their data. Leaks should be monitored, and

resources that leak private data should be disciplined and rehabilitated. Non-compliant

resources should be closed.

There are about a billion people who have Facebook accounts wherein they describe

the intimate details of their lives. This private information is hanging in the cloud, to be

aggregated, analyzed and put to all manner of trivial, commercial purposes. Yet, many of

these same Facebook users would not permit their deidentifiedmedical records to be used

to save lives. It would be ideal if there were no privacy or confidentiality risks associated

with Big Data. Unfortunately, zero-risk is not obtainable. However, it is technically possi-

ble to reduce the imagined risks of Big Data to something far below the known risks that

we take with every electronic monetary transaction, every transfer of information, every

move wemake in public places, every click on our keyboards, and every tap on our smart-

phones. Brave new world!
Section 20.4. Saving Us From Ourselves

Man needs more to be reminded than instructed.
Samuel Johnson

Ever since computers were invented, there has been a push toward developing decision-

making algorithms. The idea has been that computers can calculate better and faster than

humans and can process more data than humans. Given the proper data and algorithms,

computers canmake better decisions than humans. In some areas, this is true. Computers

can beat us at chess, they can calculate missile trajectories, and they can crack encryption

http://TheBigOptOut.org
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codes. They can do many things better and faster than humans. In general the things that

computers do best are the things that humans cannot do at all.

If you look over the past half century of computer history, computers have not made

much headway in the general area of decision-making. Humans continue to muddle

through their days, making their own decisions. We do not appoint computers to sit

in juries, doctors seldom ask a computer for their diagnostic opinions, computers do

not decide which grant applications receive funding, and computers do not design our

clothing. Despite billions of dollars spent on research on artificial intelligence, the field

of computer-aided decision-making has fallen short of early expectations [12–15]. It
seems we humans still prefer to make our own mistakes, unassisted. [Glossary Artificial

intelligence, Machine learning]

Although computers play a minor role in helping us make correct decisions, they can

play a crucial role in helping us avoid incorrect decisions. In the medical realm, medical

errors account for about 100,000 deaths and about a million injuries each year, in the

United States [16]. Can we use Big Data to avoid such errors? The same question applies

to driving errors, manufacturing errors, construction errors, and any realm where human

errors have awful consequences.

It really does not make much sense, at this early moment in the evolution of compu-

tational machines, to use computers to perform tasks that we humans can do very well. It

makes much more sense to use computers to prevent the kinds of errors that humans

commit because we lack the qualities found in computers.

Here are a few examples wherein Big Data resources may reduce human errors:

– Identification errors.

As discussed at length in Section 3.4, “Really Bad Identifier Methods,” identification is a

complex process that should involve highly trained staff, particularly during the registra-

tion process. Biometrics may help establish uniqueness (i.e., determining that an individ-

ual is not registered under another identifier) and authenticity (i.e., determining that an

individual is who he claims to be). Computer evaluation of biometric data (e.g., finger-

prints, iris imaging, retinal scan, signature, etc.) may serve as an added check against

identification errors.

– Data entry errors.

Data entry error rates are exceedingly common and range from about 2% of entries up to

about 30% of entries, depending on various factors including the data type (e.g., numeric

or textual) and length of the entry [17,18].

As society becomes more and more complex, humans become less and less capable of

avoiding errors. Errors that have been entered into a data resource can be very difficult

to detect and correct. A warning from a computer may help humans avoid making some

highly regrettable entry errors. Probably the simplest, but most successful, example of

a computational method to find entry errors is the check-digit. The check-digit (which

can actually be several digits in length) is a number that is computed from a sequence
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(e.g., charge card number) and appended to the end of the sequence. If the sequence is

entered incorrectly, the computed check digit will be different from the check-digit that

had been embedded as a part of the original (correct) sequence. The check-digit has

proven to be a very effectivemethod for reducing data entry errors for identifiers and other

important short sequences; and a wide variety of check-digit algorithms are available.

[Glossary Checksum]

Spell-checkers are another example of software that finds data errors at the moment of

entry. In fact, there are many opportunities for data scientists to develop methods

that check for inconsistencies in human-entered data. If we think of an inconsistency

as anything that differs from what we would expect to see, based on past experience,

than Big Data resources may be the proper repository of “consistent” values with which

inconsistencies can be detected.

– Medical errors.

Computer systems can suspend prescriptions for which doses exceed expected values, or

for which known drug interactions contraindicate use, or for which abuse is suspected

(e.g., multiple orders of narcotics from multiple physicians for a single patient). With

access to every patient’s complete electronic medical record, computers can warn us of

idiosyncratic reactions that may occur, and the limits of safe dosages, for any particular

patient. With access to biometric identifying information, computers can warn us when

a treatment is about to be provided to the wrong patient. As an example, in operating

rooms, computers can check that the screened blood components are compatible with

the screened blood of the patient; and that the decision to perform the transfusion meets

standard guidelines established by the hospital.

– Rocket launch errors.

Computers can determine when all sensors report normally (e.g., no frozen o-rings), when

all viewed subsystems appear normal (e.g., no torn heat shield tiles hanging from the

hull), and when all systems are go (e.g., no abnormalities in the function of individual

systems), and when the aggregate system is behaving normally (e.g., no conflicts between

subsystems). Rockets are complex, and the job of monitoring every system for errors is a

Big Data task.

– Motor vehicle accidents.

It is thrilling to know that computersmay soon be driving our cars, butmostmotor vehicle

collisions could be prevented if we would simply eliminate from our roads those human

drivers who are impaired, distracted, reckless, or otherwise indisposed to obeying the legal

rules of driving. With everything we know about electronic surveillance, geopositioning

technology, traffic monitoring, vehicle identification, and drug testing, you might think

that we would have a method to rid the roads of poor drivers and thereby reduce motor

vehicle fatalities. More than 32,000 people die each year from traffic accidents in the

United States, and many more individuals are permanently disabled. Big Data technology
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could collect, analyze, and instantly react to data collected from highways; and it is easy to

see how this information could greatly reduce the rate of motor vehicle deaths. What are

we waiting for?
Section 20.5. Who Is Big Data?

The horizons of physics, philosophy, and art have of late been too widely separated,

and, as a consequence, the language, the methods, and the aims of any one of these

studies present a certain amount of difficulty for the student of any other of them.
Hermann L. F. Helmholtz, 1885 [19]

To get the most value from Big Data resources, will we need armies of computer scientists

trained with the most advanced techniques in supercomputing? According to an industry

report prepared byMcKinsey Global Institute, the United States faces a current shortage of

140,000–190,000 professionals adept in the analytic methods required for Big Data [20].

The same group estimates that the United States needs an additional 1.5 million data-

savvy managers [20].

Analysis is important; it would be good to have an adequate workforce of professionals

trained in a variety of computationally-intensive techniques that can be applied to Big

Data resources. Nevertheless, there is little value in applying advanced computational

methods to poorly designed resources that lack introspection and data identification.

A high-powered computer operated by a highly trained analyst cannot compensate for

opaque or corrupted data. Conversely, when the Big Data resource is well designed, the

task of data analysis becomes relatively straightforward.

At this time, we have a great many analytic techniques at our disposal, and we have

open source software programs that implement these techniques. Every university offers

computer science courses and statistics courses that teach these techniques. We will soon

reach a time when there will be an oversupply of analysts, and an under-supply of

well-prepared data. When this time arrives, there will be a switch in emphasis from data

analysis to data preparation. The greatest number of Big Data professionals will be those

people who prepare data for analysis.

Will Big Data create new categories of data professionals, for which there are currently

no training programs? In the near future, millions of people will devote large portions

of their careers toward the design, construction, operation, and curation of Big Data

resources. Who are the people best equipped for these tasks?

– Resource Builders:

– Big Data Designers

Big Data does not self-assemble into a useful form. It must be designed before any data is

collected. The job of designing a Big Data resource cannot be held by any single person,

but a datamanager (i.e., the person who supervises the project team) is often saddled with
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the primary responsibility of proffering a design or model of the resource. Issues such as

what data will be included, where the data comes from, how to verify the data, how to

annotate and classify the data, how to store and retrieve data, how to access the system,

and a thousand other important concerns must be anticipated by the designers. If the

design is bad, the Big Data resource will likely fail.

– Big Data Indexers

As discussed in Section 2.4, indexes help us find the data we need, quickly. The Google

search engine is, at its heart, an index, built by the PageRank algorithm. Without indexers

and the algorithms that organize data in a way that facilitates the kinds of searches that

users are likely to conduct, Big Data would have very little appeal. The science of indexing

is vastly underrated in universities, and talented indexers are hard to find. Indexers should

be actively recruited into most Big Data projects.

– Domain experts

It is impossible to sensibly collect and organize Big Data without having a deep under-

standing of the data domain. An effective data domain expert has an understanding

of the kinds of problems that the data can help solve, and can communicate her

knowledge to the other members of the Big Data project, without resorting to opaque

jargon. The domain expert must stay current in her field and should regularly share

information with other domain experts in her field and in fields that might be relatable

to the project.

– Metadata experts

Themost commonmistake made by beginners to the metadata field is to create their own

metadata tags to describe their data. Metadata experts understand that individualized

metadata solutions produce BigData than cannot be usefully merged with other data sets.

Experts need to know themetadata resources that are available on the web, and theymust

choose metadata descriptors that are defined in permanent, accessible, and popular

schemas. Such knowledge is an acquired skill that should be valued by Big Datamanagers.

– Ontologists and classification experts

As noted in Sections 5.6–5.8, it is almost impossible to create a good classification.

Creating, maintaining, and improving a classification is a highly demanding skill, and

classification errors can lead to disastrous results for a Big Data resource and its many

users. Hence, highly skill taxonomists and ontologists are essential to any Big Data project.

– Software programmers

Software programmers are nice to have around, but they have a tendency to get carried

away with large applications and complex graphic user interfaces. Numerous examples

shown throughout this book would suggest that most of the useful algorithms in Big Data

are actually quite simple. Programmers who have a good working knowledge of many
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different algorithms, and who can integrate short implementations of these algorithms, as

needed, within the framework of a Big Data Resource, are highly useful.

In many cases, Big Data projects can operate quite well using free and open source

database applications. The primary purpose of programmers, in this case, often falls to

making incremental additions and adjustments to the bare-bones system. As a general

rule, the fewer the additions, the better the results. Programmers who employ good

practices (e.g., commenting code, documenting changes, avoiding catastrophic interac-

tions between the different modules of an application) can be more effective than

genious-grade programmers who make numerous inscrutable system modifications

before moving to a higher-paying job with your competitor.

– Data curators, including legacy experts

Who is responsible for all this immutability that haunts every Big Data resource? Most

of the burden falls upon the data curator. The word “curator” derives from the Latin,

“curatus,” the same root for “curative” and conveys that curators fix things. In a Big Data

resource the curator must oversee the accrual of sufficiently annotated legacy and pro-

spective data into the resource; must choose appropriate nomenclatures for annotating

the data; must annotate the data; andmust supplement records with updated annotations

as appropriate, when new versions of nomenclatures, specifications, and standards are

applied. The curator is saddled with the almost impossible task of keeping current the

annotative scaffold of the Big Data resource, without actually changing any of the existing

content of records. In the absence of curation, all resources will eventually fail.

It all seems so tedious! Is it really necessary? Sadly, yes. Over time, data tends to degen-

erate: records are lost or duplicated, links become defunct, unique identifiers lose their

uniqueness, the number of missing values increases, nomenclature terms become

obsolete, mappings between terms coded to different standards become decreasingly

reliable. As personnel transfer, quit, retire, or die, the institutional memory for the Big

Data resource weakens. As the number of contributors to a Big Data resource increases,

controlling the quality of the incoming data becomes increasingly difficult. Data, like

nature, regresses from order to disorder; unless energy is applied to reverse the process.

There is no escape; every reliable Big Data resource is obsessed with self-surveillance and

curation.

– Data managers

In most instances the data manager is also the data project manager in charge of a team

of workers. Her biggest contribution will involve creating a collegial, productive, and

supportive working environment for their team members. The database manager must

understand why components of Big Data resources, that are not found in smaller data

projects (e.g.,metadata, namespaces, ontologies, identifier systems, timestamps) are vital,

and why the professionals absorbed in these exclusively Big Data chores are integral to the

success of the projects. Team training is crucial in Big Data efforts, and the data manager

must help each member of her team understand the roles played by the other members.
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The datamanagermust also understand the importance of old data and data permanence

and data immutability.

– Network specialists

Big Data seldom exists in a silo. Throughout this book, and only as a convenience, data

is described as something that is conveyed in a document. In reality, data is something

that streams between clouds. Network specialists, not discussed in any detail in this book,

are individuals who know how to access and link data, wherever it may reside.

– Security experts

Security issues were briefly discussed in Section 18.3, “Data Security and Crypto-

graphic Protocols.” Obviously, this important subject cannot be treated in any great

depth in this book. Suffice it to say, Big Data requires the services of security experts

whose knowledge is not confined to the type of encryption protocols described earlier.

Data security is more often a personnel problem than a cryptographic puzzle.

Breaches are likely to arise due to human carelessness (i.e., failure to comply with

security protocols) or from misuse of confidential information (i.e., carrying around

gigabytes of private information on a personal laptop, or storing classified documents

at home). Security experts, skilled in the technical and social aspects of their work,

fulfill an important role.

– Resource Users

– Data validators

What do we really know about the measurements contained in Big Data resources?

How can we know what these measurements mean, and whether they are correct? Data

managers approach these questions with three closely related activities: data verification,

data reproducibility, and validation. As previously mentioned, verification is the process

that ensures that data conforms to a set of specifications. As such, it is a pre-analytic

process (i.e., done on the data, before it is analyzed). Data reproducibility involves getting

the same measurement over and over when you perform the test properly. Validation

involves showing that correct conclusions were obtained from a competent analysis of

the data. The primary purpose of data validators is to show that the scientific conclusions

drawn from a Big Data resource are trustworthy and can be used as the foundation for

other studies. The secondary purpose of data validators is to determine when the conclu-

sions drawn from the data are not trustworthy, and to make recommendations that might

rectify the situation.

– Data analysts

Most data analysts carry a set of methods that they have used successfully, on small data

problems. No doubt, they will apply the same methods to Big Data, with varying results.

The data analysts will be the ones who learn, from trial and error, which methods are
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computationally impractical on large sets of data, which methods provide results that

have no practical value, which methods are unrepeatable, and which methods cannot

be validated. The data analysts will also be the ones who try new methods and report

on their utility. Because so many of the analytic methods on Big Data are over-hyped,

it will be very important to hire data analysts who are objective, honest, and resistant

to bouts of hubris.

– Generalist problem solvers

Arguably the most essential new professional is the “generalist problem solver,” a term

that describes people who have a genuine interest in many different fields, a naturally

inquisitive personality, and who have a talent for seeing relationships where others do

not. The data held in Big Data resources becomes muchmore valuable when information

from different knowledge domains lead to unexpected associations that enlighten both

fields (e.g., veterinary medicine and human medicine, bird migration and global weather

patterns, ecologic catastrophes and epidemics of emerging diseases, political upheaval

and economic cycles, social media activity and wages in African nations). For these kinds

of efforts, someone needs to create a new set of cross-disciplinary questions that could not

have been asked prior to the creation of Big Data resources.

Historically, academic training narrows the interests of students and professionals.

Students begin their academic careers in college, where they are encouraged to select a

major field of study as early as their freshman year. In graduate school, they labor in a

sub-discipline, within a rigidly circumscribed department. As postdoctoral trainees, they

narrow their interests even further. By the time they become tenured professors, their

expertise is so limited that they cannot see how other fields relate to their own studies.

The world will always need people who devote their professional careers to a single

sub-discipline, to the exclusion of everything else, but the future will need fewer and fewer

of these specialists [21]. My experience has been that cross-disciplinary approaches to

scientific problems are very difficult to publish in scientific journals that are, with few

exceptions, devoted to one exclusive area of research. When a journal editor receives a

manuscript that employs methods from another discipline, the editor usually rejects

the paper, indicating that it belongs in some other journal. Even when the editor recog-

nizes that the study applies to a problem within the scope of the journal, the editor would

have a very difficult time finding reviewers who can evaluate a set of methods from

another field. To get the greatest value from Big Data resources, it is important to under-

standwhen a problem in one field has an equivalence to a problem from another field. The

baseball analyst may have the same problem as the day trader; the astrophysicist may

have the same problem as the chemist. We need to have general problem solvers who

understand how data from one resource can be integrated with the data from other

resources, and how problems from one field can be generalized to other fields, and can

be answered with an approach that combines data and methods from several different

disciplines. It is important that universities begin to train students as problem solvers,

without forcing them into restrictive academic departments.
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– Scientists with someminimal programming skills (not usually full-time programmers)

In the 1980s, as the cost of computers plummeted, and desktop units were suddenly

affordable to individuals, it was largely assumed that all computer owners would become

computer programmers. At the time, there was nothing much worth doing with a com-

puter other than programming and word processing. By the mid-1990s, the Internet

grabbed the attention of virtually every computer owner. Interest in programming lan-

guages waned, as our interest in social media and recreational uses of the computer grew.

It is ironic that we find ourselves inundated with an avalanche of Big Data, just at the time

that society, content with online services provided by commercial enterprises, have traded

their computers for smartphones. Scientists and other data users will find that they cannot

do truly creative work using proprietary software applications. They will always encounter

situations wherein software applications fail to meet their exact needs. In these cases it is

impractical to seek the services of a full-time programmer.

Today, programming is quite easy. Within a few hours, motivated students can pick up

the rudiments of popular scripting languages such as Python, Perl, Ruby and R. With few

exceptions, the scripts needed for Big Data analysis are simple and most can be written

in under 10 lines of code [22–25]. It is not necessary for Big Data users to reach the level

of programming proficiency held by professional programmers. For most scientists,

programming is one of those subjects for which a small amount of training preparation

will usually suffice. I would strongly urge scientists to return to their computational roots

and to develop the requisite skills for analyzing Big Data.

– Data reduction specialists

There will be a need for professionals to develop strategies for reducing the computational

requirements of Big Data and for simplifying the way that Big Data is examined. For exam-

ple, the individuals who developed the CODIS DNA identification system (discussed in

Section 17.4, “Case Study: Scientific Inferencing from a Database of Genetic Sequences”)

relieved forensic analysts from the prodigious task of comparing and storing, for each

sampled individual, the 3 billion base pairs that span the length of the human genome.

Instead, a selection of 13 short sequences can suffice to identify individual humans. Like-

wise, classification experts drive down the complexity of their analyses by focusing on data

objects that belong to related classes with shared and inherited properties. Similarly, data

modelers attempt to describe complex systems with mathematical expressions, with

which the behavior of the system can be predicted when a set of parameters are obtained.

Experts who can extract, reduce, and simplify Big Data will be in high demand and will be

employed in academic centers, federal agencies and corporations.

– Data visualizers

Often, all that is needed to make an important observation is a visualized summary of

data. Luckily, there are many data visualization tools that are readily available to today’s

scientists. Examples of simple data plots using matplotlib (a Python module) or Gnuplot



434 PRINCIPLES AND PRACTICE OF BIG DATA
(an open source application that can be called from the command line) have been shown.

Of course, Excel afficionados have, at their disposal, a dazzling number of ways with which

they can display their spreadsheet data. Regardless of your chosen tools, anyone working

with data should become adept at transforming raw data into pictures.

– Free-lance Big Data consultants

BigData freelancers are self-employedprofessionalswhohave the skills tounlock the secrets

that lie within Big Data resources. When they work under contract for large institutions and

corporations, theymaybe called consultants, or freelance analysts.When they sell their data

discoverieson theopenmarket, theymaybecalledentrepreneurial analysts. Theywill be the

masters of data introspection, capable of quickly determiningwhether thedata in a resource

can yield the answers sought by their clients. Some of these Big Data freelancers will have

expertise limited tooneor several BigData resources; expertise thatmayhavebeenacquired

asa regularemployeeofaninstitutionorcorporation, in theyearsprecedinghisorher launch

into self-employment. Freelancers will have dozens, perhaps hundreds, of small utilities

for data visualization and data analysis. When they need assistance with a problem, the

freelancer might enlist the help of fellow freelancers. Subcontracted alliances can be

arrangedquickly, through Internet-based services. Theneed forbricks-and-mortar facilities,

or for institutional support, or for employers and supervisors, will diminish. The freelancer

willneedtounderstandtheneedsofhisclientsandwillbepreparedtohelptheclient redefine

their specific goals, within the practical constraints imposed by the available data. When

the data within a resource is insufficient, the freelancer would be the best person to scout

alternate resources. Basically, freelance analystswill liveby theirwits, exploiting theBigData

resources for the benefit of themselves and their clients.

– Everyone else

As public data becomes increasingly available, therewill be an opportunity for everyone to

participate in the bounty. See Section 20.7, “Case Study: The Citizen Scientists”.
Section 20.6. Hubris and Hyperbole

Intellectuals can tell themselves anything, sell themselves any bill of goods, which is

why they were so often patsies for the ruling classes in nineteenth-century France and

England, or twentieth-century Russia and America.
Lillian Hellman

A Forbes magazine article, published in 2015, running under the title, “Big Data:

20Mind-Boggling Facts EveryoneMust Read,” listed some very impressive “facts,” includ-

ing that claim that more data has been created in the past two years than in all of prior

history [26]. Included in the article was the claim that by the year 2020, the accumulated

data collected worldwide will be about 44 zettabytes (44 trillion gigabytes). The author
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wrote, as one of his favorite facts, “At themoment less than 0.5% of all data is ever analyzed

and used, just imagine the potential here” [26].

Of course, it is impossible to either verify or to discredit such claims, but experience

would suggest that only a small percentage of the data that is collected today is worth

the serious attention of data analysts. It is quite rare to find data that has been annotated

with even the most minimal information required to conduct credible scientific research.

These minimal annotations, as discussed previously, would be the name of the data

creator, the owner of the data, the legal restraints on the usage of the data, the date that

the data was created, the protocols by which the data was measured and collected,

identifiers for data objects, class information on data objects, and metadata describing

data within data objects. If you have read the prior chapters, you know the drill.

Make no mistake, despite the obstacles and the risks, the potential value of Big Data

is inestimable. A hint at future gains from Big Data comes from the National Science

Foundation’s (NSF) 2012 solicitation for grants in core techniques for Big Data. The

NSF envisions a Big Data future with the following pay-offs [1]:

– “Responses to disaster recovery empower rescue workers and individuals to make

timely and effective decisions and provide resources where they are most needed;

– Complete health/disease/genome/environmental knowledge bases enable

biomedical discovery and patient-centered therapy; The full complement of health

and medical information is available at the point of care for clinical decision-making;

– Accurate high-resolutionmodels support forecasting andmanagement of increasingly

stressed watersheds and ecosystems;

– Access to data and software in an easy-to-use format are available to everyone around

the globe;

– Consumers can purchase wearable products using materials with novel and unique

properties that prevent injuries;

– The transition to use of sustainable chemistry and manufacturing materials has been

accelerated to the point that the US leads in advanced manufacturing;

– Consumers have the information they need to make optimal energy consumption

decisions in their homes and cars;

– Civil engineers can continuously monitor and identify at-risk man-made structures

like bridges, moderate the impact of failures, and avoid disaster;

– Students and researchers have intuitive real-time tools to view, understand, and learn

from publicly available large scientific data sets on everything from genome sequences

to astronomical star surveys, from public health databases to particle accelerator

simulations and their teachers and professors use student performance analytics to

improve that learning; and

– Accurate predictions of natural disasters, such as earthquakes, hurricanes, and

tornadoes, enable life-saving and cost-saving preventative actions.”

Lovely. It would seem that there is nothing that cannot be accomplished with Big Data!
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I know lots of scientists; the best of them lack self-confidence. They understand that

their data may be flawed, their assumptions may be wrong, their methods might be

inappropriate, their conclusions may be unrepeatable, and their most celebrated findings

may one day be discredited. The worst scientists are just the opposite; confident of every-

thing they do, say, or think [27].

The sad fact is that, among scientific disciplines, Big Data is probably the least reliable,

providing major opportunities for blunders. Prior chapters covered limitations in

measurement, data representation, and methodology. Some of the biases encountered

in every Big Data analysis were covered in Chapter 14, “Special Considerations in Big Data

Analysis.” Apart from these limitations lies the ever-present dilemma that assertions based

on Big Data analyses can sometimes be validated, but they can never be proven true.

Confusing validation with proof is a frequently encountered manifestation of overconfi-

dence. If you want to attain proof, you must confine your interests to pure mathematics.

Mathematics is the branch of science devoted to truth. With math, you can prove that an

assertion is true, you can prove that an assertion is false, you can prove that an assertion

cannot be proven to be true or false. Mathematicians have the monopoly on proving

things. None of the other sciences have the slightest ideawhat they’re doingwhen it comes

to proof.

In the non-mathematical sciences, such as chemistry, biology, medicine, and astron-

omy, assertions are sometimes demonstrably valid (true when tested), but assertions

never attain the level of a mathematical truth (proven that it will always be true, and never

false, forever). Nonetheless, we can do a little better than showing that an assertion is sim-

ply valid. We can sometimes explain why an assertion ought to be true for every test, now

and forever. To do so, an assertion should have an underlying causal theory that is based

on interactions of physical phenomena that are accepted as true. For example, F ¼ ma

ought to be true, because we understand something about the concepts of mass and

acceleration, and we can see why the product of mass and acceleration produce a force.

Furthermore, everything about the assertion is testable in a wide variety of settings.

Big Data analysts develop models that are merely descriptive (e.g., predicting the

behavior of variables in different settings), without providing explanations in terms of

well-understood causal mechanisms. Trends, clusters, classes, and recommenders may

appear to be valid over a limited range of observations; but may fail miserably in tests

conducted over time, with a broader range of data. Big Data analysts must always be pre-

pared to abandon beliefs that are not actually proven [21].

Finance has eagerly entered the Big Data realm, predicting economic swings, stock

values, buyer preferences, the impact of new technologies, and a variety of market

reactions, all based on Big Data analysis. Formany financiers, accurate short-term predic-

tions have been followed, in the long-run, with absolutely ruinous outcomes. In such

cases, the mistake was overconfidence; the false belief that their analyses will always be

correct [28].

In my own field of concentration, cancer research, there has been a major shift of

effort away from small experimental studies toward large clinical trials and so-called
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high-throughput molecular methods that produce vast arrays of data. This new generation

of cancer research costs a great deal in terms of manpower, funding, and the time to

complete a study. The funding agencies and the researchers are confident that a Big Data

approach will work where other approaches have failed. Such efforts may one day lead

to the eradication of cancer; who is to say? In the interim, we have already seen a great deal

of time and money wasted on huge, data-intensive efforts that have produced predictions

that are not reproducible, with no more value than a random throw of dice [4,29–32].
Despite the limitations of Big Data, the creators of Big Data cannot restrain their

enthusiasm. The following is an announcement from the National Human Genome

Research Institute concerning their own achievements [33]:

“In April 2003, NHGRI celebrated the historic culmination of one of themost important

scientific projects in history: the sequencing of the human genome. In addition, April 2003

marked the 50th anniversary of another momentous achievement in biology: James

Watson and Francis Crick’s Nobel Prize winning description of the DNA double helix”

and “To mark these achievements in the history of science and medicine, the NHGRI,

the NIH and the DOE held a month-long series of scientific, educational, cultural and

celebratory events across the United States.”

In the years following this 2003 announcement, it has become obvious that the genome

is much more complex than previously thought, that common human diseases are

genetically complex, that the genome operates through mechanisms that cannot be

understood by examining DNA sequences, and that much of the medical progress

expected from the Human Genome Project will not be forthcoming anytime soon

[29,34,35]. In a 2011 article, Eric Lander, one of the luminaries of the Human Genome

Project, was quoted as saying, “anybody who thought in the year 2000 that we’d see cures

in 2010 was smoking something” [35]. Monica Gisler and co-workers have hypothesized

that large-scale projects create their own “social bubble,” inflating the project beyond any

rational measure [36]. It is important that Big Data proselytizers, myself included, rein in

their enthusiasm.
Section 20.7. Case Study: The Citizen Scientists

There is no reason why someone would want a computer in their home.
Ken Olson, President and founder of Digital Equipment Corporation, in 1977.

In a sense, we have reached a post-information age. At this point, we have collected an

awful lot of information, and we all have access too much more information than we

can possibly analyze within our lifetimes. In fact, all the professional scientists and data

analysts who are living today could not possibly exhaust the information available to

anyone with Internet access. If we want to get the most out of the data that currently

resides within our grasps, wewill need to call upon everyone’s talents, including amateurs.

Lest we forget, every professional scientist enters the ranks of the amateur scientists on the

day that he or she retires. Today, the baby boomer generation is amassing an army of
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well-trained scientists who are retiring into a world that provides them with unfettered

access to limitless data. Hence, we can presume that the number of amateur scientists will

soon exceed the number of professional scientists.

Historically, some of the greatest advancements in science have come from amateurs.

For example, Antonie van Leeuwenhoek (1632–1723), one of the earliest developers of the
compound microscope, who is sometimes credited as the father of microbiology, was a

janitor. Augustin-Jean Fresnel (1788–1827) was a civil engineer who found time to make

significant and fundamental contributions to the theory of wave optics. Johann Jakob

Balmer (1825–1898) earned his living as a teacher in a school for girls while formulating

the mathematical equation describing the spectral emission lines of hydrogen. His work,

published in 1885, led others, over the next four decades, to develop the new field of

quantum mechanics. Of course, Albert Einstein was a paid patent clerk and an amateur

physicist who found time, in 1905, to publish three papers that forever changed the land-

scape of science.

In the past few decades a wealth of scientific resources has been made available to

anyone with Internet access. Many of the today’s most successful amateurs are autodi-

dacts with access to Big Data [37–42]. Here are a few examples:

– Amateurs identifying the genes that cause human disease

In the field of medicine, some of the most impressive data mining feats have come from

individuals affected by rare diseases who have used publicly available resources to

research their own conditions.

Jill Viles is amiddle-agedwomanwho, when shewas a college undergraduate, correctly

determined that she was suffering from Emery-Dreifuss muscular dystrophy. The diagno-

sis of this very rare form of muscular dystrophy was missed by her physicians. After her

self-diagnosis was confirmed, she noticed that her father, who had never been told he had

any muscular condition, had a distribution of his muscle mass that was suggestive of

Emery-Dreifuss. Jill’s suspicions initiated a clinical consultation indicating that her father

indeed had a mild form of the same disorder and that his heart had been affected.

Her father received a needed pacemaker, and Jill’s shrewd observations were credited with

saving her father’s life. Jill pursued her interest in her own condition and soon became one

of the early beneficiaries of genome sequencing. Amutation of the lamin gene was appar-

ently responsible for her particular variant of Emery-Dreifussmuscular dystrophy. Jill later

realized that in addition to Emery-Dreifuss muscular dystrophy, she also exhibited some

of the same highly distinctive features of partial lipodystrophy, a disease characterized

by a decrease in the fat around muscles. When the fat around muscles is decreased,

the definition of the muscles (i.e., the surface outline of musculature) is enhanced. She

reasoned, correctly, that the lamin gene, in her case, was responsible for both conditions

(i.e., Emery-Dreifuss muscular dystrophy and partial lipodystrophy).

Jill’s story does not end here.While looking at photographs of Priscilla Lopes-Schlief, an

Olympic athlete known for her hypertrophied muscles, Jill noticed something very pecu-

liar. The athlete had a pattern of fat-deficient muscle definition on her shoulders, arms,
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hips, and butt, that was identical to Jill’s; the difference being that Priscilla’s muscles were

large, and Jill’s muscles were small. Jill contacted the Olympian, and the discussions that

followed eventually led to Priscilla’s diagnosis of lipodystrophy due to a mutation on the

lamin gene, at a locus different from Jill’s. Lipodystrophy can produce a dangerous eleva-

tion in triglycerides, and Priscilla’s new diagnosis prompted a blood screen for elevated

lipids. Priscilla had high levels of triglyceride, requiring prompt treatment. Once again, Jill

had made a diagnosis that was missed by physicians, linked the diagnosis to a particular

gene and uncovered a treatable and overlooked secondary condition (i.e., hypertriglycer-

idemia). And it was all done by an amateur with Internet access [43]!

Jill Viles’ story is not unique. Kim Goodsell, a patient with two rare diseases, Charcot-

Marie-Tooth disease and arrhythmogenic right ventricular cardiomyopathy, searched the

available gene datasets until she found a single gene that might account for both of her

conditions. After much study, she determined that a point mutation in the LMNA gene

was the most likely cause of her condition. Kim paid $3000 for gene sequencing of her

own DNA, and a rare point mutation on LMNA was confirmed to be responsible for

her dual afflictions [44]. In Kim’s case, as in Jill’s case, a persistent and motivated amateur

can be credited with a significant advance in the genetics of human disease.

– 36-year-old satellite resurrected

The International Space/Earth Explorer 3 (ISEE-3) spacecraft was launched in 1978 and

proceeded on a successful mission to monitor the interaction between the solar wind

and the earth’s magnetic field. In 1985, ISEE-3 visited the comet Giacobini-Zinner, and

was thereupon given a new name, ICE (the International Cometary Explorer). In 1999

NASA, short of funds, decommissioned ICE. In 2008, NASA tried to contact ICE and found

that all but one of its 13 observational experiments were still in operation, and that the

spacecraft had not yet exhausted its propellant.

In April 2014, a citizens group of interested scientists and engineers announced their

intention to reboot ICE [38]. In May, 2014, NASA entered into a Non-Reimbursable Space

Act Agreement with the citizen group, which would provide the reboot team with NASA

advisors, but no funding. Later in May, the team successfully commanded the probe to

broadcast its telemetry (i.e., its recorded data). In September, the team lost contact with

ICE. ICEwill return to a near-earth position, in 17 years (Fig. 20.1). There is reason to hope

that scientists will eventually recover ICE telemetry, and, with it, find new opportunities

for data analysis [45].

In the past, the term “amateurish” was used to describe products that are unprofes-

sional and substandard. In the realm of Big Data, where everyone has access to the same

data, amateurs and professionals can now compete on a level playing field. To their credit,

amateurs are unsullied by the kind of academic turf battles, departmental jealousies, and

high-stakes grantsmanship ploys that produce fraudulent, misleading, or irreproducible

results [46]. Because amateurs tend towork with free and publicly available data sets, their

research tends to be low-cost or no-cost. Hence, on a cost-benefit analysis, amateur sci-

entist may actually have more value, in terms of return on investment, than professional
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scientists. Moreover, there are soon to be many more amateur scientists than there are

professionals, making it likely that these citizen scientists, who toil for love, not money,

will achieve the bulk of the breakthroughs that come from Big Data science. Of course,

none of these breakthroughs, from citizen scientists, would be possible without free

and open access to Big Data resources.
Section 20.8. Case Study: 1984, by George Orwell

He who controls the past controls the future.
George Orwell

When you have access to Big Data, you feel liberated; when Big Data has access to you,

you feel enslaved. Everyone is familiar with the iconic image, from Orwell’s 1984, of a

totalitarian government that spies on its citizens from telescreens [47]. The ominous
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phrase, “Big Brother is watching you,” evokes an important thesis of Orwell’s masterpiece;

that an evil government can use an expansive surveillance system to crush its critics.

Lest anyone forget, Orwell’s book had a second thesis, that was, in my opinion, more

insidious and more disturbing than the threat of governmental surveillance. Orwell was

concerned that governments could change the past and the present by inserting, deleting,

and otherwise distorting the information available to citizens. In Orwell’s 1984, previously

published reports of military defeats, genocidal atrocities, ineffective policies, mass

starvation, and any ideas that might foment unrest among the proletariat, were deleted

and replaced with propaganda pieces. Such truth-altering activities were conducted

undetected, routinely distorting everyone’s perception of reality to suit a totalitarian

agenda. Aside from understanding the dangers in a surveillance-centric society, Orwell

was alerting us to the dangers inherent with mutable Big Data.

Today, our perception of reality can be altered by deleting or modifying electronic data

distributed via the Internet. In 2009, Amazon was eagerly selling electronic editions of a

popular book, much to the displeasure of the book’s publisher. Amazon, to mollify the

publisher, did something that seemed impossible. Amazon retracted the electronic books

from the devices of readers who had alreadymade their purchase. Where there was once a

book on a personal eBook reader, there was now nothing. Amazon rectified their action by

crediting customer accounts for the price of the book. So far as Amazon and the publisher

were concerned, the equilibrium of the world was restored [48].

The public reaction to Amazon’s vanishing act was a combination of bewilderment

(“What just happened?”), shock (“How was it possible for Amazon to do this?”), outrage

(“That book was mine!”), fear (“What else can they do to my eBook reader?”), and

suspicion (“Can I ever buy another eBook?”). Amazon quickly apologized for any misun-

derstanding and promised never to do it again.

To add an element of irony to the episode, the book that was bought, then deleted, to

suit the needs of a powerful entity, was George Orwell’s 1984.

One of the purposes of this book is to describe the potential negative consequences of

Big Data when data is not collected ethically, prepared thoughtfully, analyzed openly,

or subjected to constant public review and correction. These lessons are important

because the future reality of our Big Data universe will be determined by some of the

people who are reading this book today.
Glossary
Artificial intelligence Artificial intelligence is the field of computer science that seeks to create machines

and computer programs that seem to have human intelligence. The field of artificial intelligence

sometimes includes the related fields of machine learning and computational intelligence. Over the

past few decades, the term “artificial intelligence” has taken a battering from professionals inside

and outside the field, for good reasons. First and foremost is that computers do not think in the

way that humans think. Though powerful computers can now beat chess masters at their own game,

the algorithms for doing so do not simulate human thought processes. Furthermore, most of the

predicted benefits from artificial intelligence have not come to pass, despite decades of generous
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funding. The areas of neural networks, expert systems, and language translation have not met

expectations. Detractors have suggested that artificial intelligence is not a well-defined sub discipline

within computer science as it has encroached into areas unrelated to machine intelligence, and has

appropriated techniques from other fields, including statistics and numerical analysis. Some of the

goals of artificial intelligence have been achieved (e.g., speech-to-text translation), and the analytic

methods employed in Big Data analysis should be counted among the enduring successes of the field.

Checksum An outdated term that is sometimes used synonymously with one-way hash or message

digest. Checksums are performed on a string, block or file yielding a short alphanumeric string

intended to be specific for the input data. Ideally, If a single bit were to change, anywhere within

the input file, then the checksum for the input file would change drastically. Checksums, as the name

implies, involve summing values (typically weighted character values), to produce a sequence that can

be calculated on a file before and after transmission. Most of the errors that were commonly intro-

duced by poor transmission could be detected with checksums. Today, the old checksum algorithms

have been largely replaced with one-way hash algorithms. A checksum that produces a single digit as

output is referred to as a check digit.

Machine learning Refers to computer systems and software applications that learn or improve as new

data is acquired. Examples would include language translation software that improves in accuracy

as additional language data is added to the system, and predictive software that improves as more

examples are obtained. Machine learning can be applied to search engines, optical character recog-

nition software, speech recognition software, vision software, neural networks. Machine learning

systems are likely to use training data sets and test data sets.

Semantics The study of meaning. In the context of Big Data, semantics is the technique of creating

meaningful assertions about data objects. A meaningful assertion, as used here, is a triple consisting

of an identified data object, a data value, and a descriptor for the data value. In practical terms, seman-

tics involves making assertions about data objects (i.e., making triples), combining assertions about

data objects (i.e., merging triples), and assigning data objects to classes; hence relating triples to other

triples. As aword ofwarning, few informaticianswould define semantics in these terms, but Iwould sug-

gest that most definitions for semantics would be functionally equivalent to the definition offered here.
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